
HTML:
The Complete Reference,

Second Edition

About the Author ...
Thomas Powell has been professionally involved in the Internet community since 1987.
His career began with network support at UCLA’s PICnet, followed by several years at
CERFnet. In 1994, he founded Powell Internet Consulting, LLC (www.pint.com), a firm
specializing in advanced Web design and development.

Powell is the author of two other popular Web development books: Web Site
Engineering (with Dominique Cutts and David Jones) and the HTML Programmer's
Reference (with Dan Whitworth). He has written extensively about the Web and
development technologies for NetGuide, Internet Week, Interactive Age, Communications
Week, and Network World.

Mr. Powell teaches Web publishing classes through the Information Technologies
program at UCSD Extension. He holds a B.S. in Math Applied Science from UCLA and
an M.S. in Computer Science from UCSD.

Copyright 1999 The McGraw-Hill Companies. Click Here for Terms of Use.

HTML:
The Complete Reference,

Second Edition

Thomas A. Powell

Osborne/McGraw-Hill
Berkeley New York St. Louis San Francisco

Auckland Bogotá Hamburg London Madrid
Mexico City Milan Montreal New Delhi Panama City

Paris São Paulo Singapore Sydney
Tokyo Toronto

Copyright © 1999 by The McGraw-Hill Companies. All rights reserved. Manufactured in the United States of America. Except as per-
mitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any
means, or stored in a database or retrieval system, without the prior written permission of the publisher.

0-07-213286-8

The material in this eBook also appears in the print version of this title: 0-07211977-2.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked
name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the
trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate train-
ing programs. For more information, please contact George Hoare, Special Sales, at george_hoare@mcgraw-hill.com or (212) 904-
4069.

TERMS OF USE
This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to the
work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve
one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon,
transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior consent. You may
use the work for your own noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work
may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS”. McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS
TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK,
INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE,
AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not
warrant or guarantee that the functions contained in the work will meet your requirements or that its operation will be uninterrupted or
error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless
of cause, in the work or for any damages resulting therefrom. McGraw-Hill has no responsibility for the content of any information
accessed through the work. Under no circumstances shall McGraw-Hill and/or its licensors be liable for any indirect, incidental, spe-
cial, punitive, consequential or similar damages that result from the use of or inability to use the work, even if any of them has been
advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause whatsoever whether such claim
or cause arises in contract, tort or otherwise.

DOI: 10.1036/0072132868

 abc
McGraw-Hill

Contents

Acknowledgments . xix
Preface . xxi

Part I

Web Basics

1 Introduction to HTML . 3
Basic HTML Concepts . 4

HTML: A Structured Language . 7
Overview of HTML Markup . 11

Logical and Physical HTML . 13
What HTML Is Not . 15

Summary . 17

2 Web Publishing . 19
What Is Good Web Design? . 20
The Process of Web Publishing . 23

Determining Purpose . 24

v

Copyright 1999 The McGraw-Hill Companies. Click Here for Terms of Use.

vi H T M L : T h e C o m p l e t e R e f e r e n c e

Who Is the Audience? . 25
Who Will Pay for It? . 26
Defining Goals . 27
Defining Scope . 28
Organization of Information . 29
Determining the Site Plan . 36

Implementation . 37
Gathering and Creating the Content 37
Visual Design . 38
Technology Design . 38
Producing the HTML . 39
Testing . 42
Maintenance . 44

The Phases of Web Site Development . 45
HTML’s Role in the Web . 45

Historical Roots of HTML . 46
Mosaic: The Web Community Changes 47
The Rise of Netscape . 48
The Market Matures: Microsoft Enters 49
From Pages to Programs . 49

Issues Facing HTML and the Web . 50
Summary . 51

3 Introduction to Common HTML 53
HTML Overview . 54

HTML Rules and Guidelines . 55
The Structure of HTML Documents . 59
Document Types . 60
The <HTML> Element . 61
The <HEAD> Element . 62

The <TITLE> Element . 63
The <BODY> Element . 66
HTML Elements . 66

Core Attributes . 66
Language Attributes . 68
Core Events . 68
Block-Level Elements . 69
Text-Level Elements . 94
Character Entities . 100

Summary . 103

4 Links and Addressing . 105
Linking Basics . 106
What Are URLs? . 109

Basic Concepts . 110

C o n t e n t s vii

Formula for a URL . 118
Relative URLs . 127

Linking in HTML . 129
The Anchor Element . 129
Link Renderings . 132

Anchor Attributes . 133
Using the NAME Attribute . 134
TITLE Attributes for Anchors . 136
Accelerator Keys . 138
TABINDEX Attribute . 139
TARGET Attribute . 139
Anchors and Link Relationships . 140
Scripting and Anchors . 140

Images and Anchors . 141
Image Maps . 142

Server-Side Image Maps . 143
Client-Side Image Maps . 144
Image Map Attributes . 149

Semantic Linking with the <LINK> Element 154
Link Relationships in Detail . 154
WebTV Support for <LINK> . 160
<LINK> and Style Sheets . 160

Meta-Information . 161
<META> and the NAME Attribute 162
META and HTTP-EQUIV . 163
Client-Pull . 164
Site Filtering . 164
Linking Issues . 168

Beyond Location . 170
Problems with URLs . 170
URNs, URCs, and URIs . 171
New URL Forms . 173

Summary . 174

5 HTML and Images . 175
The Role of Images on the Web . 176
Image Preliminaries . 177

GIF Images . 179
JPEG Images . 186
PNG Images . 187
Other Useful Image Formats . 187

Image Downloading Issues . 187
Obtaining Images . 189
HTML Image Basics . 191

ALT Attribute . 192

viii H T M L : T h e C o m p l e t e R e f e r e n c e

Image Alignment . 196
HSPACE and VSPACE . 200
Extensions to
 . 202
HEIGHT and WIDTH . 205
LOWSRC . 206

Images as Buttons . 207
Image Maps . 209

Server-Side Image Maps . 209
Client-Side Image Maps . 210
Advanced Image Considerations: Scripting,

Style, and <OBJECT> . 211
Summary . 212

Part II

Presentation and Layout

6 Introduction to Layout: Backgrounds, Colors,
and Text . 215

Design Requirements . 216
HTML Approach to Web Design . 217

Text Alignment with Traditional HTML Elements 217
The <CENTER> Element . 219
Alignment Attributes . 219
Word Hinting with <NOBR> and <WBR> 219
Alignment with Images . 220
Invisible Images and Layout . 221
The <SPACER> Element . 222
The <MULTICOL> Element . 224

Fonts . 227
Document-Wide Font Settings . 229
Downloadable Fonts . 230
Netscape’s Dynamic Fonts . 231
Microsoft’s Dynamic Fonts . 232

Colors in HTML . 233
Document-Wide Color Attributes for <BODY> 235
Background Images . 237

Internet Explorer Background Attributes 240
Summary . 241

7 Layout with Tables . 243
Introduction to Tables . 244

Simple Tables . 244
ROWSPAN and COLSPAN . 246
Tables for Layout . 249

C o n t e n t s ix

Tables in HTML 4 . 256
<TABLE> Elements . 259

Databinding: Tables Generated
from a Data Source . 259

Summary . 263

8 Advanced Layout: Frames and Layers 265
Frames . 266

Overview of Frames . 267
Simple Frame Example . 267
Frame Targeting . 272
Floating Frames . 275
Using Frames . 276
Frame Problems . 277

Layers . 278
Positioned Layers . 279
Inflow Layers . 281
Interesting Uses of Layers . 283
Programming Layers . 286

Summary . 287

9 HTML and Other Media Types . 289
HTML and Binary Objects . 290

Plug-Ins and <EMBED> . 290
ActiveX Controls and <OBJECT> . 292
Java Applets . 293

Media-Like Element: <MARQUEE> . 295
Audio Support in Browsers . 297

Digital Sound Basics . 298
Audio File Formats and Compression 298
Downloading and Playing Audio . 298

Video Support . 308
Digital Video Basics . 309
Video File Formats and Compression 309
Waiting for Video . 309
Other Video Formats . 322

Other Binary Formats . 322
Flash . 323
Acrobat . 325

Summary . 326

10 Style Sheets . 327
The Rise of Style . 328
Style Sheet Basics . 329

Adding Style to a Document . 330

Style Sheet Example . 342
Style Sheet Properties . 344

Font Properties . 344
Color and Background Properties . 351
Text Properties . 356
Box Properties . 361
Classification Properties . 374

Positioning with Style Sheets . 378
Positioning and Sizing of Regions . 379

CSS2: New Feature Summary . 386
Media Types . 386
User Interface Changes . 389

Microsoft-Specific Style Sheet Properties . 397
Filters . 397

Summary . 404

Part III

Programming and HTML

11 Basic Interactivity and HTML: Forms 407
How Are Forms Used? . 408
Form Preliminaries . 409
The <FORM> Element . 410

ACTION Attribute . 410
METHOD Attribute . 411
NAME Attribute . 413
ENCTYPE Attribute . 414
Simple <FORM> Syntax . 415
Complete <FORM> Syntax . 416

Form Controls . 419
Text Controls . 419
Additional <INPUT> Types . 433

New and Emerging Form Elements . 438
<BUTTON> Element . 438
Labels . 439
<FIELDSET> . 439
Form Accessibility Enhancements . 441
Miscellaneous HTML 4 Form Attributes 443
Form Presentation . 443

Special Form Considerations for WebTV . 448
Forms and Events . 448
Summary . 451

x H T M L : T h e C o m p l e t e R e f e r e n c e

12 Introduction to Server-Side Programming 453
Overview of Client/Server Programming on the Web 454
Server-Side Programming . 457
Common Gateway Interface (CGI) . 458

CGI Output . 461
Passing Information to a CGI Program: Environment

Variables . 464
Passing Information to a CGI Program: Form Data 468
Writing CGI Programs . 470
Buying or Borrowing CGI Programs 471

NSAPI/ISAPI . 472
Parsed HTML Solutions: Server-Side Scripting 472

Server-Side Includes (SSIs) . 473
ColdFusion . 479

Using CFML . 479
CFML Summary . 488

Active Server Pages (ASP) . 490
Creating ASP Pages . 491

Summary . 496

13 Introduction to Scripting and HTML 497
The Purpose of Scripting . 498
JavaScript . 499
VBScript . 502
Including Scripts in an HTML Document . 504

Specifying the Scripting Language . 508
External Scripts . 509
Scripting and Non-Script-Aware Browsers 510
<NOSCRIPT> . 511

Script Events and HTML . 512
Extended Event Models . 518

Form Validation in JavaScript . 529
Summary . 533

14 Dynamic HTML (DHTML) . 535
Dynamic HTML and the Document Object Model 536

Object Models . 539
HTML and Scripting Access . 542
Rollover Buttons . 547

Style Sheet–Based Rollovers . 549
Moving Objects with DHTML . 551
Ramifications of DHTML . 557
Summary . 558

C o n t e n t s xi

xii H T M L : T h e C o m p l e t e R e f e r e n c e

15 Client-Side Programming and HTML 559
Scripting, Programming, and Objects . 560
Plug-Ins . 561

<EMBED> Syntax . 563
Java Applets . 569

<APPLET> Syntax . 572
Java and Scripting . 574
Using Java Without Programming . 577

ActiveX Controls . 578
Adding Controls to Web Pages . 580
Cross-Platform Support with Plug-Ins

and ActiveX Controls . 588
The Future of <OBJECT> . 590
Summary . 590

Part IV

Site Delivery

16 Putting It All Together: Delivering the Web Site 595
Publishing the Site . 596
Outsourcing Web Hosting . 596
Virtual Hosting . 599
Running a Local Web Server . 600

Selecting a Web Server . 600
How Web Servers Work . 604

HTTP . 605
MIME . 621
Speed and State Problems with HTTP 622

The Realities of Publishing and Maintaining a Web Site 623
Summary . 623

Part V

New Horizons

17 XML: Beyond HTML . 627
Relationship Among HTML, SGML, and XML 628
Basic XML . 630

Valid Documents . 632
Ways to Use XML . 638

XML for Data Files . 638
Embedding XML into HTML Documents 640
Converting XML to HTML for Display 643
Displaying XML Documents by Using CSS and XSL 645

C o n t e n t s xiii

Rewriting HTML as XML . 649
Predicting the Future of XML . 651
Summary . 652

18 Future Directions . 653
Presentation Issues . 654
Programming Issues . 655
Structure . 658
Web-Wide Problems . 661
Application-Specific Presentation . 663
What Is the Future of HTML? . 664
Summary . 665

Part VI

Appendixes

A HTML Element Reference . 669
Core Attributes Reference . 670

CLASS . 670
ID . 670
STYLE . 671
TITLE . 671

Language Reference . 672
LANG . 672
DIR . 672

Events Reference . 672
Extended Events . 672

HTML Element Reference . 681
<!- - ... - -> (Comment) . 681
<!DOCTYPE> (Document Type Definition) 682
<A> (Anchor) . 683
<ABBR> (Abbreviation) . 688
<ACRONYM> (Acronym) . 689
<ADDRESS> (Address) . 691
<APPLET> (Java Applet) . 693
<AREA> (Image Map Area) . 696
<AUDIOSCOPE> (Sound Amplitude Display) 700
 (Bold) . 701
<BASE> (Base URL) . 703
<BASEFONT> (Base Font) . 704
<BDO> (Bidirectional Override) . 706
<BGSOUND> (Background Sound) 707
<BIG> (Big Font) . 708
<BLACKFACE> (Blackface Font) . 710

xiv H T M L : T h e C o m p l e t e R e f e r e n c e

<BLINK> (Blinking Text Display) . 710
<BLOCKQUOTE> (Block Quote) . 711
<BODY> (Document Body) . 713
<BQ> (Block Quote) . 717

 (Line Break) . 718
<BUTTON> (Form Button) . 719
<CAPTION> (Figure or Table Caption) 722
<CENTER> (Center Alignment) . 725
<CITE> (Citation) . 726
<CODE> (Code Listing) . 728
<COL> (Column) . 730
<COLGROUP> (Column Group) . 732
<COMMENT> (Comment Information) 734
<DD> (Definition in a Definition List) 735
 (Deleted Text) . 737
<DFN> (Defining Instance of a Term) 739
<DIR> (Directory List) . 741
<DIV> (Division) . 743
<DL> (Definition List) . 746
<DT> (Term in a Definition List) . 748
 (Emphasis) . 750
<EMBED> (Embedded Object) . 752
<FIELDSET> (Form Field Set) . 755
<FN> (Footnote) . 757
 (Font Definition) . 758
<FORM> (Form for User Input) . 760
<FRAME> (Window Region) . 763
<FRAMESET> (Frameset Definition) 766
<H1> Through <H6> (Headings) . 770
<HEAD> (Document Head) . 772
<HR> (Horizontal Rule) . 774
<HTML> (HTML Document) . 776
<I> (Italic) . 777
<IFRAME> (Floating Frame) . 779
<ILAYER> (Inflow Layer) . 782
 (Image) . 784
<INPUT> (Input Form Control) . 789
<INS> (Inserted Text) . 794
<ISINDEX> (Index Prompt) . 797
<KBD> (Keyboard Input) . 799
<LABEL> (Form Control Label) . 800
<LAYER> (Content Layers) . 803
<LEGEND> (Field Legend) . 806
 (List Item) . 808
<LINK> (Link to External Files or Set Relationships) . . . 810
<LISTING> (Code Listing) . 814

C o n t e n t s xv

<MAP> (Client-Side Image Map) . 815
<MARQUEE> (Marquee Display) 817
<MENU> (Menu List) . 821
<META> (Meta-Information) . 823
<MULTICOL> (Multiple Column Text) 825
<NOBR> (No Breaks) . 827
<NOEMBED> (No Embedded Media Support) 828
<NOFRAMES> (No Frame Support Content) 829
<NOSCRIPT> (No Script Support Content) 830
<OBJECT> (Embedded Object) . 832
 (Ordered List) . 837
<OPTGROUP> (Option Grouping) 839
<OPTION> (Option in Selection List) 841
<P> (Paragraph) . 843
<PARAM> (Object Parameter) . 846
<PLAINTEXT> (Plain Text) . 848
<PRE> (Preformatted Text) . 850
<Q> (Quote) . 852
<S> (Strikethrough) . 854
<SAMP> (Sample Text) . 855
<SCRIPT> (Scripting) . 857
<SELECT> (Selection List) . 860
<SMALL> (Small Text) . 864
<SPACER> (Extra Space) . 866
 (Text Span) . 867
<STRIKE> (Strikeout Text) . 869
 (Strong Emphasis) . 871
<STYLE> (Style Information) . 873
<SUB> (Subscript) . 875
<SUP> (Superscript) . 877
<TABLE> (Table) . 879
<TBODY> (Table Body) . 885
<TD> (Table Data) . 888
<TEXTAREA> (Multiline Text Input) 893
<TFOOT> (Table Footer) . 898
<TH> (Table Header) . 900
<THEAD> (Table Header) . 905
<TITLE> (Document Title) . 908
<TR> (Table Row) . 909
<TT> (Teletype Text) . 912
<U> (Underline) . 914
 (Unordered List) . 915
<VAR> (Variable) . 918
<WBR> (Word Break) . 919
<XML> (XML Data Island) . 921
<XMP> (Example) . 922

xvi H T M L : T h e C o m p l e t e R e f e r e n c e

B Style Sheet Reference . 925
Style Sheet Terms . 926

Embedded Styles . 926
Inline Styles . 927
Linked Styles . 927
Imported Styles . 927
Selectors . 928
Rules . 930
Grouping . 931
Inheritance . 931

Pseudoclasses . 931
A:active . 931
A:link . 932
A:visited . 932

Pseudoelements . 932
first-letter . 932
first-line . 933

Miscellaneous . 933
/* comments */ . 933
! Important . 934

Fonts . 934
font-family . 934
font-size . 936
font-style . 940
font-weight . 942
font-variant . 943
text-transform . 944
text-decoration . 946
font . 948

Text . 948
word-spacing . 948
letter-spacing . 949
line-height . 949
text-align . 950
vertical-align . 951
text-indent . 953

Colors and Backgrounds . 954
color . 954
background-color . 954
background-image . 955
background-repeat . 956
background-attachment . 957
background-position . 958
background . 961

C o n t e n t s xvii

Layout . 966
Margins . 966
Borders . 968
Padding . 976
width . 978
height . 978
float . 979
clear . 980

Layers and Positioning . 982
position . 982
width . 984
height . 984
clip . 984
overflow . 984
z-index . 985
visibility . 986

Classification . 987
display . 987
white-space . 988
list-style-type . 989
list-style-image . 992
list-style-position . 993
list-style . 993

Style Sheet Measurement Values . 993
% . 993
cm . 994
em . 994
ex (x-height) . 994
in . 995
mm . 995
pc . 995
pt . 996
px . 996

Style Sheet Color Values . 996
Named Color Values . 996
Six-Digit Hexadecimal Color Values 997
Three-Digit Hexadecimal Color Values 997
RGB Color Values . 997
RGB Color Values Using Percentages 998

C Special Characters . 999
“Standard” HTML Character Entities . 1000
HTML 4 Character Entities . 1019

Latin Extended-A . 1020

Latin Extended-B . 1020
Spacing Modifier Letters . 1020
General Punctuation . 1021
Greek . 1022
Letter-Like Symbols . 1024
Arrows . 1025
Mathematical Operators . 1025
Technical Symbols . 1027
Geometric Shapes . 1027
Miscellaneous Symbols . 1027

D Fonts . 1029
Fonts for Microsoft Platforms and Browsers 1030
Fonts for Apple Macintosh System 7 . 1032
Fonts for Unix Systems . 1032

E Color Names and Hexadecimal Codes 1033

F Reading a Document Type Definition 1043
Declarations . 1044

Element Type Declarations . 1044
Attribute List Declarations . 1047

SGML Keywords . 1047
Parameter Entities . 1048
General Entities . 1049
Comments . 1049
Marked Section Declaration . 1050
HTML 4 Transitional DTD . 1051
HTML 4 Strict DTD . 1077
HTML 4 Frameset DTD . 1099

Index. 1101

xviii H T M L : T h e C o m p l e t e R e f e r e n c e

Acknowledgments

Writing a comprehensive book about a topic as large as HTML is a daunting
task. As my business partner, Jimmy Tam, often says, “Don’t let anybody tell
you that HTML is easy.” This is more true than any of us would like to admit.

Even though I have taught HTML for years at UCSD Extension, written numerous
articles on the subject, and been involved in the construction of dozens of corporate
sites, I am just as guilty as anybody else of underestimating the details and
complexities of the language when you get beyond layout. The specifications aren’t
perfect, documentation varies between browser vendors, and there is a great deal of
misconception and oral history floating around the Web. Worst of all, it’s a
continuously moving target. The HTML 4.0 specification represents a significant
change in the flavor of HTML from previous versions. With the potential rise of a new
form of HTML in light of XML, more changes are in the offing. I and many others tried
as hard as we could to clarify everything to the best of our understanding. I would like
to thank those who made the extra effort to try to make this more than just another
HTML book.

First I would like to thank all of the staff members at PINT who put up with their
grumpy boss and his big book project. PINT’s editor, writer, and overall HTML expert,
Dan Whitworth, was indispensable and did a great job of fixing what I thought were
complete sentences, as well as putting everything else together. Other PINT staff

xix

Copyright 1999 The McGraw-Hill Companies. Click Here for Terms of Use.

members, including Jimmy Tam, Francesca Weisser, Nikos Ioannou, Eric Raether,
Rob McFarlane, Mark Robertson, Cory Ducker, Keith Mar, and many others, always
helped keep things running smoothly enough so I could have a few minutes to work
in peace.

Megg Bonar at Osborne/McGraw-Hill, who graciously allowed me to write this
book and this new edition, provided the appropriate motivation to keep things
running. Stephane Thomas made sure all the manuscript was in order, and
Emily Rader made sure everything was edited and put together properly. Technical
editor Alan Herrick, as well as the original technical editor, MegaZone, made sure to
keep our HTML code to spec as much as possible.

My family and friends, particularly my sister Diana Powell, provided moral
support as well as a few chili dog deliveries that ensured eventual completion of this
project. Special thanks to my good friends at Datanet in Mexico City (particularly
Tony Rihan) who have always shown support and friendship when I have needed it.
Last but not least, the staff and students at UCSD Extension deserve thanks for giving
me the wonderful opportunity to teach HTML and Web publishing for the past four
years. The feedback from students has much to do with any improvements in this
new edition.

Thomas A. Powell

xx H T M L : T h e C o m p l e t e R e f e r e n c e

Preface

Sitting down to write the new edition of this book shows just how fast things move
in Internet time. Since the first edition was published, HTML 4 has become a
standard, Dynamic HTML (DHTML) has started to take hold, and style sheets are

reasonably well supported by both of the major browsers. The Web is getting even
more complex. Vestigial elements of the past, such as proprietary HTML tags, are
disappearing rapidly. And finally, we are beginning to realize the immense scope of
the implications of the Extensible Markup Language (XML).

Despite these rapid changes, many people seem to believe that the future of HTML
is dire. At the time of the first edition, many pundits had already predicted that the
need for intimate knowledge of HTML would soon disappear. This doesn’t seem
ridiculous when you consider WYSIWYG editors such as Microsoft’s FrontPage. These
tools provide the illusion that we are a mere drag-and-drop away from creating a
“killer” Web site. Eventually we will get there; but, for the moment, things are often
complex. WYSIWYG tools may be useful in a limited fashion, but the instability of
HTML and the lack of control over layout still requires a great deal of custom coding.
If anything, authoring Web pages is becoming more complex, not less.

HTML provides the framework for all Web pages and will continue to be an
important technology for at least the next few years. Fortunately, for now, learning the
basics of HTML isn’t difficult. If you arm yourself with a good informational tool, you

xxi

Copyright 1999 The McGraw-Hill Companies. Click Here for Terms of Use.

can produce decent HTML code relatively quickly. As a teacher of Web publishing
classes at the University of California at San Diego Extension, I know that after only a
few classes some students can produce very nice Web pages. On the other hand,
mastering HTML is still a daunting task. Errors creep into pages, particularly across
browsers, and new elements are invented all the time. Coding techniques have become
very important. Furthermore, the latest version of HTML represents a serious increase
in the number of attributes available for modifying HTML elements.

This book attempts to incorporate the ideas of HTML 4, Netscape, Microsoft, and
even WebTV, along with new technologies that affect HTML, such as Cascading Style
Sheets (CSS), DHTML, and XML. Don’t forget that there is more to making Web pages
than HTML. I’ll hint at that where I can; but, rather than try to talk about everything
related to Web design, I want to do one thing the best I can: cover HTML. This book
isn’t meant to be only about learning HTML. I want this to be a book you can come
back to if you forget an element’s syntax or just want to look something up. I want it to
be current and cover Netscape, Microsoft, WebTV, and any other important HTML
viewing platform. I want it to show the relationship of HTML to emerging technologies
such as style sheets and present the open issues facing HTML. I would even like it to
stimulate some thought about your authoring techniques. If I’ve done a good job, this
book will be true to its name—a complete reference.

Thomas A. Powell
tpowell@pint.com

January, 1999

xxii H T M L : T h e C o m p l e t e R e f e r e n c e

Part I
Web Basics

Copyright 1999 The McGraw-Hill Companies. Click Here for Terms of Use.

This page intentionally left blank.

Chapter 1
Introduction to HTML

3

Copyright 1999 The McGraw-Hill Companies. Click Here for Terms of Use.

Hypertext Markup Language (HTML) is the text markup language currently
used on the World Wide Web. If you have ever written a school report or
business memo, you have encountered text markup. Your documents probably

came back to you covered in red ink, courtesy of your teacher or boss. The symbols and
acronyms used in those editorial markups suggested changes for you to interpret or
implement (see Figure 1-1). In that scenario, markup is separate from the actual content
of your document. When you create a document with a word processing program,
such as Microsoft Word or WordPerfect, the program uses markup language to
indicate the structure and formatting of that electronic document. What you see on
your screen looks like a page of formatted text; the rest is done “behind the scenes.”
HTML is the not-so-behind-the-scenes markup language that is used to tell Web
browsers how to display Web pages.

Basic HTML Concepts
In the case of HTML, markup commands applied to your Web-based content tell the
browser software the structure of the document and, when appropriate, how you want
the content to be displayed. For example, if you want to display a section of text in
boldface, you surround the corresponding text with the boldface markup tags,
and , as shown here:

This is important text.

When the browser reads a document that has HTML markup in it, it determines
how to render it onscreen by considering the HTML elements embedded within the
document (see Figure 1-2). Be aware that browsers don’t always render things in the
way that you think they will. This is due partially to the design of HTML and partially
to the differences in the variety of Web browsers currently in use.

4 H T M L : T h e C o m p l e t e R e f e r e n c e

Figure 1-1. Interpretation of an essay with editorial markup

An HTML document is simply a text file that contains the information you want to
publish. It also contains embedded instructions, called elements, that indicate how a
Web browser should structure or present the document. In the following listing, the
HTML elements are highlighted in a bold font. The elements are explained in greater
detail later in this chapter in the section “Overview of HTML Markup.”

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>

<HEAD>

<TITLE> Big Company's Big Home Page </TITLE>
</HEAD>

<BODY>
<H1 ALIGN="CENTER"> Big Company, Inc. </H1>

<P>Welcome to Big Company, Inc.–your best source for HTML examples.
We do examples right! </P>

C h a p t e r 1 : I n t r o d u c t i o n t o H T M L 5

W
EB

A
N

D
H

TM
L

B
A

S
IC

S

Figure 1-2. Interpretation of a Web page with HTML markup

6 H T M L : T h e C o m p l e t e R e f e r e n c e

 What's New
 Products

 Contact

<HR>

<ADDRESS>E-mail:

webmaster@bigcompany.com

</ADDRESS>

</BODY>

</HTML>

As this listing demonstrates, HTML elements generally consist of a pair of angle-
bracketed tags surrounding some text. The end tag (</TAG>) is just like the start tag
(<TAG>), except that it has a slash (/) in it, as shown here:

<TAG>

...
Content that the tag pair affects
...

</TAG>

The HTML elements may indicate the meaning of the enclosed information (for
example, a citation) or how the text should be rendered (for example, in italics). Given
the following HTML code,

<I> This is interesting. </I>

a Web browser should render the phrase “This is interesting” in italics.
HTML elements normally consist of a pair of tags that enclose some textual content

or other HTML elements. However, some elements, such as the horizontal rule tag,
<HR>, do not have a corresponding end tag; that is, they don’t actually “contain”
anything. These elements are termed empty elements. The end tag for some elements is
optional, so an element may appear to be empty, even though it isn’t, because its end tag
is missing. For example, with the paragraph element, <P>, the end tag may be omitted.
However, for such elements, the Web browser actually infers the presence of the end tag.
For clarity’s sake and to protect your pages against future changes to the HTML
specification, using the end tag for an element is always a good idea, if one is defined.

Start tag

End tag

HTML: A Structured Language
As the preceding discussion indicates, HTML tags have a well-defined syntax and
HTML documents have a formal structure. The World Wide Web Consortium (W3C),
at http://www.w3.org, is the primary organization that attempts to standardize
HTML (as well as many other technologies used on the Web). To provide a standard,
the W3C must carefully specify all aspects of the technology. In the case of HTML,
this means precisely defining the elements in the language. The W3C has defined
HTML as an application of the Standard Generalized Markup Language (SGML). In
short, SGML is a language used to define other languages by specifying the allowed
document structure in the form of a document type definition (DTD)—a document that
indicates the syntax that can be used for elements.

From the DTD, a basic template can be derived for an HTML document. First,
you indicate the particular variant of HTML that you are using. As you’ll learn later,
numerous versions of HTML exist, and thus you must make sure to author your
documents with the HTML standard (or nonstandard) that makes the most sense for
your user base.

To indicate the particular variant of HTML that you are using, you need to specify
the particular DTD to which the HTML file conforms. To accomplish this, all HTML
files should begin with a <!DOCTYPE> indicator. Unfortunately, <!DOCTYPE> is
rarely used correctly, and HTML’s relationship to SGML is not well understood by
many HTML authors. Furthermore, most browsers don’t seem to care whether a
document type is indicated. The benefits of using the <!DOCTYPE> statement are
discussed in Chapter 3.

While all proper HTML files should begin with a <!DOCTYPE> declaration, this is
generally omitted. Instead, most HTML files begin with the <HTML> element, which
indicates that the content of the file includes markup. This is an essential element that
should not be omitted.

The file should end with the <HTML> element’s end tag, </HTML>. Within the
<HTML> element are two primary sections—the head and the body. Occasionally,
special framing documents contain a head and a frameset. The concept of frames is
discussed in depth in Chapter 8.

The head, which is enclosed within the <HEAD> element (consisting of the <HEAD>
and </HEAD> tags), includes supplementary information about the document, such as
the title of the document, which most browsers display in a title bar at the top of the
browser window. The title is indicated between the <TITLE> and </TITLE> tags. The
document title is required under the current HTML specification. While some browsers
may not require the inclusion of the <TITLE> element, you should always include it—for
correctness, book marking, and the sake of good HTML style.

The information in the head of an HTML document is very important, because it
is used to describe or augment the content of the document. The head of an HTML
document is like the front matter or cover page of a document. In many cases, the
information contained within the <HEAD> element is information about information,

C h a p t e r 1 : I n t r o d u c t i o n t o H T M L 7

W
EB

A
N

D
H

TM
L

B
A

S
IC

S

8 H T M L : T h e C o m p l e t e R e f e r e n c e

which is generally referred to as meta-information. This is a very important and often-
overlooked aspect of HTML documents. Search engines, such as Lycos and HotBot, use
meta-information to index Web pages. Besides meta-information, the <HEAD> element
can include author contact information, scripts, style sheets, and comments.

The body, which is enclosed between <BODY> and </BODY> tags, contains the
actual content and the appropriate markup tags needed to render the page. A basic
HTML template is shown here:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>
<HEAD>

<TITLE> Document Title Goes Here </TITLE>
...Other supplementary information goes here....

</HEAD>

<BODY>
...Document content and markup go here....

</BODY>

</HTML>

In the preceding template, the HTML 4 document type indicator is used. Other HTML
standard conformance indicators are also possible, as discussed in Chapter 3.

Some of the most common elements used in HTML documents are listed here:

■ The <HTML>, <HEAD>, and <BODY> tag pairs are used to structure the
document.

■ The <TITLE> and </TITLE> tag pair specifies the title of the document.

■ The <H1> and </H1> header tag pair creates a headline.

■ The <HR> element, which has no end tag, inserts a horizontal rule, or bar,
across the screen.

■ The <P> and </P> paragraph tag pair indicates a paragraph of text.

Now that you have a template, take a look at the following sample HTML
document, which uses these seven elements:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

C h a p t e r 1 : I n t r o d u c t i o n t o H T M L 9

W
EB

A
N

D
H

TM
L

B
A

S
IC

S

<TITLE> HTML First Example </TITLE>

</HEAD>

<BODY>

<HEAD>
<H1>Welcome to HTML </H1>
<HR>

<P>This really isn’t so hard! </P>

<P>You can put in lots of text if you want to. In fact, you
could keep on typing and make up more sentences and continue

on and on. </P>
</BODY>

</HTML>

If you are using a word processing program, you can type the example and save it
with a filename, such as first.htm or first.html. For a browser to read your file properly,
it must end in either the .htm or .html extension. If you don’t save your file with the
appropriate extension, the browser won’t attempt to interpret the HTML markup.
When this happens, the codes appear in the browser window as shown here:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>
<HEAD>
<TITLE> HTML First Example </TITLE>

</HEAD>

<BODY>

<TITLE> Welcome to HTML </H1>

<HR>

<P>This really isn’t so hard! </P>

<P>You can put in lots of text if you want to. In fact, you
could keep on typing and make up more sentences and continue
on and on. </P>

</BODY>

</HTML>

For this quick example, use a simple text-editing tool, such as Notepad in Windows
95/NT, SimpleText on the Macintosh, or vi in UNIX. While such simple programs may
not give you all the features that you want, you’ll avoid accidentally saving the file in
the wrong format, possibly with a .txt extension, or even saving it in a proprietary word
processing format that the browser cannot read.

After you save the example file on your system, use your browser to open it by
using the Open, Open Page, or Open File command. After your browser reads the file,
it should render a page like the one shown in Figure 1-3.

If your page does not display properly, review your file to make sure that you typed
the page correctly. If you find a mistake and make a change to the file, save the file, go
back to your browser, and click the Reload or Refresh button. Keeping the browser and
text editor open simultaneously is a good idea, to avoid constantly reopening one or the
other. Once you get the hang of HTML design, you’ll see that, at this raw level, it is much
like the edit, compile, and run cycle so familiar to programmers. This manual process
probably isn’t the way that you want to develop Web pages, because it can be tedious,
error prone, and not helpful when thinking of visual design. For illustrative purposes,
however, it works fine.

Based on this simple example, you might guess that learning HTML is merely a
matter of learning the multitude of markup tags, such as , that specify the format
and structure of documents to browsers. While that is true in some sense, such a

10 H T M L : T h e C o m p l e t e R e f e r e n c e

Figure 1-3. An HTML Web page displayed in a browser

C h a p t e r 1 : I n t r o d u c t i o n t o H T M L 11

W
EB

A
N

D
H

TM
L

B
A

S
IC

S
simplistic approach is like trying to learn print publishing by understanding only the
various commands available in Microsoft Word, while disregarding paper types,
document structure, and issues of style. In addition to learning the various markup
tags, you need to consider the intent of HTML, its purpose, and the medium in which
HTML is used—the World Wide Web.

Overview of HTML Markup
A markup language such as HTML is simply a collection of codes—elements in this
case— that are used to indicate the structure and format of a document. The codes have
meaning that is interpreted by a formatting program, often a Web browser, which
renders the document. Elements in HTML consist of alphanumeric tags within angle
brackets. These tags usually come in pairs, but exceptions do exist. The following table
shows a few HTML elements:

Start Tag End Tag Description

<H1> </H1> The most important headline

 Bold text

<CITE> </CITE> A citation

<P> </P> (optional) A paragraph of text

<HR> None A horizontal rule

The alphanumeric tags are case-insensitive, which means that as far as Web
browsers are concerned, <H1> is equivalent to <h1>, and <cite> is equivalent to
<CiTe>. For stylistic reasons, however, you should use case consistently.

Using all uppercase elements makes distinguishing markup from document content
easier. For future compatibility with XML, which is case-sensitive, lowercase might be
preferable. For more on XML, see Chapter 17. Many HTML editing tools provide
tag-coloring features that make maintaining documents with complex tagging
structures easier.

HTML elements often have attributes that affect the rendering of the element’s
content by modifying the function of the element. Attributes are very common with
complex elements such as , which specifies an image to load into a Web page.
The name and location of the particular image are set via the SRC attribute, which
indicates the “source” of the image file. tells the browser to
display the file called logo.gif. An element may have many attributes with quoted
values that are separated by one space, as shown here:

12 H T M L : T h e C o m p l e t e R e f e r e n c e

Attribute values should be enclosed within double quotes. Many browsers allow you to
use single quotes or no quotes at all, particularly for values that consist of a single word.
Situations also exist in which single quotes may be used within attribute values. This occurs
when JavaScript is used, or when the value of the attribute includes special characters, such
as spaces or punctuation. Attributes are discussed in more detail in Chapter 3.

Although HTML elements such as aren’t case-sensitive, the contents of
attributes often are case-sensitive. For example, isn’t necessarily
equivalent to , because the SRC value follows casing rules
specific to the attribute. With regard to filenames, some operating systems are case-
sensitive; for example, LOGO.GIF doesn’t necessarily specify the same file as logo.gif.

HTML files generally aren’t sensitive to spacing. Browsers tend to collapse multiple
spaces or tabs into a single space. For example,

This is a test.

displays the same way in a browser as does the following:

This is a

test.

Spaces, tabs, and returns collapse when HTML files are displayed in a browser,
unless they are included within elements, such as the preformatted element <PRE>.
Because HTML allows judicious spacing, you should space out content with white
space for easy reading of the source document, particularly by separating markup from
content. Additional spacing does not affect the browser’s rendering of the document.

In the future, when tools generate the majority of HTML, spacing and tagging styles
may not be as big of an issue; but, until people stop editing HTML files directly,
formatting your documents for human reading is wise.

Another aspect of HTML elements is nesting, which means that HTML elements can
surround each other. If you have some text that you want to make bold and italic, you
can apply both the and the <I> elements to the text, as shown in the following
illustration. In this example, the tags are nested and do not cross.

The idea of crossing tags is shown here:

C h a p t e r 1 : I n t r o d u c t i o n t o H T M L 13

W
EB

A
N

D
H

TM
L

B
A

S
IC

S
You can always determine whether tags cross, by connecting arcs from start tag to

end tag, to see whether the arcs cross each other.
The preceding is only a brief introduction to some of the “rules” that HTML

documents tend to follow. Unfortunately, the benefit of following the rules isn’t always
apparent to new Web developers, because most browsers don’t strictly enforce the
standards. For example, although the nesting rule agrees with the formal definition of
HTML, most browsers have no problem with crossed tags, or even with tags being
used totally improperly. The reason for the browsers’ laxity in enforcement is actually
very logical: a browser would display nonstop error messages if it displayed a message
every time that it encountered a slightly miscoded Web page! Nevertheless, don’t use
the browsers’ laxity in enforcing HTML’s “rules” as an excuse to misuse HTML or
sloppily code a page. Standards impose specific structural requirements on documents,
and as the Web becomes increasingly more complicated and technologies such as the
Extensible Markup Language (XML) are adopted, following the standards may become
much more important.

Unfortunately, many document authors are unfamiliar with standards. Thus, they
might not pay attention to the structure, because they don’t understand the philosophy
of HTML; or, they may think of HTML as a physical page-description language, such
as PostScript, rather than a logical, structure-oriented markup language. Browsers
don’t discourage this view, and may even encourage the physical view.

Logical and Physical HTML
No introduction to HTML would be complete without a discussion of the logical
versus physical markup battle at the heart of HTML. Physical HTML refers to using
HTML to make pages look a particular way; logical HTML refers to using HTML to
specify the structure of a document, and using another technology, such as cascading
style sheets (see Chapter 10), to designate the look of the page.

Most people are already very familiar with physical document design, because they
normally use WYSIWYG (what you see is what you get) text editors, such as Microsoft Word.
When Word users want to make something bold, they simply select the appropriate
button, and the text is made bold. In HTML, you can make something bold simply by
enclosing it within the and tags, as shown here:

This is important.

This can easily lead people to believe that HTML is nothing more than a simple
formatting language. WYSIWYG HTML editors (such as Microsoft FrontPage) also
reinforce this view; but as page designers try to use HTML in this simplistic fashion,
sooner or later they must face the fact that HTML is not a physical page-description
language. Page authors can’t seem to make the pages look exactly the way they want;
and when they can, doing so often requires heavy use of <TABLE> tags, giant images,
and even trick HTML. Other technologies, such as style sheets, may provide a better
solution for formatting text than a slew of inconsistently supported tricks and
proprietary HTML elements.

14 H T M L : T h e C o m p l e t e R e f e r e n c e

According to many experts, HTML was not designed to provide most of the
document layout features people have come to expect, and it shouldn’t be used for that
purpose. Instead, HTML should be used as a logical, or generalized, markup language
that defines a document’s structure, not its appearance. For example, instead of defining
the introduction of a document with a particular margin, font, and size, HTML just labels
it as an introduction section and lets another system, such as Cascading Style Sheets,
determine the appropriate presentation. In the case of HTML, the browser or a style
sheet has the final say on how a document looks.

HTML already contains many logical elements. An example of a logical element is
, which indicates something of importance, as shown here:

This is important.

The element says nothing about how the phrase “This is important” will
actually appear, although it will probably be rendered in bold. While most of the
logical elements are relatively underutilized, others, such as headings (<H1> through
<H6>) and paragraphs, are used regularly.

The benefits of logical elements may not be obvious to those comfortable with
physical markup. To understand the benefits, it’s important to realize that on the Web,
many browsers render things differently. In addition, predicting what the viewing
environment will be is difficult. What browser does the user have? What is his or her
monitor’s screen resolution? Does the user even have a screen? Considering the
extreme of the user having no screen at all, how would a speaking browser render the
<BOLD> element? What about the element? Text tagged with
might be read in a firm voice, but boldfaced text doesn’t have a meaning outside the
visual realm.

Many realistic examples exist of the power of logical elements. Consider the
multinational or multilingual aspects of the Web. In some countries, the date is written
with the day first, followed by the month and year. In the United States, the date
generally is written with the month first, and then the day and year. A <DATE>
element, if it existed, could tag the information and let the browser localize it for the
appropriate viewing environment. Another example is the problem of screen sizes that,
theoretically, could be reduced by logical structuring concepts. For example, logical
elements could allow for different renderings based on the screen size of the computer
running the browser. This would allow the creation of documents that look good on
laptop screens as well as on large workstation monitors. In short, separation of the
logical structure from the physical presentation allows multiple physical displays to be
applied to the same content. This is a powerful idea that, unfortunately, is rarely taken
advantage of.

Whether you subscribe to the physical or logical viewpoint, HTML is not purely a
physical or logical language, yet. In other words, currently used HTML elements come
in both flavors: physical and logical. Elements that specify fonts, type sizes, type styles,

and so on, are physical. Elements that specify content or importance, such as <CITE>
and <H1>, and let the browser decide how to do things are logical. A quick look at
Web pages across the Internet suggests that logical elements often go unused, because
Web developers want more layout control than raw HTML provides, and style sheets
are relatively new and still buggy. Furthermore, many designers just don’t think in the
manner required for logical markup, and WYSIWYG page editors generally don’t
encourage such thinking.

So, like it or not, to achieve the look that they want, page designers will probably
continue to abuse elements, such as <TABLE> and <FRAME>, and use tricks to
implement layouts in the way that they want them. This is the struggle that currently
exists between what people want out of HTML and what HTML actually provides. With
the rise of HTML 4 and Cascading Style Sheets, this struggle may eventually go away;
but the uptake is still slow, and millions of documents will continue to be authored with
no concept of logical structuring. Web page development continues to provide an
interesting study of the difference between what theorists say and what people want.

What HTML Is Not
HTML is a powerful technology, but many misconceptions exist about it. Understanding
what HTML is not will certainly help page developers avoid common mistakes.

HTML Is Not a WYSIWYG Design Language
HTML isn’t a specific, screen- or printer-precise formatting language like PostScript.
Many people struggle with HTML on a daily basis, trying to create perfect layouts by
using HTML elements inappropriately or by using images to make up for HTML’s lack
of screen- and font-handling features. Other technologies, such as style sheets, are far
better than HTML for handling presentation issues.

HTML Is Not a Programming Language
Many people think that making HTML pages is similar to programming. However,
HTML is unlike programming in that it does not specify logic. It specifies the structure
and often the layout of a document. With the introduction of scripting languages such
as JavaScript, however, the concept of dynamic HTML (DHTML) is becoming more
and more popular and is used to create highly interactive Web pages. Simply put,
DHTML provides scripting languages with the capability to modify HTML elements
and their content before, and possibly after, the page has been loaded.

DHTML blurs the lines between HTML as a layout language and HTML as a
programming environment. However, the line should be distinct, because HTML isn’t
a programming language. Heavily intermixing code with HTML markup in the ad hoc
manner that many DHTML authors do is far worse than trying to use HTML as a
WYSIWYG markup language. Programming logic can be cleanly separated in HTML
in the form of script code, as discussed in Chapters 13 and 14. Unfortunately, if this
separation isn’t heeded, the page maintenance nightmare that results from tightly

C h a p t e r 1 : I n t r o d u c t i o n t o H T M L 15

W
EB

A
N

D
H

TM
L

B
A

S
IC

S

16 H T M L : T h e C o m p l e t e R e f e r e n c e

binding programming logic to content will dwarf the problems caused by misuse of
HTML code for presentation purposes.

HTML Is Not Truly Standardized Yet
Although the W3C defines the HTML specification, in practical terms browser vendors
and users often define their own, de facto standards or decide what aspects of the
standards they support. While this may sound like heresy, it is true. Until recently,
when a new browser supporting a new feature was released, many companies and
individuals would rush to use it, regardless of whether the feature was included in the
W3C HTML standard. Today, rather than adopting new tags as often as in the past, the
tags already defined in the specification are being consistently supported.

Presently, no single browser supports all HTML 4 features, which is unfortunate,
because the browsers themselves—quirks and all—are currently considered the final
arbiters of the meaning of HTML elements (as far as end users are concerned). In this
sense, HTML resembles English. New elements and technologies are the “slang” of
HTML: they may not be correct; but eventually, many slang terms become an accepted
part of the language. Many ways exist to “speak” HTML, but the key issue is whether the
browser understands the markup, just as the key issue in English is whether one person
understands another person’s slang. Hopefully, browsers will stop being so varied in
their interpretation of certain elements and will begin to offer full support of standards,
such as HTML 4. But for now, the practice of building pages around “common HTML”
usage may be more appropriate than implementing standard HTML usage.

HTML Is Not Extensible
Some people feel that changing HTML is easy as long as the language is simple enough
for browser vendors and standards groups to determine new elements easily. A long
battle has been waged to implement features correctly. Truly extensible markup
environments (such as SGML and XML), in conjunction with style sheets, allow users
to invent elements and renderings for those elements without compromising the
experience for other users. This is currently impossible with HTML.

HTML Is Not Complete
HTML is not finished. The language does not provide all the facilities that it should,
even as a logical markup language. However, work is presently focused on
implementing the current HTML standards under a new language, called Extensible
Markup Language (XML). Future versions of HTML will almost certainly be defined as
a subset of XML. Theoretically, this is a wise decision, but the ubiquitous nature of
HTML and its huge installed base suggest that considering how to extend HTML or fill
in its small gaps is an incredibly important task. The W3C’s current HTML Activity
Statement can be found on its Web site (http://www.w3.org/MarkUp/Activity.html).

HTML Is Not All You Need to Know to
Create Good Web Pages
Whereas HTML is the basis for Web pages, you need to know a lot more than HTML to
build useful Web pages (unless the page is very simple). Document design, graphic
design, and even programming often are necessary to create sophisticated Web pages.
HTML serves as the foundation environment for all of these tasks, and a complete
understanding of HTML technology can only aid document authors.

HTML’s lack of support for certain features leads to a general problem with how
people use the language. Much of the tension surrounding HTML and HTML’s abuse
stem from the “logical versus physical markup” debate (discussed earlier in this
chapter in the section “Logical and Physical HTML”) and the desire for absolute
positioning of text and graphics within Web pages. These themes recur throughout
this book.

Summary
HTML is neither a programming language nor a physical page-description language. It
is a markup language that combines physical and logical structuring ideas. Elements—
in the form of tags, such as and —are embedded within text documents to
indicate to browsers how to render pages. The rules for HTML are fairly simple, but
these rules are not strictly enforced. Browsers are still the final arbiters of page layout.

The rapid development of HTML and the laxity of its use have created a great deal
of misunderstanding about how to use the language. This is due in part to the chaotic
nature of the Web publishing environment and in part to HTML’s inability to address
all the needs of its users. Currently, HTML does not provide all the features necessary
to build modern Web pages, nor should it. Developers need to use other technologies
properly, such as scripting and style sheets, to build complete Web pages. In this sense,
HTML will continue to be the bedrock upon which the information superhighway is
built.

Chapter 3 will return to the specifics of HTML; but, first, Chapter 2 takes a look at
the history of Web publishing and how HTML fits into the Web development process.

C h a p t e r 1 : I n t r o d u c t i o n t o H T M L 17

W
EB

A
N

D
H

TM
L

B
A

S
IC

S

This page intentionally left blank.

Chapter 2
Web Publishing

19

Copyright 1999 The McGraw-Hill Companies. Click Here for Terms of Use.

One of the problems with discussing the creation of Web pages is that mastery of
HTML is often mistakenly equated with mastery of the process of Web design
and publishing. HTML is only one part of the process. Graphic design and

programming technologies are also important aspects of the process. “Web publishing”
is a more appropriate term to describe the overall process of planning and putting
together a Web site, particularly when some degree of forethought, skill, and artistry is
employed. Knowledge of HTML alone does not provide all the facilities required to
make appealing, usable Web sites. Before you get too caught up in the details of
markup tags, you need to understand the Web process and how HTML works in that
process.

What Is Good Web Design?
Before you read about the process of building Web pages, this section helps you
define your goal clearly. What, exactly, is good Web design? Some people discuss
what isn’t good Web design (www.webpagesthatsuck.com), but this really doesn’t
demonstrate how to create good Web sites. Others like to discuss aesthetics and layout
(www.highfive.com). This may be appropriate on a superficial level, but beauty is
often in the eye of the beholder. Looks aren’t everything. Function is important, too,
and some people even claim that the answer to what constitutes good Web design is
purely a matter of function. If it isn’t usable (www.useit.com), then it isn’t
reasonable—but function without motivating form is boring.

Some talk too much about success, citing numerous visitors as true validation of a
site’s design. This assumes that the Web is primarily about popularity. Who cares how
many visitors come to a page, unless it has some benefit? Think about quality and
success. If serving the most burgers says anything about making good hamburgers,
then McDonald’s makes the world’s best hamburger. This kind of logic gets people in
trouble on the Web all the time. Consider whether economically successful or trendy
Web pages are well designed. Characterizing good Web design is not easy, especially
because it depends largely on your target audience.

Most Web discussions lose sight of the big picture, placing too much emphasis on
how pages look, and not enough emphasis on their content, purpose, functionality, or
the user’s experience. Web design is not just graphic design. Web design includes
graphic design. Other important aspects of the Web design process may include such
areas as the following:

■ Artistic style, color theory, typography, and other visual concerns

■ Information design, which specifies how information should be
organized and linked

■ Hypertext theory

■ Technical writing

20 H T M L : T h e C o m p l e t e R e f e r e n c e

■ System design

■ Programming

■ Network and server design

■ Business issues and project management

Obviously, many disciplines are part of Web design. The first requirement,
however, is a clear understanding of the site’s ultimate purpose. The goal of a Web
designer is to produce a usable and appealing visual design for a software system, in
the form of a Web site that helps a user fulfill some goal. In other words, the goal is to
develop a site that can be delivered to the user in a satisfactory manner, be interpreted
correctly by the user, and induce the desired outcome. Web design should be
concerned not only with the aesthetic qualities of a Web site, but also with the user’s
overall experience in the context of a specific task or problem. The focus is on how
something can be done, not just on how it looks.

It is easy to throw out expressions like “perception is reality” or “content is king” as
arguments for or against focusing on the visual nature of the Web. However, the reality
is a balance between these extreme points of view. If you skimp on graphics, the site
may seem boring. If you provide a wonderful interface, but skimp on content, the user
may leave to find a site with more information. If you forget to debug, you may send
the user angrily away, facing error dialog boxes. Remember: experience is vital. Always
consider what feeling the user will take away after visiting your site. A sense of
accomplishment? Frustration? Understanding? Disgust?

The best approach to Web design is a holistic one, in which content, presentation,
and interactivity work in harmony.

So, how can you make a Web site that is both functional and visually appealing,
without exceeding the constraints of the Internet and Web technologies? Focusing on the
technology and then decorating a Web page leads to the dreaded “Christmas tree” design,
shown in Figure 2-1. Putting a page together with HTML and then sprucing it up with a
few colored balls, a rainbow-color bar, and animated clip art doesn’t help. The page looks
slapped together, and the graphics provide little more than extra eye-catching glitz. In this
case, the background plain interferes with the user’s ability to read the text.

On the other hand, focusing too much on the visual aspects leads to online
brochures with slow-downloading, full-screen images. Everything is created with
graphic composition tools, such as Photoshop, which provide nearly absolute layout
control, but result in huge files. Text on such a page can’t be changed without a graphic
designer, let alone be indexed by a Web search engine. This design also excludes those
who surf with images turned off, use a text browser, or are disabled and simply can’t
see your images. Even worse, the site may not scale on a high-resolution monitor,
causing it to be so small that it’s unreadable. The full-screen-image design style, shown
in Figure 2-2, may produce nice-looking pages, but it tends to relegate Web sites to
fancy digital brochures. Many large sites fall into this trap because they never test their
pages over a dial-in link. A page that seems to work well over the local ethernet

C h a p t e r 2 : W e b P u b l i s h i n g 21

W
EB

A
N

D
H

TM
L

B
A

S
IC

S

22 H T M L : T h e C o m p l e t e R e f e r e n c e

network may take ages to load over a 56Kbps modem connection. The average
modem user still connects at that speed (or a lower speed), and most users
are not willing to wait forever for your page to load before they give up and move
on to less-bandwidth-intensive sites.

Figure 2-1. “Christmas tree” design

C h a p t e r 2 : W e b P u b l i s h i n g 23

W
EB

A
N

D
H

TM
L

B
A

S
IC

S

Again, balance is the issue. Sometimes, stark pages are okay. Other times, full-screen
images make sense. The form of a site depends on its goals. Figuring out the site’s audience
and what its ultimate goals are before diving into HTML coding seems obvious, but it isn’t
always the approach adopted. Unfortunately, once the simplicity of HTML is revealed,
many eager authors quickly mark up pages and then try to improve them by adding
graphics. At the other extreme, designers may ruin the site just by thinking more about the
user interface than about what is actually delivered. Creating Web sites requires a process,
not an ad hoc decision to focus more on visuals or more on content.

The Process of Web Publishing
Planning, organizing, and visualizing Web sites and pages may be more important
than knowing HTML. Unfortunately, these are very difficult things to teach and tend to
be learned only by experience. The biggest mistake in Web development is not having
a clear goal for a Web site. Even if the site is launched on time and under budget, how
can you understand whether you did a good job if you had no goal in the first place?
Often goals are vague. Initially, many corporate Web site projects were fueled by

Figure 2-2. A full-screen-image design

24 H T M L : T h e C o m p l e t e R e f e r e n c e

FUD—fear, uncertainty, and doubt. With the hype surrounding the Web, it was
important to get on the Web before the competition. If the competition was already
online, having a Web site appeared even more crucial to corporate success. This is a
dangerous situation to be in. Even if budget is not an issue, the benefit of the site will
eventually be questioned. Web professionals may find their jobs on the line. Thus, the
first step in the Web publishing process is defining the purpose of a site.

Determining Purpose
Finding a purpose for a Web site isn’t necessarily very hard. The Web can be very useful,
and many common reasons exist to put up a Web site, a few of which are listed here:

■ Commerce

■ Entertainment

■ Information

■ Marketing

■ Personal pleasure

■ Presence

■ Promotion

■ Research and education

■ Technical support

One problem with Web sites is that they may have multiple purposes. A corporate
Web site may include demands for marketing, public relations, investor relations,
technical support, commerce, and human resource services such as job recruiting.
Trying to meet all of these needs while thinking about the Web site as one entity can be
difficult. Much like a large-scale software system with many functions, a Web site with
many different goals probably should be broken into modules, or subprojects, that
constitute parts of a larger whole. This leads to the idea of a microsite—a very specific
subsite that is part of a larger site and that may be built separately. Microsites have the
advantage of allowing the focus, look, or technology of a portion of a site to change
without having to change the site as a whole.

No matter how the site is structured, keeping it cohesive and logical is important.
For example, establishing a consistent look and feel for the site as a whole is still
important, regardless of the multitude of functions. People should feel comfortable
moving from your support pages to your marketing pages to your employment pages.
A consistent user interface breeds familiarity and generates a united front. The user
doesn’t need to know that the site is constructed in modules. An inconsistent interface
can lead to a user becoming lost and confused while exploring. It helps to have one

person (or at least a small group) designated as the overall decision maker on a Web
project. The Webmaster, or more appropriately termed Webmanager, coordinates the
work efforts and helps keep the project on track. The Webmanager’s role is basically
the same as a project manager on a large software project. Without such careful
management, a Web site with many goals may quickly become a mess, built to
satisfy the needs and desires of its builders rather than its viewers.

Who Is the Audience?
Of course, just having a purpose for a site isn’t enough: you need to consider a site’s
audience. Notice how often sites reflect the organizational structure of a company
rather than the needs of the customer. The goal is always to keep the user at the center
of the discussion. Before building a site, make sure to answer some simple audience
questions:

■ Are the users coming from within your organization, or from outside?

■ Are they young or old?

■ What language do they speak?

■ When do they visit the site?

■ What technologies do they support?

■ What browsers do they use?

Figuring out an audience doesn’t have to be that hard, but don’t assume that your
audience is too large. People from South America or the Sudan can visit your Web
page—but do they? Should they? It is important to be realistic about the audience of
the Web. The Web has millions of users, but they aren’t all going to visit a particular
Web site. If they did, things probably wouldn’t work well. When the idea of a site’s
audience is discussed, don’t think in terms of a nameless, faceless John Q. Cybercitizen
with a modem and an America Online account. When thinking about users, try to get
as specific as possible, and even ask users, if possible.

If you already have a site set up, you have a wealth of information about your
users—your server logs. Logs can tell you quite a bit about your user base. Depending on
the server and its configuration, you can learn the time of day that you get the most hits,
the pages visited the most, the browsers and versions being used, the domains your visitors
come from, and even the pages that referred visitors to your site. From the logs, you can
even infer connection speeds, based on delivery time between pages. If you do not have a
server running yet, begin with your best estimate of the kinds of visitors you expect. Once
the site is running, check the logs against your estimates—you may find that your audience
is different than you expected. An important point in Web design is that you must be
willing to revise your designs, even going as far as throwing away your favorite ideas, if
they do not fit with your actual audience.

C h a p t e r 2 : W e b P u b l i s h i n g 25

W
EB

A
N

D
H

TM
L

B
A

S
IC

S

Who Will Pay for It?
Sites cost money to produce, so they generally have to produce some benefit to
continue. While people do put up sites for personal enjoyment, even this type of
site has limits in terms of an individual’s investment of time and money. It is very
important to understand the business model of the site. Only a year or two ago, many
corporate Web budgets were not always the first concern, due to the novelty of the
technology. Today, however, Web sites often have to prove that they’re “worth it.” The
money has to come from somewhere.

A site’s creator could pay for everything, but that probably isn’t reasonable unless
the Web site is for pure enjoyment or is nonprofit. Typically, some funds have to be
collected, probably indirectly, to support the site. For example, while a promotional site
for a movie may not directly collect revenues, it can influence the audience and have
some impact on the success or failure of the film. Interestingly, many Web sites are
nearly as indirect as a movie promotion site. Measuring the direct benefit of having
such sites can be very difficult. More directly measurable sites are those on which leads
are collected or goods are sold. Some value can be put on these transactions, and an
understanding of the benefit of the site can be determined.

Harder to track, but no less valuable, are Web sites for customer service and support.
Placing product information or manuals online, or posting URLs for Frequently Asked
Questions (FAQs) lists on your products, enables your customers to answer many of their
own questions. Not only can this directly reduce the load on your customer service and
support organizations, it also fosters good will among your customer base. When a
customer is shopping around, the vendor who makes it easiest for them to obtain the
information they are looking for tends to have an immediate advantage.

Another possible business model for a Web site is to have viewers pay, as in a
subscription model. This model’s problem is that viewers must be given a convincing
reason to pay for the information or service available at the Web site. Making a Web
site valuable to a user is tricky, especially considering that value often is both
psychological and real. When looking at the value of the information available in an
encyclopedia, think about its form. If the encyclopedia’s information is in book form,
the cost might be as high as $1,000. Put the same information on a CD-ROM, and see if
the information can be sold for the same cost. What if the same information is on a Web
site? On a CD-ROM, the information probably can be sold for $50 to $100. On a Web
site, it goes for even less, particularly if the user only wants to buy a specific piece of
information.

Users often place more value on the delivery of a good or service than on the good
itself. Consider software, for which the design and production of packaging often costs
more than reproducing the software itself. The bottom line is that packaging does count.
It is no wonder that users often mistakenly overvalue the graphic aspect of a site.

As information services become more pervasive, consumers will probably begin to value
content on the Internet, despite its lack of tangibility.

26 H T M L : T h e C o m p l e t e R e f e r e n c e

Another business model involves getting someone other than the owner or the
intended audience of the site to pay. This model typically comes in the form of an
advertising-driven site. However, what is interesting about advertising is that a good is
actually being sold—the audience. Advertisers are interested in reaching a particular
audience and are willing to pay for an advertisement based on the effectiveness of that
ad reaching the intended audience. The question is, how can an audience be attracted,
measured, and then sold to the advertisers? The obvious approach is to provide some
reason for an audience to come to a Web site and identify themselves. This is very
difficult. Furthermore, the audience must be accurately measured, so that advertisers
have a way to compare audience size from one site to the next and know how to spend
their advertising dollars. People often discuss the number of visitors to their site as an
indication of value to an advertiser. The advertisers, however, may not care about the
number of visitors, unless those visitors are in their target audience.

Regardless of who is paying for the site, some understanding of the costs and
benefits of the site is necessary. How much does each visitor actually cost, and what
benefit does he or she produce? Understand that the number of visitors doesn’t count,
even when using the advertising model. The value of the site transcends this figure
and addresses the effectiveness of the visitation. In other words, many visits don’t
necessarily mean success. Having many visitors to an online store who nonetheless
make few purchases may mean huge losses, particularly if it costs more to reach each
visitor. Even the form of the Web site may affect the cost. For example, because the
amount of data delivered from a Web site is generally related directly to the site’s
variable costs, sending video costs more than sending regular HTML text. High costs
for Web site development isn’t always bad, particularly if it produces a big payoff.
Goals must be set to measure success and understand how to budget Web sites.

Defining Goals
A goal for a site is not the same as its purpose. A purpose gives a general idea of what
the site is for, whereas a goal is very specific. A goal can help define how much should
be spent, but goals must be measurable. What is a measurable goal of the site? Selling x
dollars worth of product directly via the Web site is a measurable goal, as is selling x
dollars of product or service indirectly through leads. Reaching a certain usage level
per day, week, or month can be a goal. So is lowering the number of incoming technical
support phone calls by a certain amount. Many ways exist to measure the success or
failure of a Web project, but measurements generally come in two categories: soft and
hard. Hard measurements are those that are easily measured, such as the number
of visitors per day. Soft measurements are a little less clear. For example, with a
promotional site for a movie, it might be difficult to understand whether the site had
any effect on the box office sales.

Why are measurements so important? From a manager’s perspective, measure-
ments can be used to determine how much to spend. If a Web site’s goal is to produce
$10,000 of new sales, then spending $500,000 on the site is not acceptable, unless the

C h a p t e r 2 : W e b P u b l i s h i n g 27

W
EB

A
N

D
H

TM
L

B
A

S
IC

S

site has some other nonmeasurable value that can make up the other $490,000. While
this seems like common sense, a clear return on investment or cost benefit is seldom
determined for corporate Web sites. Soft measurements can make things difficult,
because the effect the Web site may have is unclear. In the advertising industry,
certain rules of thumb apply, such as spending ten percent of overall sales on
advertising. A percentage of that would obviously go toward a Web site. Due to
the hype surrounding the Web, very little business sense is exhibited toward Web
development. Even if sites were considered as little more than online brochures, it
is obvious that the more brochures printed on paper, the more expensive. The more
pages, the more expensive. The more complicated, the more expensive. Web sites
are the same way.

Both on paper and on the Web, economies of scale do reduce the per-unit cost; but a point
of diminishing returns still exists. Web sites often have diminishing returns that are
ignored. For example, the expense of making a site engineered perfectly for every
situation and every browser provides only a little more benefit than one engineered for
most users, from a financial point of view. Interestingly, Web experts tend to get
somewhat religious on the point of how a site should be implemented. However, in the
face of managerial and financial realities, things can’t always be done perfectly.

Defining Scope
After you define a site’s goals, you need to define what is necessary to reach your
goals. You might call this defining scope. One thing to remember, though—scope equals
money. Because of the flexible nature of the Web, many developers want to add as
much as possible to the Web site. However, more isn’t always better. The more that is
added to the Web site, the more it costs. Furthermore, having too much information
makes finding essential information difficult.

To think about scope, return to one of the first steps in the process. What is the
main purpose of the site? Shouldn’t the information of the site reflect this purpose?
Looking at the Web, this doesn’t always seem to be the case. Have you ever gone to a
site and not understood its point?

Finding the essentials of a Web site might not be easy, particularly if it has many
purposes or many parties involved in its development. One approach is to have a
brainstorming session, in which users provide ideas. Each idea is then written down on
a 3×5 card. After all the cards have been created, ask the users to sort the cards into
piles. First, sort the cards into similar piles to see how things are related. Next, sort the
piles in order of importance. What is important can eventually be distilled out of the
cards. Remember to cut down the number of cards, to make people focus on what is
truly important.

Instead of coming up with ideas of what should go into a site to meet a particular
goal or goals, you may be tempted to take existing materials, such as marketing pieces,
and convert them to the Web. Unfortunately, creating the content of the site based

28 H T M L : T h e C o m p l e t e R e f e r e n c e

solely on text and pictures from manuals, brochures, and other support materials
rarely works. Migrating text from print to the Web is troublesome, because the media
are so different. Reading onscreen has been proven to be much slower than reading
from paper. In practice, people tend not to read information online carefully. They tend
to scan it quickly and then print what they need. In this sense, writing for paper tends
to go against screen reading. Think about newspaper or TV news stories: the main
point is stated first and then discussed. This goes against the slow buildup of many
paper documents, which carefully spell out a point. With visitors skimming the site,
key bullet points tend to be read while detailed information is skipped. The main thing
is to keep the points obvious and simple. Even if information is presented well, poor
organization can ruin all the hard work in preparing the information. If a viewer can’t
find the information, who cares how great it looks or how well it reads?

Organization of Information
Organizing the information at a Web site is often just as important as the information
itself. If visitors to a Web site can’t find what they are looking for, they may get
frustrated and leave. Organizing information is a matter of grouping similar items in
the same place. The card-sorting discussion in the previous section helps define what
items should go together.

Tree Structure
Site designers often use a tree structure or hierarchy for their sites, as shown in Figure 2-3.

C h a p t e r 2 : W e b P u b l i s h i n g 29

W
EB

A
N

D
H

TM
L

B
A

S
IC

S

Figure 2-3. A typical Web site tree diagram

While the tree structure seems the most appropriate choice for Web sites, you still
need to decide how many choices should be at the top level, and how wide versus how
deep the tree should be. If too many choices are at the top level, the structure is flat and
may be confusing. Forcing people farther down the tree can be frustrating, because it
requires them to keep moving, level by level, to find the appropriate information. The
depth versus breadth issue is illustrated in Figure 2-4.

From the initial studies on hypertext, the following are the three “golden rules”:

■ Hypertext is a body of information organized into numerous fragments. By
definition, most Web sites—unless they are a single page—should fit this rule.

■ These fragments relate to each other somehow. If the site doesn’t have a clear
goal, the relationship between pages might not be obvious.

■ The user needs only a small fraction of the information presented at any time.

Sites that are too flat and provide all the choices all the time confuse the user by
presenting too many choices. How many choices are okay? Studies suggest that the
optimal number of choices is between five and nine, because users can retain the
choices in short-term memory fairly easily. Too many choices make the selection
process suboptimal, and the user may focus on extremes, such as the first item, last
item, or center item. Too few choices may indicate that you are creating a needless
layer; a long sequence of pages with only two choices on each may simply slow things
down. Combining some of those choices on fewer pages might be better. Structuring
the site appropriately may help improve a user’s interaction with information.
Unfortunately, sometimes the hierarchy is considered the only structure appropriate
for a Web site.

30 H T M L : T h e C o m p l e t e R e f e r e n c e

Figure 2-4. Depth versus breadth in a tree structure

Pure Linear Structure
Web-based information doesn’t necessarily have to be structured in the form of a tree.
Sometimes, a pure linear organization, with one page after another, makes sense. A slide
show, tour, or presentation probably should be in the form of a linear progression.
(At one level, because of the browser’s Back button, linear Web sites are always
bidirectional as well.) The basic idea of a linear structure is shown in Figure 2-5.

Linear Structure with Alternatives
Another approach might be a linear progression with alternatives: a series of yes and no
questions that eventually lead to the next question in the sequence. An effective
application of the linear with alternatives structure comes in the form of an AIDS
awareness site that discusses risk factors in a yes and no question fashion, but
eventually leads to the next risk category, regardless of the choice. This gives the site a
false sense of interactivity, which engages the viewer more than a pure linear structure.
The linear form with alternatives is shown in Figure 2-6.

Linear Structure with Options
Another form of organization is the linear with options structure. This structure, shown
in Figure 2-7, is good for a set of information that is sometimes optional. For example,
in many surveys, the survey taker is asked to skip a set of questions, depending on his
or her answer. A Web form of such a survey would be a perfect candidate for linear
with options, because it allows the reader to skip over questions that are not relevant,
while still preserving the general path of the information.

Linear Structure with Side Trips
The linear with side trips structure is perfect for a body of information that may have
useful supplementary information. For example, a linear Web presentation about
flowers may lead to a side trip about beekeeping that the user can view, but later
return to the main discussion, as shown in Figure 2-8. This form of site provides
diversion while still preserving the path. Linear with side trips is a form of tree
structure—just turn the structure on its side. When used with linear content, it
warrants its own discussion.

C h a p t e r 2 : W e b P u b l i s h i n g 31

W
EB

A
N

D
H

TM
L

B
A

S
IC

S

Figure 2-5. Pure linear organization

32 H T M L : T h e C o m p l e t e R e f e r e n c e

Figure 2-6. Linear structure with alternatives

Figure 2-7. Linear structure with options

Figure 2-8. Linear structure with side trips

Grid-Style Structure
One uncommon form of structuring information, at least on the Web, is the grid style.
The grid style has a great degree of spatial organization, as do many of the linear
forms. The grid provides a sense of up, down, left, and right. Because of its regular
structure, the grid form is good for related items and organization, such as items that
might be found in a catalog. Imagine the columns of the grid being associated with a
particular product line, and the nodes representing the products in that particular
product line. Moving across columns might be like moving among equivalent products
between product lines. The basic idea of the grid is shown in Figure 2-9.

The tree structure or hierarchy is much less structured than the grid. A narrow
hierarchy provides few choices for the user, but requires many clicks to get to the
destination. On the other hand, the wide hierarchy provides many choices, so it
requires fewer clicks to get to the destination information, assuming the user makes
the correct decisions. This is the same discussion illustrated earlier in Figure 2-4. Both
forms of the tree provide some spatial organization, but there is a question of how
much. The wider the tree, the less structured the information.

Mixed Hierarchy
To balance the problems of hierarchies, many developers consider a mixed form. The
idea of skips ahead or alternatives was previously discussed in relationship to the
linear structure. How about adding a skip ahead to a tree structure? A special link from
the top of the tree could lead directly to an important piece of information. This often is
seen in Web sites in which a special button on the home page links directly to the free
download or another important item. Deeper in the site, it may be useful to provide
a catalog, so the grid structure makes sense. Perhaps in another part of the site, a
presentation should be used, so the linear style makes sense. Most complex Web sites
are actually mixed hierarchies, as shown in Figure 2-10.

C h a p t e r 2 : W e b P u b l i s h i n g 33

W
EB

A
N

D
H

TM
L

B
A

S
IC

S

Figure 2-9. Grid structure

34 H T M L : T h e C o m p l e t e R e f e r e n c e

Pure Web Structure
The problem with the mixed hierarchy is that it can easily degrade into the pure Web
form, which is a tangled mess of links in which the organization is unclear. All sense of
spatiality is lost in the pure Web form. The only navigational sense is “signpost based,”
whereby the viewer recognizes landmarks in the site, such as the home page. The
benefit of the pure Web form is obvious if the user is familiar with the data, because
navigating among items that are fully connected is easy. However, the organization
may be so unclear that the confusion factor drives users away. An example of a pure
Web structure is shown in Figure 2-11.

Balancing Linear and Web Information Structures
When organizing information, the aim is to achieve a balance between predictability and
expressiveness. Although the Web form may be very expressive, it may be completely
unpredictable as far as the user is concerned. On the other hand, the linear form is very
predictable, but not terribly expressive. The balance of these forms is shown in Figure 2-12.
A temptation is to add links anywhere you can. This was commonly seen in early Web
sites, wherein any word that referred to a different topic became a hyperlink. Resist this
temptation. When you are adding a link, ask yourself “Does this link add value to the
audience?” If the answer is “No,” then the link is inappropriate. Every link is an invitation
for the user to break away from the content on that page.

Figure 2-10. An example of mixed hierarchy

C h a p t e r 2 : W e b P u b l i s h i n g 35

W
EB

A
N

D
H

TM
L

B
A

S
IC

S

Figure 2-11. An example of pure Web structure

Figure 2-12. A balance of linear and Web information structures

Determining the Site Plan
After you determine the purpose, content, and structure of the site, you can develop a plan.
The plan should consist of a time line, a document that describes what is needed and how
the site will be put together, and a flow chart of the site, as shown in Figure 2-13.

For small projects, this formality might be overkill. On larger projects, however,
approaching the task without a sense of where the project is going is foolish. If the site

36 H T M L : T h e C o m p l e t e R e f e r e n c e

Figure 2-13. Sample Web project documents

is developed commercially, such planning is mandatory. Without a sense of what goes
into the site, how can a vendor price the site? People often ask Web developers how
much a site costs, but this depends on the size, scope, and technology that goes into the
site, among other factors. A company with a comprehensive site plan can send the
project out for bids. Without a plan, comparing proposals from competing firms
provides little information of value. Notice that, up until this point, no specific
discussion of what the site will look like or how it works has been addressed. These
tasks are part of the implementation phase.

Implementation
Readers might assume that the implementation phase of the Web publishing process
is the most difficult; but, depending on how well the site was planned, it may be
very straightforward. With a clear plan in hand, a site can be built very quickly.
When the various parts of the site are well defined, many people can work on the
site simultaneously. Even so, the implementation phase of a Web project does involve
potential problems.

Gathering and Creating the Content
One of the first signs of trouble is when content isn’t ready for the Web, or you have
too much content. When planning a Web site, people often provide ideas for things
that would be nice to put in, with no consideration of the cost. Information can be
formatted quickly—but if the information doesn’t exist, formatting can’t take place.
While this sounds like common sense, it is probably the second-most common problem
on the Web, beyond purpose.

Just ask yourself what “under construction” means. Why do so many sites have
many choices, but 90 percent of the pages are “under construction”? Wouldn’t these
sites be better if only the working areas were available? This highlights the problem of
not having the content ready. The cost of developing the content often outweighs the
cost of preparing it for the Web. A good plan pares the site down to what it should do
and considers the cost of creating the content. Without content, the site goes nowhere.
Navigation buttons and yellow-and-black animated pictures of men digging up a
road don’t make a good site. The client’s inability to produce content on time causes
commercial Web design projects to be late more often than does the firm’s inability to
finish the technology or graphics in a timely manner.

While we’re on the subject, don’t place “under construction” images on your pages.
All Web sites are either under construction or stagnant. If an area of the site isn’t ready
for visitors, don’t place the links to that area online yet. If users are unaware that an
area exists, they won’t be disappointed that it isn’t ready. Finding a link to something
you need, only to discover that it is “under construction” is highly frustrating.

C h a p t e r 2 : W e b P u b l i s h i n g 37

W
EB

A
N

D
H

TM
L

B
A

S
IC

S

38 H T M L : T h e C o m p l e t e R e f e r e n c e

Visual Design
After you have the content in hand, you can produce the visual design. Why can’t
visual design come before content generation? One simple reason: the visual style of
the site should reflect the content of the site. Until the content is close to being finished,
any developed visual style can only provide decoration. It won’t add any real value
to the content. Consider product literature on a Web site. What happens if the visual
design is developed first, in a very corporate style, but the copy is written in a sarcastic,
unprofessional tone? The site won’t make much sense.

Visuals should be discussed early to set the tone of the site, but the specifics of
exactly what shade of red to use or what size an image should be must wait until the
implementation phase. The visual design phase generally requires that paper designs
first be explored. Then, image composites can be created by using a tool such as Adobe
Photoshop. The choice of a particular look and feel depends on the purpose of the site,
the look and feel of related materials, technological considerations such as download
time, and personal taste.

Another reason not to approach visual design too early in the development process
is that the goals of the site may change. It is very frustrating to put together a visual
design that is based on having five choices on the home page, only to have the number
of sections increased to eight later on. Although accounting for changes that occur later
in a project is impossible, by not developing graphics and navigation until after the
structure and content of the site is set, you usually can avoid a great deal of rework.

Graphic designers are generally the best people to approach to make a good-looking
site. Unfortunately, designers often attempt to imitate directly the existing print materials.
This doesn’t always work well. Subtle textures will be lost onscreen, complex gradients will
translate into large-byte–sized images, and bleeds generally won’t work.

Often, the best approach is to keep the spirit of existing materials and fit them to
suit the needs of the Web. This doesn’t give Web designers license to reinvent the
corporate look and feel, but it does enable them to modify an approach so that it
creates a visually stimulating page that downloads quickly. This balance between
visual appeal and download speed—combined with the imprecise layout afforded by
HTML and unpredictable viewing environments—is what makes Web design so
challenging. The best Web designers know enough about Web technology to work
within its constraints. Web designers with graphics backgrounds occasionally
undervalue the sense of organization that may have been applied to a site, and want to
move sections around. Be careful not to let the visual designer disrupt labeling and
organization schemes based on his or her personal taste.

Technology Design
Far too many Web sites are developed as glorified brochures with big pictures. However, the
best modern sites often do something and are more like software than printed documents.
Many sites provide searching features, and some sites enable users to purchase products or
even play games. Very advanced sites automatically configure themselves according to the
visitor’s preferences or browser type.

C h a p t e r 2 : W e b P u b l i s h i n g 39

W
EB

A
N

D
H

TM
L

B
A

S
IC

S
After adding technology—such as a database, interactive forms, or programmed

objects like Java applets—to the mixture, the Web becomes more like software and less
like print media. In this sense, some effort must be made to select the appropriate
technology for the job and to integrate the look and content properly. As sites become
more complex, appearance will still be important, but much of the effort will go into
the technology. The shift from a page paradigm of Web sites to a program paradigm
is fast becoming a reality. How programming ideas relate to HTML, the core Web
technology, is discussed in depth starting in Chapter 12.

Producing the HTML
While visuals and technical elements are very important to Web design, the heart

of nearly every modern Web page is still HTML. Although it is possible to use an
embedded media type to build a complex Web page that consists of a single HTML
element, such as <EMBED SRC="bigbinary.dcr" HEIGHT="200" WIDTH="500">,
HTML is still required. In the strictest sense, all Web pages must contain some HTML,
regardless of whether the focus and content are in an embedded binary object.

As discussed in Chapter 1, HTML is a text markup language that is used to describe the
structure of a page. Until recently, HTML was also used to describe the appearance of the
page. This is no longer the preferred way to do things. Presentation should be left to style
sheets, as discussed in Chapter 10, but that isn’t how most pages have been created to date.
HTML often serves as the bridge between the content of a page and the interactive objects
(such as scripts and programmed objects) that may also be part of the Web site.

In many ways, HTML provides the framework on which a Web page is built. The
images, text content, and programming are equally important, but HTML is necessary
to bring it all together. Because of this, some people view putting together a Web site
as being similar to putting together a puzzle—just assemble the pieces. This analogy
would be appropriate if the puzzle had to be designed and the pieces had to be created,
broken apart, and then put back together. Given the pieces of a site, how can HTML be
used to create the pages?

The creation of an HTML document for publishing on the Web is as simple as using
the text editor of your choice (vi, Microsoft Word, Notepad, and so on) to insert into
the text the markup tags that indicate the format and links. Or, you could use a
conversion program that converts files into HTML automatically. For example, you can
quickly convert Word 97 files or Rich Text Format (RTF) documents into HTML. The
conversion program preserves paragraphs, character formatting, and so on. However,
the translated file may have to be checked and cleaned up. Furthermore, the translation
program may not add links and other items that are necessary for Web publishing, if
they weren’t indicated in the original document.

Today, HTML editors are commonplace. Some editors for Windows, such as
HoTMetaL Pro (http://www.softquad.com), HomeSite (http://www.allaire.com), and
Hot Dog (http://www.sausage.com), show the insertion of the actual HTML tags into
the document directly. Some of these tools are very simple tag-insertion programs,
while others are sophisticated markup tools that are similar to programmers’ editing
tools, such as Allaire’s HomeSite, shown in Figure 2-14.

40 H T M L : T h e C o m p l e t e R e f e r e n c e

Other editing environments provide WYSIWYG (what you see is what you get)
editing of pages, which keeps the HTML tags hidden behind the scenes. These
products include Netscape Composer (http://www.netscape.com), GoLive
CyberStudio (http://www.golive.com), and Microsoft FrontPage (http://www.
microsoft.com/frontpage). Traditional WYSIWYG desktop publishing tools, such as
PageMaker, QuarkXPress, and Microsoft Word, also now support automatic HTML
output.

Although Figure 2-15 makes Web page development with a WYSIWYG editor seem
much easier than a tagging-oriented editor, the entire concept of WYSIWYG Web page
design is somewhat flawed. As stated in Chapter 1, the browser is the final determinant
of how a page will look. If a page is composed in one program and rendered under its
internal display engine, no guarantee exists that it will appear the same way under another
browser’s rendering engine. This idea is illustrated in Figure 2-16.

Figure 2-14. Allaire’s HomeSite 4.0

C h a p t e r 2 : W e b P u b l i s h i n g 41

W
EB

A
N

D
H

TM
L

B
A

S
IC

S

Figure 2-15. WYSIWYG editing under FrontPage 98

Figure 2-16. WYSIWYG and HTML editors

42 H T M L : T h e C o m p l e t e R e f e r e n c e

Choosing the right Web tool for the job is not easy. In many cases, HTML tools
are useful only to get a “first cut” of an HTML document. Manual editing of a Web
document may still be necessary, to create superior hypermedia documents using the
latest HTML features. Furthermore, HTML tools tend to take a “one-page-at-a-time”
view of the world. In the case of large-scale sites, it might be better to create a template
of a standard page and flow content into it directly. Table 2-1 compares the pros and
cons of using particular methods to create Web pages.

The tool that you use to compose your HTML is a matter of both taste and
applicability. In some cases, a WYSIWYG editor provides a good enough solution,
particularly considering the ease with which the page can be created. For situations in
which tight control is demanded, a tagging editor may be in order. If a quick change
to fix a typo is all that is needed, then a text editor works just fine. A large volume of
files might warrant a translation tool. In practicality, no single tool fits all jobs. Don’t
dismiss WYSIWYG tools for editors because they are easy. Many large Web firms still
generate Web pages by hand, though the pages are populated automatically with a
database. Just remember that creation of the HTML is only part of the job.

Testing
After you create a site or page, you must test it. Testing, in the basic sense, requires
checking the page under a particular set of browsers to see whether it looks proper.
Unfortunately, Web page authors often mistakenly assume that if a page looks fine
under their own browsers, then it will look fine under other browsers. The same page
under WebTV and Netscape Navigator might appear very different. So, on which

Method Pros Cons

By hand Allows strict control
Allows use of latest tags

Error prone
Slow
Requires knowledge of HTML

Translator Provides fast translation
of existing documents

Requires manual editing

Tag editor Provides tight control
Faster than by hand

Requires knowledge of HTML
Makes previsualization of the
page difficult

WYSIWYG
editor

Easy to use
Requires no knowledge
of HTML

Often behind in tag support
May make manual editing or generated
pages difficult
Not really WYSIWYG

Table 2-1. HTML Creation Issues

W
EB

A
N

D
H

TM
L

B
A

S
IC

S
browsers should the site look perfect? This gets back to the issue of audience. If the
primary audience is AOL users, then obviously the site should be heavily tested under
such conditions. The idea is to make sure that you don’t lock out people from viewing
your site.

Unfortunately, some HTML pundits take the idea of “audience” to an extreme. “The
site should be available to everyone” is their rallying cry. While this is true in theory, in
reality, limited budgets often make this ideal difficult, given other project goals. The sad
fact is that the Web isn’t nearly as open as people like to think. Many sites don’t work well
under certain browsers, particularly more esoteric browsers or those made for users with
accessibility issues, such as blind users. However, a little effort can go a long way to
improve a site, such as using alternative text for browsers that can’t render images or
ensuring that the site works under the more common browsers.

Getting past the basics can be difficult, though. For example, testing a site for
compatibility with all browsers is one problem. HTML theory says that if a page
conforms to standard HTML, it works. But browsers don’t always work properly and
don’t always conform to HTML standards. Even among the same brand of browser,
“slight problems” creep in that can cause huge problems. For example, under
Netscape 3, each platform (Macintosh, Windows, and UNIX) has a different margin
offset. For designers attempting to place an image on a background, these differences
are infuriating, as shown in Figure 2-17.

Testing is a big issue, particularly as the paradigm moves closer to a programming
one. Under a true programming paradigm, sloppy coding and lax testing—which
previously may have resulted in an odd-looking page, a broken link, or a strangely
colored image—may result in a user’s system crashing. Making sure that a complex
page works under all situations can be very difficult. Even if the world only consisted
of two browsers, how many permutations exist? For example, Netscape Navigator has
generations 1.x, 2.x, 3.x, 4.x, and 4.5x, each of which is available on three major platforms
(Mac, UNIX, and Windows), as well as numerous beta versions. And this doesn’t even
take into account a “professional” or Gold edition, the numerous other ports (such as the
one for OS/2), or foreign-language versions. All of these permutations may have subtle
differences. Now, add in Internet Explorer, with 2.x, 3.x, 4.x, and 5.x generations on Mac,
Windows, and UNIX, and you find that literally dozens of test possibilities exist.

In most cases, things aren’t so bad, but you can learn some real lessons from
browser testing. A simple JavaScript program works fine on Netscape 3 under
Windows, but crashes the Macintosh every time. The UNIX version doesn’t even
support the calls used, while Internet Explorer 3 works fine, but under a new beta,
exhibits strange behavior. These are just a few examples of real problems.

Browser and system testing isn’t the end of testing. User testing is probably the
most important part of testing a site. Do the users know what to do? Do they like the
site? Getting some users to evaluate a site and make suggestions for improvements is
probably the single most-important thing that a site developer can do. A site may seem
okay to its developers, but they are too close to it to know what’s wrong. Customers
are rarely as familiar with a product line as the people selling it, so it is no wonder they
don’t know that part number XG57-6 is the “Super Widget.” Having the site looked

C h a p t e r 2 : W e b P u b l i s h i n g 43

over by a variety of people removes many embarrassing gaffes. The good thing about
the Web is that, unlike print, it is easy to fix. This shouldn’t be used as an excuse to
put up subpar work first and plan to fix it later; but, instead, it should be viewed as an
acknowledgment of the medium’s flexibility and the reality that sites change over time.

Maintenance
Sites are born, live, and die. Far too often, sites are born full grown and slowly die due
to neglect. A Web site is not a building that is rarely expanded once it’s finished. It’s
more like a tree. Most sites continually grow and change. Occasionally, whole sections
might be pruned, while other sections grow out of control like a sucker at the trunk of

44 H T M L : T h e C o m p l e t e R e f e r e n c e

Figure 2-17. An example of a margin problem under Netscape 3

C h a p t e r 2 : W e b P u b l i s h i n g 45

W
EB

A
N

D
H

TM
L

B
A

S
IC

S
the tree. Many times, the original creators of a site don’t think about the future, and
stunt the growth of a site by not designing with room to expand. The original creators
may move on to other sites or get bored of the task and assign it to another person.
Sometimes, the new owners rip up the site and start fresh. Other times, they take the
site in a whole new direction.

For the long life of a Web site, you must realize early that the site is always under
construction and always growing. The original budget to develop a site might be a
fraction of the overall cost to keep the site running, even if little new material is
added. As the site continues, needs change. The purpose of the site may have to be
reevaluated. A future phase of the Web site may require a whole new look or a section
to sell goods online. This suggests that the whole process needs to start over with
planning, implementation, and all the other steps.

The Phases of Web Site Development
The following are the four basic phases of Web site development (professionals versed
in software engineering should note the basic similarity to the well-known, but not
always followed, process of software development):

■ Planning Setting goals, specifying content, organizing content, and setting
the user interface to navigate content

■ Implementing Creating content, implementing navigation and the user
interface, and coding the site, which may include HTML, programming, and
database development

■ Testing User, browser, and system testing

■ Maintenance Maintaining and updating the site, questioning old goals,
and returning to the planning stage

Each phase listed has distinct subphases that can be expanded to provide more
detail. For example, planning could include determining an audience, setting a budget,
and performing other project-oriented tasks. Following the software-engineering
comparison inevitably leads to a discussion of CASE (Computer Aided Software
Engineering) tools, which in many ways are similar to emerging tools for Web
development, such as Microsoft’s Visual InterDev and Allaire’s ColdFusion Studio.
HTML tools alone provide only a small bit of help in a much larger process.

HTML’s Role in the Web
As emphasized in the previous sections, HTML is just one part of a larger process for
building and delivering Web pages. The Web includes the pages themselves, built with
technologies such as HTML, the software and hardware that serve up the pages, the
Internet and its connectivity issues, and the browsers that render the pages. When you

46 H T M L : T h e C o m p l e t e R e f e r e n c e

get right down to it, the document author has very little control over anything other
than the structure of the page. How quickly it gets to an end user, and what it looks
like on the end user’s browser, can vary over time and from browser to browser. This is
a very aggravating aspect of publishing on the Web. The Web also allows open access
to any platform, which is what makes it so powerful. An interesting exercise is to look
at the Web as a community and try to understand why HTML is used the way that it is.
Reviewing the history of the Web reveals the fundamental aspects of HTML’s role on
the Web and the issues facing this technology.

Historical Roots of HTML
When you consider why HTML is the way that it is, ask a simple question: do you
know for sure what kind of computers, screens, or browser types people viewing your
Web page have? The answer is no. So many different screen sizes, operating systems,
color palettes, and other factors exist that creating software on all systems would be a
nightmare.

Imagine, then, the problem faced by Tim Berners-Lee, a researcher at the
Conseil Europeen pour Recherche Nucleaire (CERN) laboratory in Geneva,
Switzerland. In 1989, Berners-Lee had the task of creating a hypertext delivery
environment that could be used as an interface to scientific information, and that
could render this information equally well on Macintosh systems with small
screens, NeXT Workstations, IBM PCs, and a variety of other platforms. Rather
than give up because of the variations in screen support, Berners-Lee developed
the first versions of HTML, opting to concentrate on providing the content and
structure first and worry about the presentation later. This made sense, because the
group for whom he was designing the environment consisted of scientists looking
at technical information—hardly a group looking for the latest in fonts and graphic
design techniques. The presentation would be left up to the browser.

The HTML language eventually was defined as an application of Standard
Generalized Markup Language (SGML), which serves as a base for defining markup
languages. Much of the flavor of HTML as a structured language (instead of a
presentation language) comes from this relationship with SGML.

Nothing indicates that the original designers of the Web didn’t care about
presentation—plenty of evidence suggests that they did. But the project was
intended to evolve over time and fundamental issues, such as linking, structure,
and network delivery, had to be resolved first.

Deployed by late 1991, the Web grew slowly at first. In its infancy, it was
characterized by a textual interface that was unattractive and somewhat difficult
to use. However, much of the infrastructure necessary to make the Web work—
including basic HTML, HTTP, and MIME—was in place long before the Web took off.

Mosaic: The Web Community Changes
While the division of structure and style suggested by HTML was a good design
decision, it has proven to be a huge point of contention in the Web community. At
first, the Web community was a homogenous bunch of folks, mostly researchers and
academics. As the Web matured and its community expanded, however, calls arose
to make it easier to use and for it to provide multimedia facilities.

In 1993, Marc Andreessen, an undergraduate working for the National Center
for Supercomputing Applications (NCSA) in Illinois, was involved, with others, in
developing a graphical browser for the Web. This graphical browser, called Mosaic,
made the Web much easier to use. The most influential aspect of the Mosaic browser
was its introduction of inline images, making the Web a visual experience. Mosaic took
the Internet world by storm. The number of Web servers exploded into the hundreds,
and then thousands, within months of the browser’s release. Soon, the Web landscape
was dominated by media, marketing, entertainment, and commercial Web sites of all
shapes and sizes. In a matter of a few years, the Web community changed significantly
to encompass many groups, fewer of which had academic interests.

Commercial and entertainment professionals can agree on one important point:
presentation matters. In these arenas, how something looks is nearly as important as
what it is. As originally designed, the Web did not fit well with these requirements.
The first-generation Web provided relatively stark pages, with gray backgrounds and
left alignment. In first-generation (Mosaic) pages, centering text was even impossible.
Figure 2-18 shows an abstract view of a Web page generated in Mosaic.

C h a p t e r 2 : W e b P u b l i s h i n g 47

W
EB

A
N

D
H

TM
L

B
A

S
IC

S

Figure 2-18. A Mosaic-generated Web page

The Rise of Netscape
By the spring of 1994, Andreessen and many of his colleagues left NCSA and joined
Dr. James Clark, the founder of Silicon Graphics, to form a company originally called
Mosaic Communications Corporation. The firm, which later changed its name to
Netscape due to legal problems with NCSA, released a preliminary version of its
next-generation browser in the fall of 1994. The program, later to be called Netscape
Navigator, was nicknamed Mozilla (after Mosaic and Godzilla), because it was
intended to be the “monster browser” that would kill Mosaic—and so it did.

By early 1995, Netscape was well entrenched in the marketplace. The reason
Netscape dominated the market so easily was that it made significant enhancements to
its browser and to HTML in order to improve the performance and look of the Web.
For example, Netscape introduced background colors and limited font sizing. It
introduced improved page layout, with text flowing around images, centering, and
the much-maligned and nearly universally despised <BLINK> element. An early
Netscape-style page is shown in Figure 2-19.

Many longtime Web professionals complained of Netscape’s general disregard for
HTML standards and argued in favor of the more standards-based process they felt

48 H T M L : T h e C o m p l e t e R e f e r e n c e

Figure 2-19. An early Netscape-style Web page

should be used to expand the Web. The market, largely oblivious to such concerns,
responded well to the improvements. According to most estimates, Netscape was used
by nearly 80 percent of the Internet market in 1995. The elements it introduced were
used on many Web sites.

The Market Matures: Microsoft Enters
The Web underwent other significant changes during 1995. Larger content producers,
including the movie industry and media conglomerates like Time-Warner, embraced
the Web. Advertising dollars soon followed. The phenomenal growth of the content on
the Web led to the development of such services as Yahoo!, which provide directories
or search facilities to navigate the flood of incoming data. Many new browsers were
developed in 1995, but none except Microsoft’s Internet Explorer posed a serious threat
to Netscape Navigator’s dominance of the market. Microsoft initially introduced its
own features and HTML tags, such as <MARQUEE>, in an attempt to extend the
presentation of the Web and gain market share. This worked to some degree, but
Microsoft later decided to return to its normal approach of “embrace and extend,”
taking World Wide Web Consortium (W3C) ideas—such as style sheets—and
implementing them first.

By 1996, the Web world had turned into a two-party system, with mostly Microsoft
and Netscape browsers in use. Still, many other browsers were in use by limited
numbers of people. Designers faced with supporting a variety of standards often gave
up on cross-platform compatibility and focused on making pages look good under one
browser or another. This was an unfortunate turn of events. To this day, many sites
lock out users by requesting them to download one browser or another to view
proprietary HTML tags on a page. To further complicate the Web, print designers
started to force HTML to render pages the way they wanted them rendered. Pixel-level
control was the graphic designer’s goal, and with tables and graphics layout tricks
(discussed in Chapters 6 and 7), they almost achieved it, at times. Of course, pages
became increasingly complicated. The HTML being used became more confusing and
proprietary. Even now, the Web continues to change.

From Pages to Programs
Many people view the Web simply as a way to deliver documents, or as a digital print
distribution system. This is a very narrow view. People want to order things online,
play, and communicate through the Web. The Web can do these things, but it means
thinking about the Web not as a collection of documents but as a software system. The
page view of the Web world is quickly being replaced with a program view of Web
sites. Common Gateway Interface (CGI) programs were introduced at the dawn of the
Web and are still widely in use. Plug-ins, Java, JavaScript, and ActiveX controls have
helped the Web become more and more programmed.

Why have a button on a page to click for a Netscape version or a Microsoft version
of the site, when a program can sense the browser type and build the appropriate

C h a p t e r 2 : W e b P u b l i s h i n g 49

W
EB

A
N

D
H

TM
L

B
A

S
IC

S

page? Why design around 640 × 480 screen displays as a minimum, when the
resolution can be sensed and the appropriate graphics provided? This is the idea of
programmed sites, with pages that are dynamically generated from database
information. Pages are no longer just collections of words. They are collections of
media objects glued together with programming logic in sophisticated, windowed
user interfaces. An example of a multipaned page with multimedia elements is
shown in Figure 2-20.

The programmed page introduces new issues for HTML and Web development.
With new programming facilities available, pages are more complex. With the rise in
complexity, it is unrealistic to expect one person to have all the talents to build a Web
site. Furthermore, complex Web sites need a rigorous approach to building Web sites.
As this approach to Web site creation becomes more common, the concept of Web site
publishing will likely be supplanted by the idea of “Web site engineering.”

50 H T M L : T h e C o m p l e t e R e f e r e n c e

Figure 2-20. Advanced Web page style

Issues Facing HTML and the Web
The common issue of HTML always seems to be one of structure and style. HTML can
be used to structure documents, but it doesn’t yet provide all the features necessary to
make them look the way the author wants. This is one of the inherent compromises of
the Web, but it isn’t the only issue facing HTML and the Web:

■ The Web and HTML are still relatively new. In the commercial sense, the Web is
only a few years old. Many things remain to be worked out. Users expect
perfect presentation and CD-ROM–like interfaces. HTML doesn’t provide these
features, but extensions, style sheets, and binary formats will. However, with an
increasing arena of different browsing options, compatibility across platforms
may be an issue for a long time to come.

■ A Web browser is easy to use, but finding things isn’t so simple. The Web needs
more organization. Web search facilities, metadata, linking features, and
addressing need to be improved.

■ The Web needs to be more responsive. This isn’t so much an issue with HTML or
Web servers, but with the medium of delivery. The protocols and the network
have to be improved so that people are satisfied with the responsiveness of
Web sites. The introduction of multimedia elements and CD-ROM–like
interfaces only worsens the hunger for bandwidth.

■ The Web has to be useful. Programmed pages are useful. Ordering tickets, playing
games, communicating, and finding information is what the Web is all about.
HTML will have to support programming technologies, so that pages are more
dynamic and sites that interact with the user become easier to build.

Summary
The process of creating a large Web site is more than just putting together some text
with images and HTML. While a simple site with a few pages might not take a great
deal of forethought, a little planning can go a long way, even for a small site. What is
the site supposed to do? How should it look? What should it say? What is its goal?
Who is the target audience? What is the site’s value? Setting a goal can help ensure
the future success of the site, particularly if the value of the site can be measured.
Determining what the site should do, given a particular goal, might be hard,
particularly with many competing purposes. Isolating the core essence of the site is
possible, using some known techniques. Once content and purpose are determined,

C h a p t e r 2 : W e b P u b l i s h i n g 51

W
EB

A
N

D
H

TM
L

B
A

S
IC

S

the shape and structure of the site can be set. At this point, the Web page author has a
blueprint to follow while gathering the raw materials that make it up (images, text,
and other content). The content and navigation can then be assembled by using Web
technologies such as HTML.

After the site is built, it must be thoroughly tested, because it is created for the
benefit of users, not authors. Web sites are not static—they evolve. The mission of the
site may change over time. Its look and technology may become dated. The process
of Web publishing is an endless loop. HTML plays only a small role in the overall
development of a site, but it is an important role. The history of the Web shows that at
the core of every Web page is HTML. While the future moves the Web in the direction
of programmed sites, no reason exists to think that HTML will become extinct. If
anything, understanding the language, its syntax, and its purpose is integral to Web
mastery. Chapter 3 begins the discussion of HTML with an overview of commonly
used aspects of the language.

52 H T M L : T h e C o m p l e t e R e f e r e n c e

Chapter 3
Introduction to
Common HTML

53

Copyright 1999 The McGraw-Hill Companies. Click Here for Terms of Use.

54 H T M L : T h e C o m p l e t e R e f e r e n c e

This chapter provides a detailed introduction to common HTML, the form of
HTML used in most Web pages. HTML 4 and its predecessors, HTML 3.2 and 2,
are the starting point for this chapter, which discusses the specifications and

official rules. How the rules are often broken is also discussed, particularly when the
workarounds are useful, although there are reasons why you should avoid breaking
the rules. As new Web technologies appear with increasing regularity, however,
workarounds may no longer be necessary. This chapter is at the introductory level, but
it does not provide “cookbook” HTML. Seasoned HTML authors might want to read
on, because the inline notes and some of the explanations might present previously
unknown nuances of the elements.

HTML Overview
As mentioned in Chapter 1, Hypertext Markup Language (HTML) is a structured
markup language that is used to create Web pages. A markup language such as HTML
is simply a collection of codes, called elements, that are used to indicate the structure
and format of a document. A user agent, usually a Web browser that renders the
document, interprets the meaning of these codes to figure how to structure or display a
document. Elements in HTML consist of alphanumeric tokens within angle brackets,
such as , <HTML>, , and <HR>.

Most elements consist of paired tags: a start tag and an end tag. The start tag is
simply a mnemonic symbol for the element surrounded by angle brackets. For
example, the symbol for bold text is B and its start tag is . An end tag is identical to
a start tag, except that the symbol for an end tag is preceded by a forward slash: .
An element’s instruction applies to whatever content is contained between its start
and end tags:

This text is bold but this text is not.

While most tags come in pairs, exceptions exist. Some elements don’t require an
end tag because they don’t enclose content. These elements are referred to as empty
elements. One example is the break element,
, which indicates a line break. Finally,
for some elements, such as the paragraph element, <P>, an end tag is optional—though
highly encouraged.

The HTML specification defines the type of content that an element can enclose.
This is known as an element’s content model. The content that may be enclosed by an
element may include other elements, text, a mixture of elements and text, or nothing at
all. For example, the <HEAD> element provides general information about an HTML
document. Its content model allows it to contain only a small number of related
elements, such as <TITLE> and <META>. The content model for the bold element,
, allows it to enclose text and some elements, such as the one for italic, <I>, but not

others, such as <HEAD>. The content model of the break element,
, is empty,
as mentioned earlier, because it encloses no content. Content models define the
relationships that are possible between elements and content in valid HTML documents.
The content model should suggest that HTML is actually a very structured language,
despite how it is often coded.

An HTML start tag can sometimes contain attributes that modify the element’s
meaning. Attributes within a tag’s brackets must be separated from the element’s name
by at least one space. Some attributes indicate an effect simply by their existence. An
example is adding the COMPACT attribute to the ordered list element: <OL
COMPACT>. Other attributes indicate a modification to the tag by assigned values.
For example, <OL TYPE=“I”> assigns the bullet type of an ordered list to uppercase
roman numerals. An element may contain multiple attributes, if those attributes are
separated by at least one space, as in <OL COMPACT TYPE=“I” START=“3”>. The
order of the attributes with a start tag is not fixed, but some HTML authors like to
group attributes by meaning, sort attributes alphabetically, or use some other
combination of rules.

A complete HTML element is defined by a start tag, an end tag (where applicable),
possible attributes, and a content model. Figure 3-1 shows an overview of the syntax of
a typical HTML element.

HTML Rules and Guidelines
As discussed in Chapter 1, the following are some rules to remember when
writing HTML:

■ HTML documents are structured documents. HTML documents have a
well-defined structure. The idea of a content model says that certain HTML
elements should occur only within others. For example, list items () should
be the only items that directly nest within unordered list elements defined by
. The structure of an HTML document is specified by a document type
definition (DTD). A DTD defines what elements a document can contain, their
possible relationships to one another inside a document, and their possible
attributes and values. If the elements in a particular HTML document agree
with this formal definition, the document is said to be valid. Validation of
HTML documents is discussed later in this chapter.

■ Element names are not case-sensitive. An element such as <hTml> is equivalent
to <html> or <HTML>. Element case doesn’t matter to a browser. However,
writing elements consistently in upper- or lowercase makes HTML documents
easier to understand and maintain by people. Using all uppercase in tags makes
them stand out more.

Some document authors who manually code documents may find lowercase easier to
type. Modern HTML editing tools can convert tag case automatically.

C h a p t e r 3 : I n t r o d u c t i o n t o C o m m o n H T M L 55

W
EB

A
N

D
H

TM
L

B
A

S
IC

S

56 H T M L : T h e C o m p l e t e R e f e r e n c e

■ Attribute names aren’t case-sensitive. Just as <hr> is equivalent to <HR>, <HR
NOSHADE> is equivalent to <HR noshade> or <HR NoShade>. As with
elements, consistent use of case improves legibility, and uppercase is preferred.

■ Attribute values may be case-sensitive. The value of an attribute may be
case-sensitive, especially if it refers to a file. The filename in may not be the same as the filename in ; it depends on whether or not case matters to the
operating system of the server delivering the file. For example, UNIX systems
are case-sensitive, so FILENAME.GIF and filename.gif are two different files; on
a Windows system, they would be the same. For best results, always specify a
filename exactly as it has been saved. If you plan to move files from server to
server, you should always use lowercase file names in attribute values.

■ Attribute values should be quoted. The actual attribute value may contain spaces
or other special characters if it is enclosed by quotes. Some attributes require
a known value, usually a string, such as LEFT, RIGHT, or CENTER. These
values don’t require surrounding quotes unless they contain embedded spaces.
In common HTML, regardless of whether an attribute is user-defined or can
contain only a specified value, it doesn’t require quotes unless spaces or
special characters occur within the value. For example, the values for the SRC
and ALT attributes in the following element contain no spaces and therefore
require no quotes:

Figure 3-1. HTML element overview

W
EB

A
N

D
H

TM
L

B
A

S
IC

S
Changing the value for the ALT attribute to My dog Rover introduces spaces into the
value, and thus quotes must be added:

Omitting quotes in the previous example assigns My to the ALT attribute and causes
dog and Rover to be treated as two undefined attributes. Surrounding a value with
quotes has no negative consequences if quotes aren’t required. HTML authors are well
advised to quote attribute values if any chance of misinterpretation exists. For stylistic
reasons, as well as to make an HTML document conform to strict XML rules, quoting
everything is always better. Specifically, remember to quote any values that contain
any characters other than alphanumeric characters [a–z, A–Z, 0–9], dashes [-], or
periods [.]. Be especially careful to quote any so-called “special characters.”

■ Element names cannot contain spaces. Browsers treat the first space encountered
inside an element as the end of an element’s name and the beginning of its
attributes. For example, <I M G> doesn’t mean , the image element. It
means <I>, the italic element, with two undefined attributes, M and G.

■ Browsers collapse and ignore space characters in HTML content. Browsers collapse
any sequence of spaces, tabs, and returns in an HTML document into a single
space character. These characters convey no formatting information, unless they
occur inside a special preformatting element, such as <PRE>, which preserves
their meaning. Extra spacing can be used liberally within an HTML document
to make it more legible to HTML authors.

Authors may be interested in taking advantage of this rule by compressing HTML files
filled with scripting code and extra markup. Links to a variety of HTML compression
tools can be found at http://www.htmlref.com/Reference/resources.

■ HTML documents may contain comments. HTML supports comments that are not
displayed within a browser window. Comments are denoted by a start value of
<!- - and an end value of - ->. Comments can be many lines long. For example,

<!--

Document Name: My HTML Document

Creation Date: 1/5/99

© 1999 Big Company, Inc.

-->

C h a p t e r 3 : I n t r o d u c t i o n t o C o m m o n H T M L 57

is a valid comment. Be careful not to put spaces between the dashes or an
exclamation point in the comment. Comments may also include HTML
elements. This is very useful in hiding new HTML elements from older
browsers, and is commonly used with <STYLE> and <SCRIPT> elements,
discussed in Chapters 10 and 13, respectively. Readers should be aware that
some very old browsers may have problems when commenting out
HTML tags. For more information about comments, see Appendix A.

■ Elements should nest. Elements often contain other elements inside the document
section that they enclose. Any element that starts within a section enclosed by
another element must also end within that section. In other words, an element’s
tag pairs should be nested within one another, and their end tags shouldn’t
cross. To make some text bold and italic, use <I>Correct</I> and not
<I>Not correct</I>.

Some readers may view this as primarily a stylistic issue, because no commonly
used browsers have a problem with this. Authors are still advised to nest tags
rather than cross them. Incorrect nesting may result in incompatibilities with
emerging technologies, such as Extensible Markup Language (XML) and
Dynamic HTML (DHTML).

■ Browsers ignore unknown elements. Browsers ignore elements they do not
understand. They do, however, attempt to interpret any content enclosed by
an unknown element. If a browser doesn’t understand the <STORY> element
in <STORY>A Tale of Two Cities</STORY>, it ignores it. It does, however,
render the words “A Tale of Two Cities” as normal text.

■ Browsers ignore unknown attributes. As with elements, browsers ignore any
attributes that they don’t understand. Technically, the imaginary CLOWN
attribute in the following example is well-formed HTML. Unless a browser
happens to understand it, however, it is ignored.

In a pragmatic sense, the final arbiter of an HTML document’s correctness is the
browser that is used to view it. Browsers rarely enforce formally defined HTML.
Instead, most browsers liberally interpret what they treat as acceptable. They make
guesses about unusual constructs and attempt to render whatever they receive.
Few authors understand all the rules for composing HTML according to a DTD.
Unfortunately, permissive browsers provide little incentive to learn. This is an
important lesson for HTML authors. As permissiveness varies from browser to
browser, and even between different versions of the same browser, simply testing
pages in a browser doesn’t ensure portability of documents.

58 H T M L : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 3 : I n t r o d u c t i o n t o C o m m o n H T M L 59

W
EB

A
N

D
H

TM
L

B
A

S
IC

S
Authoring HTML to a recognized DTD and using a validator, a program that checks

that written code meets the specification, may ensure that documents are open to the
widest possible audience. Many editors, such as Allaire’s HomeSite, provide built-in
validation services, and some Web sites (http://validator.w3.org) can validate Web
documents. Most end users, however, don’t concern themselves with syntax specifics,
but draw their beliefs about appropriate code from how their browsers render that
code. For example, even if a validator states that a document is correct, things may not
work in a browser, due to bugs in the software.

As noted in Chapter 2, it is always a good idea to test documents under an
assortment of browsers, such as Microsoft Internet Explorer, Netscape Navigator,
Opera, WebTV, and even Lynx. The documents should also be tested on multiple
platforms, such as Windows and Macintosh, when available. Even rigorous testing
may not ensure that pages will work the way that you want—that is the challenge
of the Web.

Permissive HTML interpretation by browsers serves a practical purpose. Imagine if
browsers treated HTML errors like syntax errors in a programming language.
If this were the case, a document could not be successfully viewed unless it was
absolutely correct. If browsers had followed this model, the Web wouldn’t have gotten
very far. Relatively few complex documents on the Web today would pass extremely
strict validation.

Understanding and following a formal HTML definition takes time and practice.
However, the benefits to cross-platform rendering and document maintenance make it
worthwhile. This is essential for large corporations with many documents. Fortunately,
the path toward writing well-formed HTML documents doesn’t require an intimate
understanding of the language’s nuances. Well-formed documents share a common,
easily comprehended document structure.

The Structure of HTML Documents
Regardless of document content, all well-written HTML documents share a common
structure. Figure 3-2 provides a template for this. An HTML document begins with a
<!DOCTYPE> declaration, indicating the version of HTML used by the document.
Following this, the <HTML> element encloses the actual document. It contains two
primary sections, the head and the body, enclosed by the <HEAD> and <BODY>
elements, respectively. The head can contain identifying and other supplementary
information about the document, or meta-information. The head always contains the
document’s title, enclosed by the <TITLE> element. The body contains the actual
document content and the HTML markup used to structure the document.

60 H T M L : T h e C o m p l e t e R e f e r e n c e

Document Types
HTML follows the SGML notation for defining structured documents. From SGML,
HTML inherits the requirement that all documents begin with a <!DOCTYPE>
declaration. In an HTML context, this identifies the HTML “dialect” used in a
document by referring to an external document type definition, or DTD. A DTD defines
the actual elements, attributes, and element relationships that are valid in the
document. The <!DOCTYPE> declaration allows validation software (discussed
earlier) to identify the HTML DTD being followed in a document, and verify that the
document is syntactically correct. Technically, any HTML construct not defined in the
document’s DTD should not occur. Some common <!DOCTYPE> declarations are
shown here:

■ Document containing HTML 2 as standardized by the Internet Engineering
Task Force:

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">

■ Document containing HTML 3.2 as defined by the World Wide Web
Consortium (W3C):

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">

<!DOCTYPE HTML PUBLIC "html version">
<HTML>

<HEAD>

<TITLE> Document Title </TITLE>
...Other supplementary information goes here....
</HEAD>

<BODY>
...Marked-up text goes here....

</BODY>

</HTML>

Figure 3-2. HTML document template

■ Document containing HTML 2 with Netscape Navigator extensions as defined
by a third party:

<!DOCTYPE HTML PUBLIC "-//WebTechs//DTD Mozilla HTML 2.0//EN">

■ Document containing Internet Explorer 3 HTML as defined by
Microsoft Corporation:

<!DOCTYPE HTML PUBLIC "-//Microsoft//DTD Internet Explorer 3.0 HTML//EN">

■ Document conforming to the transitional or loose definition of HTML 4 as
defined by W3C:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"

"http://www.w3.org/TR/REC-html40/loose.dtd">

■ Document conforming to the strict definition of HTML 4 as defined by W3C:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN"

"http://www.w3.org/TR/REC-html40/strict.dtd">

The HTML document template suggests always using a <!DOCTYPE> declaration.
In some cases, this may not be practical. Including a DTD declaration conveys the
intention to follow it. Unfortunately, not every HTML dialect has a DTD. Unlike the
W3C, browser vendors have historically favored innovation over standardization. For
an HTML author, it is better to omit a <!DOCTYPE> declaration than to include one
that will not be followed. Misuse is pervasive.

Some HTML authoring tools automatically insert a <!DOCTYPE> declaration
while also encouraging the use of elements not found in the related DTD. Several mass
media Web sites support advanced features, such as frames in documents, declared
according to the conservative HTML 2.0 specification.

At the time of this book’s writing, Netscape doesn’t provide DTDs. Many interested
third parties have written DTDs that address Netscape Navigator extensions, in case an
author wants to validate a Navigator document.

The <HTML> Element
The <HTML> element delimits the beginning and the end of an HTML document. It
contains only the <HEAD> element and the <BODY> element. The HTML document
template shown in Figure 3-2, earlier in the chapter, shows the <HTML> element’s
typical use in a document, as a container for all other elements. The <HEAD> element
is optional. The HTML 4.0 DTD doesn’t require its use, nor do popular browsers.
Including it, however, makes a document more legible.

C h a p t e r 3 : I n t r o d u c t i o n t o C o m m o n H T M L 61

W
EB

A
N

D
H

TM
L

B
A

S
IC

S

62 H T M L : T h e C o m p l e t e R e f e r e n c e

The <HEAD> Element
The <HEAD> element encloses a document section that contains identification and
supplementary information about the document. Browsers don’t generally display this
information. Including the <HEAD> element in a document isn’t technically necessary,
because the boundaries of the head can always be inferred. Nevertheless, the <HEAD>
element should always be included, for document style and legibility. In the HTML 4.0
transitional DTD, the elements allowed within the <HEAD> element include <BASE>,
<ISINDEX>, <LINK>, <META>, <OBJECT>, <SCRIPT>, <STYLE>, and <TITLE>.
The <TITLE> element must always occur. A brief discussion of these elements
follows. Complete information is available in the cross-referenced chapters and
reference section.

The <BASE> element specifies an absolute URL address that is used to provide
server and directory information for partially specified URL addresses, called relative
URLs, used within the document. Relative URLs are discussed in Chapter 4, which
covers linking.

The <ISINDEX> element indicates that the document contains a searchable index.
It causes the browser to display a query prompt and a field for entering a query. This
element usually is used with simple site searching mechanisms, but is rarely used
today, having been mostly replaced by forms. Under the HTML 4.0 strict definition,
<ISINDEX> is deprecated. The element is discussed solely in Appendix A, as its use
isn’t encouraged.

The <LINK> element specifies a special relationship between the current document
and another document. One use concerns hypertext navigational relationships. This
is discussed in Chapter 4. Another use, which concerns linking to a style sheet, is
discussed in Chapter 10.

The <META> element uses name/value pairs to provide meta-information about
a document. The <META> element often provides descriptive information targeted
by Web search engines. In a very different use, the <META> element can define an
HTTP request header that causes one page to automatically load another page after a
specified time interval. These and other uses are discussed in Chapter 4.

A document’s head section contains all the descriptive information about the document.
Traditionally, this section was much smaller than the document’s body and could be
retrieved independently from a Web server. Because of this, Web indexing robots often
place special emphasis on the document head. Authors often provide various forms of
“spider bait” to increase indexing relevance. With the introduction of the <SCRIPT>
and <STYLE> elements, the amount of information in the head has exploded. What
impact this may have on document structuring and strategies for automatic document
indexing is unclear.

The <OBJECT> element allows programs and other binary objects to be directly
embedded in a Web page. The most popular current approaches use Java applets,
plug-ins, or ActiveX controls. This approach to making Web pages more interactive is

known as client-side programming. The <OBJECT> element and associated usage is
discussed in Chapter 15.

The <SCRIPT> element allows programs written in a scripting language to be
directly embedded in a Web page. The two most popular scripting languages are
JavaScript and VBScript, a form of Visual Basic. This approach to making Web pages
more interactive is known as client-side scripting. The <SCRIPT> element and
associated usage of scripts, which is often called Dynamic HTML (DHTML), is
discussed in Chapter 14.

The <STYLE> element encloses style specifications covering fonts, colors,
positioning, and other aspects of content presentation. These styles can be associated
with document elements. Use of the <STYLE> element is discussed in Chapter 10.

Comments may occur anywhere in an HTML document. They are especially valuable in
the head section to assist document maintenance. Useful head comments include the
document’s purpose, authorship, required resources, and modification history. The form
of HTML comments was discussed earlier in the chapter.

The <TITLE> element, discussed next, is the only element that is absolutely
required in the head of a document.

The <TITLE> Element
The <TITLE> element must be used in every HTML document. It gives an HTML
document a title by which it is known to browsers and indexing robots. Browsers
display the document title while the document is being viewed, and may also use the
title in bookmark lists.

Most browsers attempt to deduce a title for a document that is missing the <TITLE>
element. The browser often uses the URL of the document being viewed, which may
indicate nothing about the document’s content. However, this behavior isn’t guaranteed.
For example, Classic WebTV simply lists the document as “untitled document.” The
example in Figure 3-3 shows an untitled document rendered in a browser.

A document title may contain standard text as well as character entities (for
example, ©), which are discussed later in the chapter. However, HTML markup
isn’t permitted in the <TITLE> element and doesn’t produce the expected result. So,
according to the rules of the <TITLE> element,

<TITLE> Home Page</TITLE>

is not valid, while

<TITLE> The Exciting Story of HTML © 1999 </TITLE>

C h a p t e r 3 : I n t r o d u c t i o n t o C o m m o n H T M L 63

W
EB

A
N

D
H

TM
L

B
A

S
IC

S

64 H T M L : T h e C o m p l e t e R e f e r e n c e

is valid. However, a well-formed title is not necessarily a meaningful title. Remember
that a user sees a title in his or her bookmark list if the page is bookmarked. Robots and
spiders that index the Web often place special meaning on the contents of the <TITLE>
element when determining what a page is about. Because of this, a title should indicate
the contents of a page, without ambiguity. Titles such as “My Page” or “Home Page”
don’t make much sense; “John Smith’s Page” and “Big Company” do. A well-formed
title can actually add navigational value to a site by showing an implicit hierarchy
among a group of pages. While “Widget X-103 Datasheet” seems to be a reasonable
title, “Big Company: Products: Widget X-103 Datasheet” is a better title. It not only
indicates the company the product is related to, but implies a hierarchy in the site.

Initially, using characters such as colon (:), slash (/), or backslash (\) in titles was a
problem. An operating system may have a problem with these titles if the document is
saved to the local system. For example, the colon isn’t allowed within Macintosh
filenames, and slashes generally aren’t allowed within filenames, because they indicate
directories. Although this appears to be a problem, most browsers remove the suspect
characters and reduce them to spaces during the Save process. To be on the safe side,
dashes or underscores can be used to delimit sections in the title.

Figure 3-3. Document lacking <TITLE> element

C h a p t e r 3 : I n t r o d u c t i o n t o C o m m o n H T M L 65

W
EB

A
N

D
H

TM
L

B
A

S
IC

S
While titles should be descriptive, they should also be concise. Authors should limit

title length to a reasonable number of characters. Netscape Navigator and Internet
Explorer display around 20 to 30 characters of a title in their bookmark lists. One way
to limit the length of titles is to remove words such as a, an, and the, which provide
little extra value.

Browsers are very sensitive to the <TITLE> element. According to the HTML 3.2 and
4.0 specifications, the <TITLE> element is mandatory, while the <BODY>, <HEAD>,
and <HTML> elements are not. In some versions of Navigator, using a poorly formed
<TITLE> element causes a document not to display. So, if you get a bunch of junk on
your screen (see Figure 3-4), check the <TITLE> element right away.

According to the HTML 4.0 specification, only one <TITLE> element should
appear in every document. The title should appear in the head of the document.
Until Netscape Navigator 1.1 was released, multiple <TITLE> elements were
often used within documents to create an animated title. This was a bug, not a
Netscape innovation. More recent browsers don’t support this capability, and it
shouldn’t be used.

Figure 3-4. <TITLE> problem in Netscape Navigator

66 H T M L : T h e C o m p l e t e R e f e r e n c e

If you do have multiple instances of the <TITLE> element in your document, HTML
doesn’t define what will happen, so different browsers handle them differently. Internet
Explorer uses the last <TITLE> defined; Navigator uses the first. This may change with
version numbers and platform types, and should never be assumed.

The <BODY> Element
As previously shown in the HTML document template in Figure 3-2, the body of a
document is delimited by <BODY> and </BODY>. Under the HTML 4.0 specification
and most browsers, the <BODY> element is optional, but should always be included.
Only one <BODY> element can appear per document.

Under an older version of Navigator, the browser read multiple <BODY> elements
within a document. In combination with the BGCOLOR attribute of the <BODY>
element, HTML authors were able to exploit this bug to produce a document that
loaded after flipping through a variety of colors. Often, this hack was used to create a
fade-in or fade-out effect for a page. This bug has been fixed, so multiple <BODY>
elements no longer provide any benefit. If multiple <BODY> elements are encountered
in a file, typically the browser pays attention to either the first or last <BODY>
element encountered.

Common attributes for the <BODY> element affect the colors for a document’s text,
background, and links. These attributes include TEXT for text color, BGCOLOR for
background color, ALINK for active link color, VLINK for visited link color, and LINK
for unvisited link color. These and other <BODY> attributes, both standard and
browser-specific, are discussed in Chapter 6. The <BODY> element may contain many
other HTML elements. The rest of the chapter introduces the basic HTML elements that
may be found in a document’s body.

HTML Elements
The rest of the chapter introduces the basic HTML elements common to nearly every
browser, as defined by the HTML 4.0 transitional specification. These elements fall into
three distinct groups: block-level elements, text-level elements, and character entities.
The elements are presented from top to bottom, from larger, block-oriented structures
(such as paragraphs), to smaller units (such as the actual character entities). First,
however, the attributes that are common to all HTML elements are reviewed.

Core Attributes
To accommodate new technologies such as style sheets and scripting languages, some
important changes have been made to HTML 4. A set of four core attributes has been

W
EB

A
N

D
H

TM
L

B
A

S
IC

S
added that nearly all HTML elements support. At this stage, the purpose of these
attributes may not be obvious, but it is important to address their existence, before
discussing the various HTML elements.

HTML 4’s core attributes are ID, CLASS, STYLE, and TITLE. The ID attribute is
used to set a unique name for a tag in a document. For example, using the paragraph
element, <P>,

<P ID="FirstParagraph"> This is the first paragraph of text. </P>

names the bound tag FirstParagraph. Naming a tag is useful for manipulating the
enclosed contents with a style sheet, as discussed in Chapter 10, or providing a
scripting hook, as discussed in Chapter 13.

The CLASS attribute is used to indicate the class or classes that a tag may belong
to. Like ID, CLASS is used to associate a tag with a name, so

<P ID="FirstParagraph" CLASS="important">

This is the first paragraph of text.

</P>

not only names the paragraph uniquely as FirstParagraph, but also indicates that this
paragraph belongs to a class grouping called important. Class names don’t have to be
unique to a document.

The STYLE attribute is used to add style sheet information directly to a tag. For example,

<P STYLE="font-size: 18pt"> This is the first paragraph of text. </P>

sets the font size of the paragraph to be 18 point. Style properties are discussed in
Chapter 10.

The TITLE is used to provide advisory text about a tag or its contents. In the case of

<P TITLE="Introductory paragraph">

This is the first paragraph of text.

</P>

the TITLE attribute is set to indicate that this particular paragraph is the introductory
paragraph. Browsers (currently, only Internet Explorer 4 and higher) may display this
advisory text in the form of a tool tip, which may be useful to provide context-
sensitive help, extra information, or other advice to the user, as shown here:

C h a p t e r 3 : I n t r o d u c t i o n t o C o m m o n H T M L 67

The core attributes may not make a great deal of sense at this time, because they are
generally useful mostly with scripting and style sheets, but keep in mind that these
four attributes are assumed with every tag that is introduced for the rest of the chapter.

Language Attributes
One major goal of HTML 4 was to provide better support for languages other than
English. The use of other languages may require that text direction be changed from
left to right across the screen to right to left. Nearly all HTML elements now support
the DIR attribute, which can be used to indicate text direction as either LTR (left to
right) or RTL (right to left). For example,

<P DIR="RTL"> This is a right-to-left paragraph. </P>

Furthermore, mixed-language documents may become more common after support
for non-ASCII-based languages is improved within browsers. The use of the LANG
attribute enables document authors to indicate, down to the tag level, the language
being used. For example,

<P LANG="fr"> C’est Francais. </P>

<P LANG="en"> This is English. </P>

While the language attributes should be considered part of nearly every HTML
element, in reality, these attributes are poorly supported by browsers currently
available.

Core Events
The last major change made in HTML 4 was to improve the possibility of adding
scripting to HTML documents. In preparation for a more dynamic Web, a set of core
events has been associated with nearly every HTML element. Most of these events are
associated with a user doing something. For example, the user clicking an object is
associated with an onclick event attribute. So,

<P onclick="alert('Ouch!')"> Press this paragraph. </P>

would associate a small bit of scripting code with the paragraph event, which would be
triggered when the user clicks the paragraph. In reality, the event model is not fully
supported by all browsers for all tags, so the previous example may not do much of
anything. A much more complete discussion of events is presented in Chapters 13 and
14, as well as in Appendix A. For now, just remember that a multitude of events may be

68 H T M L : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 3 : I n t r o d u c t i o n t o C o m m o n H T M L 69

W
EB

A
N

D
H

TM
L

B
A

S
IC

S
associated with any tag, paving the way for a much more dynamic Web experience. The
next section looks at the large, document-structuring elements, called block-level elements.

Block-Level Elements
Block-level elements define structural content blocks, such as paragraphs or lists. If a
document is written carefully in a block style, it may be possible to improve its
machine readability. The basic idea of a document that follows a block structure is
shown in Figure 3-5.

Figure 3-5. Block-structured document

Headings
The heading elements are used to create “headlines” in documents. Six different levels
of headings are supported: <H1>, <H2>, <H3>, <H4>, <H5>, and <H6>. These range
in importance from <H1>, the most important, to <H6>, the least important. Most
browsers display headings in larger and/or bolder font than normal text. This causes
many HTML authors to think erroneously of heading elements as formatting that
makes text bigger or bolder. Actually, heading elements (such as headings themselves)
convey logical meaning about a document’s structure. Sizing and weight are relative to
the importance of the heading, so <H1> level headings are larger than <H3> headings.
As headings, text included is displayed in an alternative style (bigger and/or bold) and
on a line of its own. In addition, an extra line is generally inserted after the heading.
The following example markup demonstrates the heading elements:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>
<HEAD>
<TITLE> Heading Example </TITLE>

</HEAD>

<BODY>
<H1>Heading 1 </H1>
<H2>Heading 2 </H2>

<H3>Heading 3 </H3>
<H4>Heading 4 </H4>

<H5>Heading 5 </H5>

<H6>Heading 6 </H6>
</BODY>

</HTML>

A sample rendering of this heading example is shown in Figure 3-6.

The Lynx text browser renders headings very differently than commercial graphical
browsers. Lynx can’t display larger fonts, so it may attempt to bold them or align them.
<H1> headings are aligned in the center, while each lower-level heading is indented
more than the next-highest-level heading.

An attribute that aligns the text left, right, or center can be added to the heading
elements. By default, headings are usually left-aligned, but by setting the ALIGN
attribute of the various heading elements, the text may be aligned to the right, left, or
center of the screen. The following example markup and the result shown in Figure 3-7
show the usage and rendering of the ALIGN attribute for headings:

70 H T M L : T h e C o m p l e t e R e f e r e n c e

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>
<HEAD>

<TITLE> Heading Alignment Example </TITLE>
</HEAD>

<BODY>

<H1 ALIGN="left"> Aligned Left </H1>

<H1 ALIGN="center"> Aligned Center </H1>
<H1 ALIGN="right"> Aligned Right </H1>

</BODY>
</HTML>

Under the strict version of HTML 4, the ALIGN attribute has been deprecated.
HTML authors often use headings to make text large. As with all HTML elements,

size is a relative concept, not an absolute concept. The actual size of the heading depends
on the browser, the browser’s setting, and the platform on which it is running. An
<H1> header under Navigator on a UNIX system appears a different size than the
same <H1> header on a Windows 3.1 machine running Internet Explorer. The
headlines are relatively bigger, but the exact size is unknown, making consistent layout

C h a p t e r 3 : I n t r o d u c t i o n t o C o m m o n H T M L 71

W
EB

A
N

D
H

TM
L

B
A

S
IC

S

Figure 3-6. Rendering of heading style example

difficult. Furthermore, headlines have an implied logical meaning, and typically do
more than simply make something big.

Headings actually have a logical meaning. While HTML doesn’t enforce the use of
headings in a hierarchical, ordered way, some people feel that this use is implied; that
is, documents generally have headlines ordered so that <H3> doesn’t appear before
<H1> and less important headings are nested within more important ones or occur
after them. Given the logical use of headings, a page may support indexing features or
allow for navigation schemes that currently aren’t available in browsers without using
scripting. For example, a browser might allow a user to view an outline of a Web
document by showing the headings, and then allow the user to expand relevant
headings (as shown in Figure 3-8). Although an outline view isn’t built into most
browsers, you can create this type of navigation by using programming facilities such
as Java or Dynamic HTML. More information about this is presented in Chapter 14.

A quick survey of heading use on the Web should reveal that headings beyond <H3> are
rarely used. Why? Partially because people use headings in a visual fashion. The effects
of <H4>, <H5>, and <H6> can be achieved with other elements. Furthermore, it is
unusual for documents to have sections nested more than three levels deep.

72 H T M L : T h e C o m p l e t e R e f e r e n c e

Figure 3-7. Rendering of heading alignment example

Paragraphs and Breaks
Unlike documents in word processors, HTML documents ignore multiple spaces, tabs,
and carriage returns. Word wrapping can occur at any point in your source file, and
multiple spaces are collapsed into a single space. To preserve some semblance of text
formatting, elements are introduced to sectionalize the document. One of the most
important structuring elements is the paragraph element. Surrounding text with the
<P> and </P> tags indicates that the text is a logical paragraph unit. Normally, the
browser places a blank line or two before the paragraph, but the exact rendering of the
text depends on the browser. Text within the <P> is normally rendered flush left, with
a ragged right margin. The ALIGN attribute makes it possible to specify a left, right,
or center alignment. Under HTML 4, you also can set an ALIGN value of justify,
to justify all text in the paragraph. Due to the poor quality of justification in some
browsers and lack of support, this value seems to be rarely used. Also note that
because left is the default value, ALIGN="left" is often omitted entirely. The following
example shows four paragraphs with alignment, the rendering of which is shown
in Figure 3-9.

C h a p t e r 3 : I n t r o d u c t i o n t o C o m m o n H T M L 73

W
EB

A
N

D
H

TM
L

B
A

S
IC

S

Figure 3-8. Possible heading-based navigation in a browser

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>
<HEAD>

<TITLE> Paragraph Example </TITLE>
</HEAD>

<BODY>

<P>This is the first paragraph in the example about the P tag.

There really isn't much to say here. </P>

<P ALIGN="center"> This is the second paragraph. Again, more of

the same. This time the paragraph is aligned in the center. This
might not be such a good idea as it makes the text hard to

read. </P>

<P ALIGN="right"> Here the paragraph is aligned to the right.
Right-aligned text is also troublesome to read. The rest of the

text of this paragraph is of little importance. </P>

<P ALIGN="justify"> Under HTML 4.0-compliant browsers, you are
able to justify text. As you may notice, the way browsers tend to
justify text is sometimes imprecise. Furthermore, not all browsers

support this attribute value. </P>
</BODY>

</HTML>

Because the <P> element generally causes a blank line, some HTML authors
attempt to insert blank lines into a document by using multiple <P> elements. This
rarely results in the desired outcome. The browser collapses empty <P> elements,
because they represent logical text units, not physical formatting.

Many WYSIWYG HTML editors and some page authors try to get around the
collapsing paragraph problem by using a nonbreaking space character within a
paragraph, to keep the element from collapsing, as shown here <P> </P>. This
approach isn’t recommended, because it doesn’t reduce markup used and it further
obscures the meaning of the document.

To insert returns or blank lines in a document, the
 element must be used. The

 element is a text-level element that inserts a single carriage return or break into
a document. It contains no content and has no end tag. The one attribute commonly
used with
 is CLEAR. This attribute allows
 to affect how text flows around

74 H T M L : T h e C o m p l e t e R e f e r e n c e

W
EB

A
N

D
H

TM
L

B
A

S
IC

S

images or embedded objects. The use of
 in this fashion is discussed in Chapter 5.
Because of its relationship with the <P> element, the basic use of
 must be
presented here. The following code fragment shows how
 might be used both
within and outside paragraphs. An example screen rendering is shown in Figure 3-10.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>
<HEAD>

<TITLE> Break Example </TITLE>
</HEAD>

<BODY>

<P>This is the first paragraph.

Not much to say here.
</P>

C h a p t e r 3 : I n t r o d u c t i o n t o C o m m o n H T M L 75

Figure 3-9. Rendering of the paragraph example

<P>This is the second paragraph. Notice all the extra space between
these paragraphs. That's from the BR tags. </P>

</BODY>
</HTML>

76 H T M L : T h e C o m p l e t e R e f e r e n c e

Figure 3-10. Rendering of
 example

C h a p t e r 3 : I n t r o d u c t i o n t o C o m m o n H T M L 77

W
EB

A
N

D
H

TM
L

B
A

S
IC

S
The following code fragment shows that <P> and
 are not equivalent, despite

their physical rendering similarities (screen renderings appear in Figure 3-11):

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>
<HEAD>

<TITLE> Break Example </TITLE>
</HEAD>

<BODY>

<P>This is the first paragraph.

Not much to say here, either.
</P>

<P><P><P>

<P>This is the second paragraph. Notice that the three P tags are

treated as empty paragraphs and ignored. </P>
</BODY>

</HTML>

Users looking for blank lines have to insert multiple
 elements into their
document. A single
 element merely goes to the next line rather than inserting
a blank line.

<CENTER> as a Block Element
In the original HTML 2–based browsers, centering text was impossible. One of the
major additions introduced by Netscape was the <CENTER> element. HTML 3.2
adopted this element because of its widespread use. To center text or embedded objects
(such as images), simply enclose the content within <CENTER> and </CENTER>. In
this sense, <CENTER> appears to be a text-formatting style element, but under the
HTML 3.2 and transitional 4.0 specifications (and beyond), <CENTER> is defined as an
alias for a block-level structuring element. Under the HTML 4.0 DTD, <CENTER> is

78 H T M L : T h e C o m p l e t e R e f e r e n c e

simply an alias for <DIV ALIGN=“CENTER”> and is treated exactly the same way.
The <CENTER> element is unlikely to go away, considering its simplicity and
widespread use. But according to specifications, two preferred ways exist to center
content: the <DIV> element with a center alignment attribute, or the ALIGN attribute
used in conjunction with some elements.

Divisions
The <DIV> element is used to structure HTML documents into unique sections or
divisions. Adding the ALIGN attribute enables you to align a portion of the document
to the left, right, or center. By default, content within the <DIV> element is left-aligned.
Divisions are also useful when used in conjunction with style sheets (see Chapter 10).
The following example shows the use of <CENTER> and <DIV> (Figure 3-12 shows
their screen rendering):

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

Figure 3-11. Screen rendering of <P> example

C h a p t e r 3 : I n t r o d u c t i o n t o C o m m o n H T M L 79

W
EB

A
N

D
H

TM
L

B
A

S
IC

S

<TITLE> Center and Division Example </TITLE>

</HEAD>

<BODY>

<CENTER>
<H1>This heading is centered. </H1>
<P>This paragraph is also centered. </P>

</CENTER>

<DIV ALIGN="right">

<H1>Division Heading </H1>
<P>Many paragraphs and other block elements

can be affected by a DIV at once. </P>
<P>Notice all the paragraphs are right aligned. </P>
</DIV>

</BODY>

</HTML>

Figure 3-12. Example rendering of <DIV> and <CENTER>

80 H T M L : T h e C o m p l e t e R e f e r e n c e

Block Quotes
Occasionally, you may want to quote a large body of text to make it stand out from the
other text. The <BLOCKQUOTE> element provides a facility to enclose large block
quotations from other works within a document. Though the element is logical in
nature, enclosing text within <BLOCKQUOTE> and </BLOCKQUOTE> usually
indents the blocked information. Like a <P> element, text within beginning and ending
<BLOCKQUOTE> elements ignores all spacing, tabs, and returns, and requires the use
of
 or other elements to modify line wrapping and spacing. The following shows
an example of <BLOCKQUOTE> (rendered in Figure 3-13):

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>
<HEAD>

<TITLE> Blockquote Example </TITLE>
</HEAD>

<BODY>
<H1 ALIGN="center"> Big Company Press Quote </H1>
<P>See the comments the press has about Big Company, Inc.

and our great green gadgets: </P>

<BLOCKQUOTE>
"Big Company's Green Gadget is by far the best fictitious product
ever produced! Gadget lovers and haters alike will marvel at the

sheer uselessness of the Green Gadget. It's a true shame that the
Green Gadget is limited only to HTML examples."

--Matthew J. Foley, Useless Products Magazine
</BLOCKQUOTE>

<P>With kudos like this, you need to make sure to buy your Green
Gadget today! </P>
</BODY>

</HTML>

W
EB

A
N

D
H

TM
L

B
A

S
IC

S

C h a p t e r 3 : I n t r o d u c t i o n t o C o m m o n H T M L 81

The first HTML 2–compliant browsers did not provide any indentation or tab facility in
regular text. Many HTML authors use <BLOCKQUOTE> to provide indentation.
Text within <BLOCKQUOTE> may be indented on both sides of a page. It may
render in an alternative style (for example, italics). For this reason, the list elements,
particularly the unordered list, are common workarounds to provide indentation in Web
pages. In fact, many HTML editors insert these elements to create indentation. Until
style sheets become more common, these workarounds will continue.

Preformatted Text
Occasionally, spacing, tabs, and returns are so important in text that HTML’s default
behavior of disregarding them would ruin the text’s meaning. In such cases, you may
want to preserve the intended formatting by specifying the text to be preformatted.
Imagine that programming source code or poetry needs to be inserted into a Web page.
In both cases, the spacing, returns, and tabs in the document must be preserved to
ensure proper meaning. This situation requires an HTML directive that indicates the
preservation of format. The <PRE> and </PRE> tags can be used to surround text that
shouldn’t be formatted by the browser. The text enclosed within the <PRE> tags

Figure 3-13. Rendering of <BLOCKQUOTE> example

82 H T M L : T h e C o m p l e t e R e f e r e n c e

retains all spacing and returns, and doesn’t reflow when the browser is resized. Scroll
bars and horizontal scrolling are required if the lines are longer than the width of the
window. The browser generally renders the preformatted text in a monospaced font,
usually Courier. Some text formatting, such as bold, italics, or links, can be used within
the <PRE> tags. The following sample, displayed in Figure 3-14, uses the <PRE>
element and compares it to regular paragraph text:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>

<HEAD>

<TITLE> PRE Example </TITLE>
</HEAD>

<BODY>
<PRE>

This is P R E F O R M A T T E D

T
E

X

T.

SPACES are ok! So are

RETURNS!

</PRE>

<P>

This is NOT P R E F O R M A T T E D

T

E
X

T.

SPACES and
RETURNS are lost.

</P>

</BODY>
</HTML>

W
EB

A
N

D
H

TM
L

B
A

S
IC

S

C h a p t e r 3 : I n t r o d u c t i o n t o C o m m o n H T M L 83

According to the HTML 4.0 specification, other HTML elements are allowed within
the <PRE> element, but some elements, such as , are excluded. Most
browsers allow any elements, even those beyond the stated specification, to appear
within the <PRE> elements, and render these as expected. Authors should not,
however, rely on this.

Authors should be careful about using the <PRE> element to create simple tables or
preserve spacing. Unpredictable differences in browser window sizes may introduce
horizontal scrolling for wide preformatted content. In these cases, other elements may
provide better formatting control.

Lists
Modern HTML has three basic forms of lists: ordered lists (), unordered lists
(), and definition lists (<DL>). Two other rarely used list elements, <MENU> and
<DIR>, are sparsely supported and are usually treated as an unordered list. Lists are

Figure 3-14. Rendering of preformatted and regular text

84 H T M L : T h e C o m p l e t e R e f e r e n c e

block formatting elements that define a block structure. They can be nested and can
contain other block-level structures, such as paragraphs.

ORDERED LISTS An ordered list, as enclosed by and , defines a list in
which order matters. Ordering is typically rendered by a numbering scheme, using
Arabic numbers, letters, or Roman numerals. Ordered lists are suitable for creating
simple outlines or step-by-step instructions, because the list items are numbered
automatically by the browser. List items in ordered and other lists are defined by
using the list item element, , which doesn’t require an end tag. List items are
usually indented by the browser. Numbering starts from 1. A generic ordered list
looks like this:

 Item 1
 Item 2
. . .

 Item n

In many browsers, the element has some meaning outside a list. It often renders
as a nonindented bullet. Some books recommend using in this way, but it isn’t
correct practice. While many browsers assume an unordered bullet list, this use of
is undefined in the HTML specification. This hack shouldn’t be used.

The element has three basic attributes, none of which are required. These are
COMPACT, START, and TYPE. The COMPACT attribute requires no value. It simply
suggests that the browser attempt to compact the list, to use less space onscreen. In
reality, most browsers ignore the COMPACT attribute.

The TYPE attribute of can be set to a for lowercase letters, A for uppercase
letters, i for lowercase roman numerals, I for uppercase Roman numerals, or 1 for
regular numerals. The numeral 1 is the default value. Remember that the TYPE
attribute within the element sets the numbering scheme for the whole list, unless
it is overridden by a TYPE value in an element. Each element may have a
local TYPE attribute set to a, A, i, I, or 1. Once an element is set with a new type,
it overrides the numbering style for the rest of the list, unless another sets the
TYPE attribute.

The element also has a START attribute that takes a numeric value to begin
the list numbering. Whether the TYPE attribute is a letter or a numeral, the START
value must be a number. To start ordering from the letter j, you would use <OL
TYPE=“a” START=“10”>, because j is the tenth letter. An element within an
ordered list can override the current numbering with the VALUE attribute, which is
also set to a numeric value. Numbering of the list should continue from the value set.

The use of ordered lists and their attributes is shown next, the rendering of which is
shown in Figure 3-15:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>
<HEAD>

<TITLE> Ordered List Example </TITLE>
</HEAD>

<BODY>

<P>Ordered lists can be very simple. </P>

 Item 1

 Item 2
 Item 3

<P>Ordered lists can have a variety of types. </P>

<LI TYPE="a"> Lowercase letters

<LI TYPE="A"> Uppercase letters
<LI TYPE="i"> Lowercase Roman numerals
<LI TYPE="I"> Uppercase Roman numerals

<LI TYPE="1"> Arabic numerals

<P>Ordered lists can start at different values

and with different types.</ P>

<OL START="10" TYPE="a">

 This should be j.
<LI VALUE="3"> This should be c.

 Lists can nest.

 Nesting depth is unlimited.

</BODY>

</HTML>

W
EB

A
N

D
H

TM
L

B
A

S
IC

S

C h a p t e r 3 : I n t r o d u c t i o n t o C o m m o n H T M L 85

86 H T M L : T h e C o m p l e t e R e f e r e n c e

When dealing with extremes, numbering should be used with caution. Negative values
or very large values produce unpredictable results. While Navigator ignores negative
numbers, Internet Explorer numbers up toward zero. Browsers may allocate a fixed
width to the left of a list item to display its number. Under Navigator, a list not
embedded in another block structure can accommodate only about four digits; larger
numbers may overwrite list elements. A list indented by nesting in another block
structure may have more space. Numbering in both Navigator and Internet Explorer
loses meaning with large integer values around 10 to 100 billion, most likely due to
limitations with the operating environment.

UNORDERED LISTS An unordered list, signified by and , is used for
lists of items in which the ordering is not specific. This might be useful in a list of
features and benefits for a product. A browser typically adds a bullet of some sort
(a filled circle, a square, or an empty circle) for each item and indents the list.

Figure 3-15. Rendering of ordered list example

W
EB

A
N

D
H

TM
L

B
A

S
IC

S

C h a p t e r 3 : I n t r o d u c t i o n t o C o m m o n H T M L 87

Unordered lists can be nested. Each level of nesting indents the list further, and the
bullet changes accordingly. Generally, a filled circle or solid round bullet is used on the
first level of lists. An empty circle is used for the second-level list. Third-level nested
lists generally use a square. These renderings for bullets are common to browsers, but
shouldn’t be counted on. Starting with Netscape Navigator 1.x–level browsers, it
became possible to set the bullet type with the TYPE attribute; this was later added to
the HTML specification. The TYPE attribute may appear within the element and
set the type for the whole list, or it may appear within each . A TYPE specification
in an element overrides the value for the rest of the list, unless it is overridden by
another TYPE specification. The allowed values for TYPE, as suggested by the default
actions, are disc, circle, or square. This change isn’t consistently supported across
browsers. In the case of WebTV, a triangle bullet type is also available. For the greatest
level of cross-browser compatibility, authors are encouraged to set the bullet type only
for the list as a whole.

Internet Explorer 3–level browsers under Windows don’t render TYPE settings for
unordered lists. This has been fixed under Internet Explorer 4.

The following is an example of unordered lists, various renderings of which are
shown in Figure 3-16:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>

<HEAD>
<TITLE> Unordered List Example </TITLE>

</HEAD>

<BODY>

 Unordered lists

 can be nested.

 Bullet changes on nesting.

<P>Bullets can be controlled with the TYPE attribute. Type can be
set for the list as a whole or item by item. </P>

<UL TYPE="square">

 First item bullet shape set by UL
<LI TYPE="disc"> Disc item

<LI TYPE="circle"> Circle item
<LI TYPE="square"> Square item

</BODY>

</HTML>

88 H T M L : T h e C o m p l e t e R e f e r e n c e

Figure 3-16. Rendering of unordered list example

W
EB

A
N

D
H

TM
L

B
A

S
IC

S

C h a p t e r 3 : I n t r o d u c t i o n t o C o m m o n H T M L 89

DEFINITION LIST A definition list is a list of terms paired with associated
definitions—in other words, a glossary. Definition lists are enclosed within <DL> and
</DL> tags. Each term being defined is indicated by a <DT> element, which is derived
from definition term. Each definition itself is defined by <DD>. Neither the <DT>
nor the <DD> element requires a close tag, but for long definitions, it may be helpful.
The following is a basic example using <DL>, the rendering of which is shown in
Figure 3-17:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>
<HEAD>

<TITLE> Definition List Example </TITLE>
</HEAD>

<BODY>
<H1 ALIGN="center"> Definitions </H1>
<DL>

<DT>Gadget</DT>

<DD>A useless device used in many HTML examples. </DD>

<DT>Gizmo</DT>
<DD>Another useless device used in a few HTML examples. </DD>

</DL>
</BODY>

</HTML>

Because definition lists don’t add numbering or bullets, many HTML writers have
used this element to indent text. While logically this is the most appropriate way
to achieve some rudimentary indentation, the unordered list is often used instead.
Looking at the use of and the output of HTML tools suggests that the use of
 instead of <DL> to indent text quickly is very common. The reason for the
preference for is that it requires fewer elements to achieve indentation.
Remember that lists can be nested, so a varying degree of indentation can be achieved.
Users desiring a fine degree of control should avoid using lists to move things around.
How far something is moved away from the left margin isn’t precise, and may depend

90 H T M L : T h e C o m p l e t e R e f e r e n c e

on the font size of the browser. A simple example of indenting with lists is shown next,
with its rendering shown in Figure 3-18:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>
<HEAD>

<TITLE> List Indent Example </TITLE>
</HEAD>

<BODY>

<DL><DD>This paragraph is indented. Watch out for

the left edge. Get too close and you'll hurt yourself! </P>
</DL>

<P>This paragraph is even further indented. Most HTML authors

Figure 3-17. Rendering of definition list example

C h a p t e r 3 : I n t r o d u c t i o n t o C o m m o n H T M L 91

W
EB

A
N

D
H

TM
L

B
A

S
IC

S

and authoring tools tend to use this style to indent because

it takes fewer tags.</ P>

</BODY>
</HTML>

Some HTML purists are offended by the use of to indent. HTML authors might
consider using the definition list, or tables, if possible, to indent text. However, with
WYSIWYG editors spitting out elements in mass numbers, this may be more of a
fine point than a real issue. The rise of style sheets and other technologies should, in
time, put an end to this issue.

VESTIGIAL LISTS: <DIR> AND <MENU> Beyond basic ordered, unordered, and
definition lists, two other lists are specified in HTML: <MENU> and <DIR>. These
rarely used elements generally appear as unordered lists in most browsers. These
elements are presented for completeness. HTML authors are warned not to use them,
because they have been dropped from the strict version of HTML 4.

Figure 3-18. Rendering of indentation with lists

92 H T M L : T h e C o m p l e t e R e f e r e n c e

Horizontal Rules
As sections are added to an HTML document, breaking up the document into visually
distinct regions often is useful. A horizontal rule, indicated by the <HR> element, is a
block-level element that serves this purpose. Under HTML 2, horizontal rules generally
were rendered as an etched bar or line across a browser window. With HTML 3.2 and
beyond, more control over the horizontal rule’s look and size was added. The exact
look of the line is still left to the browser rendering the page.

Though it looks like a physical element, <HR> can have some logical meaning as a
section break. For example, under an alternative browser, such as a speech-based
browser, a horizontal rule might theoretically be interpreted as a pause. A hand-held
browser with limited resolution might use it as a device to limit scrolling of the text.

The <HR> element is an empty element, because it has no close tag and encloses no
data. Adding an <HR> element between two paragraphs provides a simple way to put
a horizontal rule between two sections.

Netscape Navigator, and later Internet Explorer, added several attributes to the
<HR> element. SIZE sets the bar’s thickness (height). WIDTH sets the bar’s width.
ALIGN sets its vertical alignment. NOSHADE renders the bar without a surrounding
shadow. The HTML 3.2 and transitional 4.0 specification supports these basic
attributes. Additional, browser-specific attributes (such as COLOR) are described in
the element reference in Appendix A.

An example of horizontal rules and their basic attributes is shown next, the browser
rendering for which is shown in Figure 3-19:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>
<HEAD>

<TITLE> Horizontal Rule Example </TITLE>
</HEAD>

<BODY>

<P>Size of 10 </P>
<HR SIZE="10">

<P>Width of 50% and no shading </P>

<HR WIDTH="50%" NOSHADE>

<P>Width of 200 pixels, size of 3 pixels, and no shading </P>

<HR WIDTH="200" SIZE="3" NOSHADE>

<P>Width of 100, aligned right </P>

<HR ALIGN="right" WIDTH="100">

<P>Width of 100, aligned left </P>

<HR ALIGN="left" WIDTH="100">

<P>Width of 100, aligned center </P>
<HR ALIGN="center" WIDTH="100">

</BODY>

</HTML>

W
EB

A
N

D
H

TM
L

B
A

S
IC

S

C h a p t e r 3 : I n t r o d u c t i o n t o C o m m o n H T M L 93

Figure 3-19. Rendering of horizontal rule example

Address
The <ADDRESS> element is used to surround information, such as the signature of
the person who created the page, or the address of the organization the page is about.
For example,

<ADDRESS>

Big Company, Inc.< BR>
1122 Big Company Court

San Diego, CA 92109

619.555.2086

info@bigcompany.com

</ADDRESS>

might be inserted toward the bottom of every page throughout a Web site.
The <ADDRESS> element tends to act like a logical formatting element and

results, typically, in italicized text. The HTML specification treats <ADDRESS> as an
idiosyncratic block-level element. Like other block-level elements, it inserts a blank
before and after the block. It may enclose many lines of text, formatting elements to
change the font characteristics, and even images. According to the specification, it isn’t
supposed to enclose other block-level elements, such as . Browsers generally
allow this, particularly with the <P> element.

Other Block-Level Elements
HTML has many other block-level elements, most notably tables and forms. Many
other elements are available under Navigator and Internet Explorer, including frames,
layers, and a variety of other formatting and structuring features. These elements could
be introduced in this chapter, but because of their complexity, it makes more sense to
discuss them in later chapters. Tables are discussed in depth in Chapter 7, and forms
are discussed in Chapter 11.

The remaining sections of this chapter describe text-level elements and the many
miscellaneous elements that are difficult to categorize.

Text-Level Elements
Text elements in HTML come in two basic flavors: physical and logical. Physical
elements, such as for bold and <I> for italic, are used to specify how text should be
rendered. Logical elements, such as and , indicate what text is, but
not necessarily how it should look. Although common renderings exist for logical text
elements, the ambiguity of these elements and the limited knowledge of this type of
document structuring have minimized their use. However, the rise of style sheets and
the growing diversity of user agents mean using logical elements makes more sense
than ever.

94 H T M L : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 3 : I n t r o d u c t i o n t o C o m m o n H T M L 95

W
EB

A
N

D
H

TM
L

B
A

S
IC

S
Physical Character-Formatting Elements
Sometimes, you may want to use bold, italics, or other font attributes to set off certain
text, such as computer code. Common HTML supports various elements that can be
used to influence physical formatting. The elements have no meaning other than to
make text render in a particular way. Any other meaning is assigned by the reader. The
common physical elements are listed in Table 3-1.

The following example code shows the basic use of the physical text-formatting
elements:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>
<HEAD>

<TITLE> Physical Text Elements </TITLE>
</HEAD>

<BODY>
<H1 ALIGN="center"> Physical Text Elements </H1>
<HR>

This is Bold

This is <I> Italic </I>

This is <TT>Monospaced </TT>

This is <U>Underlined </U>

This is <STRIKE>Strike-through </STRIKE>

This is also <S>Strike-through </S>

This is <BIG>Big </BIG>

This is even <BIG><BIG> Bigger </BIG></BIG>

This is <SMALL>Small </SMALL>

This is even <SMALL><SMALL>Smaller </SMALL></SMALL>

This is ^{Superscript}

This is _{Subscript}

</BODY>

</HTML>

Physical elements can be combined in arbitrary ways. However, just because text
can be made monospaced, bold, italic, and superscript doesn’t mean that various types
of formatting should be applied to text. Figure 3-20 shows the rendering of the physical
text elements under Internet Explorer.

Several physical text-formatting elements—particularly <U>, <BIG>, and <SMALL>—
present certain problems that warrant extra discussion.

96 H T M L : T h e C o m p l e t e R e f e r e n c e

Element Element Type

<I> … </I> Italics

 … Bold

<TT> … </TT> Typewriter (monospaced)

<U> … </U> Underline

<STRIKE> … </STRIKE> Strikethrough

<S> … </S> Alternative element form of strikethrough

_… Subscript

[…] Superscript

<BIG> … </BIG> Bigger font (one font size bigger)

<SMALL> … </SMALL> Smaller font (one font size smaller)

Table 3-1. Table of Common Physical Text-Formatting Elements

Figure 3-20. Rendering of physical text-formatting elements

CONFUSION CAUSED BY UNDERLINING Most browsers support the <U>
element, which underlines text. It was not initially defined under HTML 2, and for
good reason. The meaning of underlined text can be unclear to people who use the Web.
In most graphical browsers, clickable hypertext links are represented as blue underlined
text. (Link color may vary.) Users instinctively think of underlined text as something that
can be clicked. Some feel that the link color sufficiently distinguishes links from text that
is underlined purely for stylistic purposes. However, this doesn’t take into consideration
monochrome monitors or people who are colorblind. Because the underline element may
introduce more trouble than it is worth, it should be avoided.

USING <BIG> AND <SMALL> What do the <BIG> and <SMALL> elements
actually do? On the face of it, putting the <BIG> element around something makes it
bigger. Putting the <SMALL> element around something makes it smaller. What about
when multiple <BIG> and <SMALL> elements are nested? HTML has relative fonts
ranging from size 1, very small, to size 7, very large. Every application of <BIG>
generally bumps up the font one notch to the next level. The default font for a document
is usually relative size 3, so two applications of <BIG> would raise the font size to 5.
Multiple occurrences of <SMALL> do the opposite—they make things one size smaller.

What happens when the maximum or minimum size is reached? Ideally, the
browser just ignores extra applications. Depending on the browser, however, this may
or may not happen. Some Web browser versions, notably Internet Explorer 3, handle
multiple occurrences of the <BIG> and <SMALL> elements in an unpredictable
manner. While this has been fixed under Internet Explorer 4, HTML authors are
warned to use only one <BIG> or <SMALL> element at a time. Other font-sizing
changes should be handled with the element, discussed in Chapter 6.

Logical Elements
Logical elements indicate the type of content that they enclose. The browser is
relatively free to determine the presentation of that content, although expected
renderings for these elements exist that are followed by nearly all browsers. While this
practice conforms to the design of HTML, there are issues about perception. Will a
designer think or ? As mentioned previously, HTML pundits push
for , because a browser for the blind could read strong text properly.
For the majority of people coding Web pages, however, HTML is used as a visual
language, despite its design intentions. Furthermore, how do you indicate something
is in a WYSIWYG editor?

Seasoned experts know the beauty and intentions behind logical elements, and
hopefully with style sheets, logical elements may catch on more. For now, a quick survey
of sites will show that logical text elements are relatively rare. In fact, many HTML
editors make it downright difficult to add logical elements to a page, which only furthers
the reasons why most logical elements are rarely used. When style sheets become more
commonplace, HTML authors should reexamine their use of these elements. Table 3-2
illustrates the logical text-formatting elements generally supported by browsers.

C h a p t e r 3 : I n t r o d u c t i o n t o C o m m o n H T M L 97

W
EB

A
N

D
H

TM
L

B
A

S
IC

S

98 H T M L : T h e C o m p l e t e R e f e r e n c e

The following example uses all the logical elements in a test document (shown in
Figure 3-21 under common browsers):

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>
<HEAD>

<TITLE> Logical Text Elements </TITLE>
</HEAD>

<BODY>

<H1 ALIGN="center"> Logical Text Elements </H1>

<HR>
This is Emphasis

This is Strong

This is <CITE> Citation </CITE>

This is <CODE>Code</CODE>

This is <DFN>Definition </DFN>

This is <KBD>Keyboard </KBD>

This is <SAMP>Sample </SAMP>

This is <VAR>Variable </VAR>

</BODY>

</HTML>

Element Element Type

<ABBR> … </ABBR> Abbreviation

<CITE> … </CITE> Citation

<CODE> … </CODE> Source code

<DFN> … </DFN> Definition

 … Emphasis

<KBD> … </KBD> Keystrokes

<SAMP> … </SAMP> Sample (example information)

 … Strong emphasis

<VAR> … </VAR> Programming variable

Table 3-2. Table of Logical Text-Formatting Elements

C h a p t e r 3 : I n t r o d u c t i o n t o C o m m o n H T M L 99

W
EB

A
N

D
H

TM
L

B
A

S
IC

S

Note that subtle differences may occur in rendering. For example, <VAR> results
in monospaced text under Internet Explorer 4, but yields italicized text under
Navigator 3. There is no guarantee of rendering, and older versions of browsers may
vary on other logical elements, including even .

Figure 3-21. Rendering of logical text-formatting elements under Navigator
and Internet Explorer

100 H T M L : T h e C o m p l e t e R e f e r e n c e

Probably the biggest question HTML authors have about logical elements is where
to use them. This really is a philosophical question. Does the author want to define
content presentation strictly or let the browser decide on a presentation appropriate
for the element’s logical meaning? Advocates of logical document structuring note that
if a browser doesn’t support bolding, the element has no effect. Instead, the logical
 element, usually rendered as bold, would be rendered in some appropriate
alternative. Whether this type of reasoning justifies logical structure is an open question.

With the proliferation of Web-browsing devices, such as cellular phones, personal
digital assistants, WebTV, and popular browsers, logical document structuring may yet
catch on. In conjunction with style sheets (discussed in Chapter 10), this approach to
structure may become commonplace, because it allows different presentations for
different situations. A cellular phone browser might require a different style than
Navigator on a PC with a high-resolution monitor. Although this may happen, an
inspection of published pages shows that few people currently use logical text
elements. From a presentation perspective, why use the ambiguous
element when you can use the precise element? In addition, many HTML
development tools make it difficult to insert logically oriented HTML.

Character Entities
After covering the basic text-formatting elements, you may think that nothing remains
to talk about—but one more level exists to HTML documents: the characters themselves.

Sometimes, you need to put special characters within a document, such as accented
letters, copyright symbols, or even the angle brackets used to enclose HTML elements.
To use such characters in an HTML document, they must be “escaped” by using a
special code. All character codes take the form &code;, in which code is a word or
numeric code indicating the actual character that you want to put onscreen. Some of
the more commonly used characters are shown in Table 3-3.

The character entity ™ may not always be acceptable as trademark. On many
UNIX platforms, and potentially on Macs or Windows systems using various other
character sets, this entity doesn’t render as trademark. Because &153; may be
undefined, HTML authors should try to avoid it, even though it tends to coincide
with ™ on the default Windows platform and some character sets. Trademarks are
important legally, so they are often needed. A future version of HTML likely will
include a trademark element, but for now, the commonly used workaround is to use
^{<SMALL>TM</SMALL>}. This code creates a superscript trademark
symbol (™) in a slightly smaller font. Because it’s standard HTML, it works on
nearly every platform.

W
EB

A
N

D
H

TM
L

B
A

S
IC

S

The following example shows some basic uses of HTML character entities, while
Figure 3-22 shows how the example might render:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>
<HEAD>

<TITLE> Character Entities Example </TITLE>
</HEAD>

<BODY>

<H1 ALIGN="center"> Big Company Inc.'s Tagging Products </H1>

<HR>

<P>Character entities like &copy; allow users to insert special

characters like ©. </P>

<P>One entity that is both useful and abused is the nonbreaking

space. </P>

C h a p t e r 3 : I n t r o d u c t i o n t o C o m m o n H T M L 101

Numeric Value Named Value Symbol Description

" " " Quotation mark

& & & Ampersand

< < < Less than

> > > Greater than

™ N/A TM Trademark

 Nonbreaking space

© © © Copyright symbol

® ® Registered trademark

Table 3-3. A Few Common Character Entities

Inserting spaces is easy with &nbsp;

Look: S P
A C E

 S.

<HR>
<ADDRESS>

Contents of this page © 1999 Big Company, Inc.
 The

Wonder Tag <P> ™ is a registered trademark
of Big Company, Inc.

</ADDRESS>
</BODY>

</HTML>

102 H T M L : T h e C o m p l e t e R e f e r e n c e

Figure 3-22. Rendering of character entities example

The use of the nonbreaking space to push text or elements around the screen is an
overused crutch. Many HTML editors overuse this technique in an attempt to preserve a
certain look and feel. This entity is discussed further in Chapter 6.

Excessive use of character entities can make HTML source documents difficult to read if
the character entities aren’t well spaced.

The character set currently supported by HTML is the ISO Latin-1 character set.
Many of its characters, such as accents and special symbols, cannot be typed on all
keyboards. They must be entered into HTML documents by using the appropriate
code. Even if the character in question is supported on the keyboard (for example, the
copyright symbol), simply typing in the symbol probably will not produce the correct
encoding. Of course, many HTML editors make the appropriate insertion for you. A
complete list of the character entities is presented in Appendix C.

HTML is capable of representing the standard ASCII characters and all the extended
characters defined by the ISO Latin-1 character set. However, for non-Western
characters, such as Japanese, Russian, or Arabic alphabets, special encoding and a
special browser are needed.

Summary
Common HTML includes the basic elements that HTML authors tend to use from the
specification. Ideally, HTML is a formally defined, structured language with rules
governing correct element usage. Pragmatically, however, browsers determine
correct HTML usage by the HTML constructs that they successfully render. Browsers
are lax in their interpretation of HTML rules, which encourages some authors to
break those rules frequently. Well-written HTML documents begin with a
<!DOCTYPE> declaration, followed by an <HTML> element. This encloses the
document and divides it into a <HEAD> section, followed by a <BODY> section. The
<HEAD> element contains descriptive information and must contain one <TITLE>
element. The <BODY> element contains the document’s displayed content. It may be
structured using block-level elements, text-level elements, and special-character
entities. Some text-level elements assign content a logical purpose. Others assign a
physical presentation.

The elements presented so far are common across nearly all systems. Whether or
not they are used, they are simple and widely understood. Yet, despite their simplicity,
many of these basic elements are still abused to achieve a particular document look,
which continues the struggle between the logical and physical nature of HTML.
Despite some manipulation, these elements are generally used in a reasonable manner.
More-complex formatting elements and programming elements are introduced in later

C h a p t e r 3 : I n t r o d u c t i o n t o C o m m o n H T M L 103

W
EB

A
N

D
H

TM
L

B
A

S
IC

S

chapters. The simplicity of this chapter should provide you with some assurance that
HTML rests on a stable core.

A great number of elements have been left out of this discussion. No mention was
made of layout-oriented elements, and graphics have been completely avoided. These
topics and others are covered in upcoming chapters. First, we’ll deal with the H in
HTML, namely hypertext, and present the concept of linking documents and objects in
the next chapter.

104 H T M L : T h e C o m p l e t e R e f e r e n c e

Chapter 4
Links and Addressing

105

Copyright 1999 The McGraw-Hill Companies. Click Here for Terms of Use.

106 H T M L : T h e C o m p l e t e R e f e r e n c e

Previous chapters have shown how HTML can be used as a document formatting
and structuring language, but little has been said about the hypertext aspect of
the language. HTML makes it possible to define hyperlinks to other information

items located all over the world, then allowing documents to join the global information
space known as the World Wide Web. Linking is possible because every document on
the Web has a unique address, known as a uniform resource locator (URL). The explosive
growth of documents on the Web has created a tangled mess, even when document
locations are named consistently. The disorganized nature of the Web often leaves
users lost in cyberspace. Finding information online can feel like trying to find the
proverbial needle in a worldwide haystack. However, things don’t have to be this
way. Application of logical structure to sites; new ideas such as uniform resource names
(URNs); and uniform resource characteristics (URCs) in the form of meta-data, such as
Platform for Internet Content Selection (PICS) labels, may eventually lead to a more
understandable and organized Web.

Linking Basics
In HTML, the main way to define hyperlinks is with the anchor element, <A>. A link is
simply a unidirectional pointer from the source document that contains the link to
some destination. In hypertext, the end points of a link typically are called anchors, thus
the use of the anchor nomenclature in HTML documentation.

For linking purposes, the <A> element requires one attribute: HREF. The HREF
attribute is set to the URL of the target resource, which is basically the address of the
document to link to, such as http://www.yahoo.com. The text enclosed by the <A>
elements specifies a “hot spot” to activate the hyperlink. Anchor content may
include text, images, or a mixture of the two. A general link takes the form Visit our site. The text “Visit our site” is the link. The URL
specified by the HREF attribute is the destination, if the link is activated. Here is an
example of simple <A> element usage; the text “Yahoo!” is the first link:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>
<HEAD>
<TITLE> Simple Link Example </TITLE>

</HEAD>

<BODY>

<H1 ALIGN="center"> Lots of Links </H1>

<HR>

W
EB

A
N

D
H

TM
L

B
A

S
IC

S

C h a p t e r 4 : L i n k s a n d A d d r e s s i n g 107

 Visit < A HREF="http://www.yahoo.com"> Yahoo!
 Conduct powerful searches with

 HotBot
 Go to the W3C

</BODY>

</HTML>

When the preceding example is loaded into a Web browser, the links generally are
indicated by underlined text, typically in a different color—usually blue or purple,
depending on whether the link object has been viewed before. Link objects are
displayed in a different color after you visit the linked page, so that you know in the
future which links you have already followed. Status information in the browser may
change when a mouse is positioned over a link. The pointer may also change, as well as
other indicators showing that the information is a link. Examples of link feedback in
various browsers is shown in Figure 4-1. Note that the cursor over the HotBot link in
the upper-left corner now looks like a pointing finger, and the URL for the HotBot
home page appears in the status area in the lower-left corner of the browser frame.

Under some browsers, link underlining can be turned off. This may cause usability
problems for some users, but many find pages rendered in this way more esthetically
pleasing.

The actual rendering of links depends on the browser or other user agent. If you are
using HTML style sheets, the links that you create may have different decoration. For
example, a color may change for a link that has been visited previously.

You can underline any text in an HTML document by tagging it with the underline
element, <U>. This practice may lead to confusion between hyperlinks and text that is
underlined for stylistic purposes only. This is particularly evident if the link is viewed in
a black-and-white environment or by a color-blind individual. Therefore, use the <U>
element for nonlinked items with caution, so that you don’t confuse users.

In the simplest example, all the <A> elements refer to an address that contains only
an external server address in the form of a URL. In many cases, however, links are
made within a Web site. In this situation, a shortened URL is used, called a relative
URL, which includes only the filename or directory structure. The following example
links to several other documents: a document in the same directory, called specs.htm; a

document in the “extras” subdirectory, called access.htm; and a link back to a
home page:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>
<HEAD>

<TITLE> Simple Link Example 2 </TITLE>
</HEAD>

<BODY>

<H1 ALIGN="center"> Green Gadgets </H1>

<HR>

108 H T M L : T h e C o m p l e t e R e f e r e n c e

Figure 4-1. Example rendering and link feedback in various browsers

<P ALIGN="center"> Information about the mysterious Green

Gadget--the wonder tool of the millennium. </P>

 Specifications
 Accessories

<P ALIGN= center >

 Back to Big Company Home Page
</P>

</BODY>
</HTML>

These basic examples show that the use of links, at least within text, is simple.
Specifying the destination URL may not be so obvious. HTML authors often are
tempted to use only very simple relative URLs, such as a filename, or fully qualified
URLs, but without a sense of what URLs really can provide. Later in this chapter, the
discussion returns to the HTML syntax for forming links. First, take a closer look at
URLs, because thoroughly understanding URLs is quite important for forming links.

What Are URLs?
A URL is a uniform way to refer to objects and services on the Internet. Even novice
users should be familiar with typing a URL, such as http://www.yahoo.com/, in a
browser dialog box to get to a Web site. Internet users use URLs to invoke other
Internet services, such as transferring files via FTP or sending e-mail. HTML authors
use URLs in their documents to define hyperlinks to other Web documents. Despite its
potentially confusing collection of slashes and colons, the URL syntax is designed to
provide a clear, simple notation that people can easily understand. The designers
intended URLs to be useful as information for books, business cards, and even the
backs of paper napkins, not just computers, in that they are easily transmittable in
forms outside the Internet. Some people might counter that saying http:// or www all
the time is troublesome. The following concepts will help you to understand the major
components of a URL address.

Some people call URLs universal resource locators. Except for a historical reference to
universal resource locators in documentation from a few years ago, the current
standard wording is uniform resource locator.

W
EB

A
N

D
H

TM
L

B
A

S
IC

S

C h a p t e r 4 : L i n k s a n d A d d r e s s i n g 109

Basic Concepts
To find any arbitrary object on the Internet, you need to find out the following
information:

1. First, you need to locate and access the machine on the Internet (or intranet) on
which the object resides. Locating the site might be a matter of specifying its
domain name or IP address, while accessing the machine might be a matter of
providing a username and password.

2. After you access the machine, you need to determine the name of the desired
file, where the file is located, and what protocol will be used to retrieve the
information or access the object.

The URL describes where something is and how it will be retrieved. The how is
specified by the protocol (for example, HTTP). The where is specified by the machine
name, the directory name, and the filename. Slashes and other characters are used to
separate the parts of the address into machine-readable pieces. The basic structure of
the URL is shown here:

protocol://site address/directory/filename

The next several sections look at the individual pieces of a URL in significant detail.

Site Address
Every Web document exists on some server computer somewhere on the global
Internet or within a private intranet. The first step in finding a document is to identify
its server. The most convenient way to do this on a TCP/IP-based network is with a
symbolic name, called a domain name. On the Internet at large, a fully qualified domain
name (FQDN) typically consists of a machine name, followed by a domain name. For
example, www.microsoft.com specifies a machine named www in the microsoft.com
domain. On an intranet, however, things may be a little different, because you can
avoid using a domain name. For example, a machine name of hr-server may be all that
you need to access the human resources server within your company’s intranet.

A machine name indicates the local, intra-organizational name for the actual server. A
machine name can be just about any name, because machine naming has no mandated
rules. Conventions exist, however, for identifying servers that provide common Internet
resources. Servers for Web documents usually begin with the www prefix. However,
many local machines have names similar to the user’s own name (for example, jsmith),
his or her favorite cartoon character (for example, homer), or even an esoteric machine
name (for example, dell-p6-200-a12). Machine naming conventions are important
because they allow users to form URLs without explicitly spelling them out. A user who
understands domain names and machine naming conventions should be able to guess
that Toyota’s Web server is http://www.toyota.com/.

110 H T M L : T h e C o m p l e t e R e f e r e n c e

The other part of most site addresses, the domain name, is fairly regular. Within the
United States, a domain name consists of the actual domain or organization name,
followed by a period, and then a domain type. An example is sun.com. The domain
itself is sun, which represents Sun Microsystems. The sun domain exists within the
commercial zone, because of Sun’s corporate status, so it ends with the domain type of
com. In the U.S., most domain identifiers currently use a three-character code that
indicates the type of organization that owns the server. The most common codes are
com for commercial, gov for government, org for nonprofit organization, edu for
educational institution, net for network, and mil for military. Recently, some debate has
occurred regarding the extent of the domain name space. Soon, a variety of new
domain endings may be added, such as firm, web, and nom. Table 4-1 sets forth a basic
listing of U.S. domain types.

Domain space beyond the United States is somewhat more complicated. An FQDN,
including a country code, is generally written as follows:

machine name.domain name.domain type.country code

Zone identifiers outside the U.S. use a two-character code to indicate the country
hosting the server. These include ca for Canada, mx for Mexico, and jp for Japan. Within
each country, the local naming authorities may create domain types at their own
discretion, but these domain types can’t correspond to American extensions. For

W
EB

A
N

D
H

TM
L

B
A

S
IC

S

C h a p t e r 4 : L i n k s a n d A d d r e s s i n g 111

Domain Type Domain Description Example

com Commercial entities and individuals apple.com

net Networks and network providers cerf.net

org Nonprofit and other organizations greenpeace.org

edu Four-year colleges and universities ucla.edu

gov United States federal government
agencies

whitehouse.gov

mil United States federal government
military entities

nosc.mil

us Used for a variety of organizations and
individuals, including K through 12
education, libraries, and city and
county governments

co.san-diego.ca.us

Table 4-1. Domain Types in the United States

example, www.sony.co.jp specifies a Web server for Sony in the co zone of Japan. In
this case, co, rather than com, indicates a commercial venture. In the United Kingdom,
the educational domain space has a different name, ac. Oxford University’s Web server
is www.ox.ac.uk, whereby ac indicates academic, compared to the U.S. edu extension for
education. Despite a flattening of geographical name use for large, multinational
companies (such as Sony), regional naming differences are very much alive. Web page
authors linking to non-native domains are encouraged to understand the naming
conventions of those environments. One special top-level domain, int, is reserved for
organizations established by international treaties between governments, such as the
European Union (eu.int). Top-level domains, such as com, net, and any upcoming new
domains, may not necessarily correspond to a particular geographic area.

Symbolic names make it convenient for people to refer to Internet servers. A server’s real
address is its Internet Protocol (IP) numeric address. Every accessible server on the
Internet has a unique IP address by which it can be located using the TCP/IP protocol.
An IP address is a numeric string that consists of four numbers between 0 and 255,
separated by periods (for example, 213.6.17.34). This number may then correspond to a
domain name, such as www.bigcompany.com. Note that a server’s symbolic name must
be translated, or resolved, into an IP address before it can be used to locate a server. An
Internet service known as Domain Name Service (DNS) automatically performs this
translation. You can use an IP address instead of a symbolic name to specify an Internet
server, but doing so gives up mnemonic convenience. In some cases, using an IP address
may be necessary because, although every server has an IP address, not all servers have
symbolic names.

Investigating all aspects of the domain name structure is beyond the scope of this
book. However, it should be noted that domain name formats and the domain name
lookup service are very critical to the operation of the Web. If the domain name server
is unavailable, it is impossible to access a Web server. To learn more about machine
and domain names, explore the following Web sites:

■ http://rs.internic.net/rs-internic.html

■ http://www.iana.org

■ http://www.gtld-mou.org

Domain names are not case-sensitive. For example, you could write www.BigCompany.com
or www.BIGCOMPANY.com. A browser should handle both properly. Case is typically
changed for marketing or branding purposes. Directory values following the domain
name may be case-sensitive, depending on the operating system that the Web server is
running on. For example, UNIX systems are case-sensitive, while Windows machines
are not. Trouble can arise if casing is used randomly. As a rule of thumb, keep everything
in lowercase, or consistently use uppercase for just the first letters in directories
and filenames.

112 H T M L : T h e C o m p l e t e R e f e r e n c e

After you specify the machine, either by its domain name or its IP address, you may
need to specify the particular directory on the particular machine, as described next.

Directory
Servers may contain hundreds, if not thousands, of files. For practical use, files need to
be organized into manageable units, analogous to the manila folders traditionally used
to organize paper documents. This unit is known as a file directory. After you know on
which server a document resides, the next step toward identifying its location is to
specify the directory that contains the file. Just as one manila folder can contain other
folders, directories can contain other directories. Directories contain other directories in
a nested, hierarchical structure that resembles the branches of a tree. The directory that
contains all others is known as the root directory. Taken together, all the directories and
files form a file tree, or file system. A file is located in a file system by specifying its
directory path. This is the nested list of all directories that contain the file—from the
most general, the root directory—to the most specific. Similar to the UNIX operating
system, directories hosted on Web servers are separated by forward slashes (/) rather
than backslashes (\), as in DOS. Figure 4-2 shows a sample file tree for a Web site,
where directories are organized within (or above and below) one another. For example,
the directory called special is within the products directory, which is within the root
directory, as indicated by the forward slash. The full path should be written as /products/
special/ to indicate that special is an actual directory, not a file in the products directory.
When linking to other files, you may need to refer to a directory above the current
directory, or to the current directory itself. In the scheme presented, ./ means the
current directory, while ../ means one directory up in the hierarchy. A document in
the special directory with a link path of ../ will link up to the products directory.

W
EB

A
N

D
H

TM
L

B
A

S
IC

S

C h a p t e r 4 : L i n k s a n d A d d r e s s i n g 113

Figure 4-2. Sample file tree

114 H T M L : T h e C o m p l e t e R e f e r e n c e

Directory names may follow conventions specific to an operating system, including
being case-sensitive. Authors are cautioned to look carefully at directory casing.
Furthermore, directories may follow popular usage conventions (for example, tmp), or
they may be arbitrary. Usually, directory names reflect aspects of media types, subject
matter, or access privileges of their content. For example, a directory called “images”
might be the name of a directory containing images.

Filename
After you specify the server and directory path for a document, the next step toward
locating it is to specify its filename. This step typically has two parts: a filename,
followed by a standard file extension. Filenames can be any names that are applicable
under the server’s operating system. Special characters such as spaces, colons, and
slashes might play havoc if used in names of Web-available files. A file named
test:1.htm would present problems on a Macintosh system, whereas test/1.htm might
be legal on a Macintosh but problematic on a PC or UNIX machine.

A dot separates the filename and the extension, which is a code, usually three letters,
that identifies the type of information contained in the file. For example, HTML source
files have an .htm or .html extension. JPEG images have a .jpg extension. A file’s
extension is critically important for Web applications, because it usually is the only
indication of the information type that a file contains. A Web server reads a file
extension and uses it to determine which headers, in the form of a MIME type
(discussed in Chapter 16), to attach to a file when delivering it to a browser. If file
extensions are omitted or misused, the file may be interpreted incorrectly. When
browsers read files directly, they also look at file extensions to determine how to render
the file. If the extension is missing or incorrect, a file generally will not be properly
displayed in a Web browser.

While many operating systems support four or more letters for file extensions, using a
three-letter extension (.htm) versus a four-letter extension (.html) ensures that
cross-platform incompatibilities are minimized. Spaces, uppercasing, and special
characters should also be avoided, to provide the greatest flexibility. Authors and users
should particularly be aware of case sensitivity in filenames and directory names.

Protocol
It may seem that nothing more is needed to locate a document than its server,
directory, and filename. However, one component is missing—the protocol. The
Internet supports a standard set of resources, each with its own associated protocol. A
protocol is the structured discussion that computers follow to negotiate resource-
specific services. For example, the protocol that makes the Web possible is the
Hypertext Transfer Protocol (HTTP). When you click a hyperlink in a Web document,

your browser uses the HTTP protocol to contact a Web server and retrieve the
appropriate document.

Although HTTP stands for Hypertext Transfer Protocol, it doesn’t specify how a file is
transported from a server to a browser, only how the discussion between the server and
browser will take place to get the file. The actual transport of files is usually up to a
lower-layer network protocol, such as the Transmission Control Protocol (TCP). On the
Internet, the combination of TCP and IP makes raw communication possible. Although
a subtle point, many Web professionals are unaware of lower-level protocols below
application protocols, such as HTTP, which are part of URLs.

Although less frequently used than HTTP and TCP/IP, several other protocols are
important to HTML authors, because they can be invoked by hyperlinks. Here are
some examples:

Protocol Description

File Enables a hyperlink to access a file on the local
file system

File Transfer Protocol (FTP) Enables a hyperlink to download files from
remote systems

Gopher Enables a hyperlink to access a Gopher server

mailto Calls the Simple Mail Transfer Protocol (SMTP), the
Internet mail protocol, and enables a hyperlink to
send an addressed e-mail message

Network News Transport
Protocol (NNTP)

Enables a hyperlink to access a USENET
news article

news Enables a hyperlink to access a USENET
newsgroup

telnet Enables a hyperlink to open a telnet session
on a remote host

These are the common protocols, but a variety of new protocols and URL forms are
being debated all the time. Someday, such things as LDAP (Lightweight Directory
Access Protocol), IRC (Internet Relay Chat), phone, fax, and even TV might be used to
reference how data should be accessed. More about the future of URLs and other
naming ideas is discussed toward the end of this chapter.

Beyond the protocol, server address, directory, and filename, URLs often include a
username and password, port number, and sometimes a fragment identifier. Some

W
EB

A
N

D
H

TM
L

B
A

S
IC

S

C h a p t e r 4 : L i n k s a n d A d d r e s s i n g 115

URLs, such as mailto, might even contain a different form of information altogether,
such as an e-mail address rather than a server or filename.

User and Password
FTP and telnet are protocols for authenticated services. Authenticated services may
assume access by authorized users, and the protocols may require a username and
password as parameters. A username and password precede a server name, like this:
username:password@server-address. The password may be optional or unspecified in the
URL, making the form simply username@server-address.

HTML authors are warned not to include password information in URLs, because the
information will be readily viewable in a Web page or within the browser’s URL box.

Port
Although the situation is rare, the communication port number used in a URL also can
be specified. Browsers speaking a particular protocol communicate with servers
through entry points, known as ports, which generally are identified by numeric
addresses. Associated with each protocol is a default port number. For example, an
HTTP request defaults to port number 80. A server administrator can configure a
server to handle protocol requests at ports other than the default numbers. Usually,
this occurs for experimental or secure applications. In these cases, the intended port
must be explicitly addressed in a URL. To specify a port number, place it after the
server address, separated by a colon: for example, site-address:8080. Web administrators
are forewarned not to change port numbers arbitrarily, because it confuses users and
may result in them having difficulty accessing a site, particularly if access comes from
behind a firewall. In short, users coming from sites with well-defined security policies
may not be set up to access sites running on nonstandard port numbers.

Some Web development systems may require users to log in on nonstandard ports. A
common example is an Administrator that needs to access a nonstandard port to
configure a Web server using a Web browser.

Fragment
After a user specifies a file, the user may want to go directly to a particular point in the
file. Because you can set up named links under HTML, you can provide links directly
to different points in a file. To jump to a particular named link, the URL must include
the link name, preceded by a pound symbol (#), which indicates that the value is a
fragment identifier. To specify a point called “contents” in a file called test.htm, you
would use test.htm#contents. Elsewhere in the file, the fragment name would be set
using a named anchor, such as . This will be discussed
later in the chapter.

116 H T M L : T h e C o m p l e t e R e f e r e n c e

Encoding
When writing the components of a URL, take care that they are written using only the
displayable characters in the US-ASCII character set. Even when using characters
within this basic keyboard character range, you will find certain unsafe characters, or
reserved characters that may have special meaning within the context of a URL or the
operating system on which the resource is found. If any unsafe, reserved, or
nonprintable characters occur in a URL, they must be encoded in a special form.
Failure to encode these characters may lead to errors.

The form of encoding consists of a percent sign and two hexadecimal digits
corresponding to the value of the character in the ASCII character set. Within many
intranet environments, filenames often include user-friendly names, such as “first
quarter earnings 1997.doc.” Such names contain unsafe characters. If this file were to
live on a departmental Web server, it would have a URL with a file portion of
first%20quarter%20earnings%201997.doc. Notice how the spaces have been mapped to
%20 values—the hex value of the space character in ASCII. Other characters that will
be troublesome in URLs include the slash character (/), which encodes as %2F, the
question mark, which maps to %3F, and the percent itself, which encodes as %25. Only
alphanumeric values and some special characters ($ − _ . + ! * ‘), including parentheses,
may be used in a URL. Other characters should be encoded. In general, special
characters such as accents, spaces, and some punctuation marks have to be encoded.
HTML authors are encouraged to name files with encoding in mind, so that encoding
can be avoided whenever possible. Table 4-2 shows the reserved and potentially
dangerous characters for URLs.

W
EB

A
N

D
H

TM
L

B
A

S
IC

S

C h a p t e r 4 : L i n k s a n d A d d r e s s i n g 117

Character Encoding Value

Space %20

/ %2F

? %3F

: %3A

; %3B

& %26

@ %40

= %3D

Table 4-2. Common Character Encoding Values

118 H T M L : T h e C o m p l e t e R e f e r e n c e

Many of the characters in Table 4-2 don’t have to be encoded; but encoding a character
never causes problems, so when in doubt, encode it.

With this brief discussion of all the various components coming to a close, the next
section presents a formula for creating URLs, as well as some examples.

Formula for a URL
All URLs share the same basic syntax: a protocol name, followed by a colon, followed
by a protocol-specific resource description:

protocol_name : resource_description

Beyond this basic syntax, enough variation exists between protocol specifics for
each to merit a separate discussion.

Character Encoding Value

%23

% %25

> %3E

< %3C

{ %7B

} %7D

[%5B

] %5D

" %22

` %27

‘ %60

^^ %5E

~ %7E

\ %5C

| %7C

Table 4-2. Common Character Encoding Values (continued)

HTTP
A minimal HTTP URL simply gives a server name. It provides no directory or file
information. A minimal HTTP formula commonly occurs for corporate addresses used
in advertising:

■ Formula http:// server /

■ Example http://www.bigcompany.com/

A minimal HTTP URL implicitly requests the home directory of a Web site. Even
when a trailing slash isn’t used, it is assumed and added either by the user agent or the
Web server, making an address such as http://www.bigcompany.com become
http://www.bigcompany.com/. By default, requesting a directory often results in the
server returning a default file from the directory, termed the index file. Usually, index
files are named index.htm or default.htm (or index.html and default.html,
respectively), depending on the server software being used. This is only a convention;
Web administrators are free to name default index files whatever they like.
Interestingly, many people put special importance on the minimal HTTP URL form
when, like all other file-retrieval URLs, this form simply specifies a particular directory
or default index file to return, although this isn’t always explicitly written out.

Some sites are now renaming their systems so that the use of www is optional. For
example, http://pint.com/ is the same as http://www.pint.com. Although browsers often
provide similar shorthand functionality, users should be careful not to assume such
forms are valid. For example, in some browsers, typing bigcompany by itself may resolve
to http://www.bigcompany.com. This is a browser usability improvement and can’t be
used as a URL in an HTML document. Because of misunderstandings with URLs, site
managers are encouraged to add as many variable forms as possible, so that the site
works regardless of browser improvements or slight mistakes in linking.

Making the HTTP URL example slightly more complex, a formula is presented
to retrieve a specific HTML file that is assumed to exist in the default directory for
the server:

■ Formula http:// server / file

■ Example http://www.bigcompany.com/hello.htm

An alternate, incremental extension adds directory information without specifying
a file. Although the final slash should be provided, servers imply its existence if it is
omitted and look for a “home” document in the given directory. In practice, the final
slash is optional, but recommended:

■ Formula http:// server / directory /

■ Example http://www.bigcompany.com/products/

W
EB

A
N

D
H

TM
L

B
A

S
IC

S

C h a p t e r 4 : L i n k s a n d A d d r e s s i n g 119

An HTTP URL can specify both a directory and file:

■ Formula http:// server / directory / file

■ Example http://www.bigcompany.com/products/greeting.htm

On some systems, special shorthand conventions may be available for directory
use. For example, a UNIX-based Web server may support many directories, each
owned by a specific user. Rather than spelling out the full path to a user’s root
directory, the user directory can be abbreviated by using the tilde character (~),
followed by the user’s account, followed by a slash. Any directory or file information
that follows this point will be relative to the user’s root directory:

■ Formula http:// server /~ user /

■ Example http://www.bigisp.com/~jsmith/

User directories indicated by the tilde are somewhat similar to the convention used
on the UNIX operating system, though other Web servers on different operating
systems may provide similar shortcut support.

A URL can refer to a named location inside an HTML document, which is called a
marker, or named link. How markers are created is discussed later in the chapter; but for
now, to refer to a document marker, follow the target document’s filename with the
pound character (#) and then with the marker name:

■ Formula http:// server / directory / file #marker

■ Example http://www.bigcompany.com/profile.htm#introduction

In addition to referring to HTML documents, an HTTP URL can request any type of
file. For example, http://www.bigcompany.com/images/logo.gif would retrieve from
a server a GIF image rather than an HTML file. Authors should be aware that the
flexibility of Web servers and URLs is often overlooked, due to the common belief that
a Web-based document must be in the HTML format for it to be linked to.

To the contrary, even an HTTP URL can reference and execute a server program.
These server-side programs are typically termed Common Gateway Interface (CGI)
programs, referring to the interface standard that describes how to pass data in and out
of a program. CGI and similar server-side programming facilities are discussed in
Chapter 12. Quite often, server-side programs are used to access databases and then
generate HTML documents in response to user-entered queries. Parameters for such
programs can be directly included in a URL by appending a question mark, followed
by the actual parameter string. Because the user may type special characters in a query,
characters normally not allowed within a URL are encoded. Remember that the
formula for special-character encoding is a percent sign, followed by two hex numbers
representing the character’s ASCII value. For example, a blank character can be
represented by %20.

120 H T M L : T h e C o m p l e t e R e f e r e n c e

■ Formula http:// server / directory / file ?parameters

■ Example http://www.bigcompany.com/products/

search.cgi?cost=400.00&name=Super%20Part

Forming complex URLs with encoding and query strings looks very difficult. In
reality, this is rarely done manually. Typically, the browser generates such a string
on-the-fly based on data provided via a file form. A more detailed discussion of HTML
interaction with programming facilities appears in Chapters 11 through 14.

Finally, any HTTP request can be directed to a port other than the default port value
of 80 by following the server identification with a colon and the intended port number:

■ Formula http:// server : port / directory / file

■ Example http://www.bigcompany.com:8080/products/greetings.htm

In the preceding example, the URL references a Web server running on port 8080.
Although any unreserved port number is valid, using nonstandard port numbers on
servers is not good practice. To access the address in the example, a user would need to
include the port number in the URL. If it is omitted, accessing www.bigcompany.com
will be impossible.

One case of HTTP exists that is, in a sense, a different protocol: secured Web
transactions using the Secure Sockets Layer (SSL). In this case, the protocol is
referenced as https, and the port value is assumed to be 443. An example formula for
Secure HTTP is shown here; other than the cosmetic difference of the s and the
different port value, it is identical to other HTTP URLs:

■ Formula https:// server:port/directory/file

■ Example https://www.wellsfargo.com

An HTTP URL for a Web page is probably the most common URL, but users may
find file or similar types of URLs growing in popularity, due to the rise of intranets and
serverless-style access.

file
The file protocol specifies a file residing somewhere on a computer or locally accessible
computer network. it does not specify an access protocol and has limited value except
for one important case: it enables a browser to access files residing on a user’s local
computer, an important capability for Web page development. In this usage, the server
name is omitted or replaced by the keyword localhost, which is followed by the local
directory and file specification:

■ Formula file:// drive or network path / directory / file

■ Example file:///dev/web/testpage.html

W
EB

A
N

D
H

TM
L

B
A

S
IC

S

C h a p t e r 4 : L i n k s a n d A d d r e s s i n g 121

122 H T M L : T h e C o m p l e t e R e f e r e n c e

In some environments, the actual drive name and path to the file is specified. On a
Macintosh, a URL might be the following:

file:///Macintosh%20HD/Desktop%20Folder/Bookmarks.html

On a PC, a file URL such as the following might exist, to access a file on the C drive of a
PC on the local network, pc1:

file://\\pc1\C\Netlog.txt

Depending on browser complexity, file URLs might not be required, as with
Internet Explorer 4, in which the operating system is tightly coupled with the user agent.

Interestingly, in the case of intranets, many drives may be mapped or file systems
mounted so that no server is required to deliver files. In this “Web-serverless”
environment, accessing network drives with a file URL may be possible. This idea
demonstrates how simple a Web server is. In fact, to some people, a Web server is merely
a very inefficient, though open, file server. Thus, alternative file delivery systems, such as
those that use the Network File System (NFS) protocol, might soon be possible—or even
preferable to HTTP-based servers. Already, work is being done on WebNFS and other
alternative Web-oriented technologies for remote file access. This realization regarding
file transfer leads logically to the idea of the FTP URL, discussed next.

FTP
The File Transfer Protocol, which predates the browser-oriented HTTP protocol,
transfers files to and from a server. It generally is geared toward transferring files that
are to be locally stored rather than immediately viewed. A browser may allow files to
be viewed immediately. Today, because of its efficiency, FTP is most commonly used
to download large files, such as complete applications. These URLs share with HTTP
the formula for indicating a server, port, directory, and file:

■ Formula ftp:// server : port / directory / file

■ Example ftp://ftp.bigcompany.com:9978/info/somefile.exe

A minimal FTP URL specifies a server and then lists the following directory:
ftp://ftp.bigcompany.com. Generally, however, FTP URLs are used to access by name
and directory a particular file in an archive, as shown in this formula:

■ Formula ftp:// server / directory path/file

■ Example ftp://ftp.bigcompany.com/info/somefile.exe

FTP is an authenticated protocol, which means that every valid FTP request requires
a defined user account on the server downloading the files. In practice, many FTP
resources are intended for general access, and defining a unique account for every

potential user is impractical. Therefore, an FTP convention known as anonymous FTP
handles this common situation. The username “anonymous” or “ftp” allows general
access to any public FTP resource supported by a server. As in the previous example,
the anonymous user account is implicit in any FTP URL that does not explicitly
provide account information.

An FTP URL can specify the name and password for a user account. If included, it
precedes the server declaration, according to the following formula:

■ Formula ftp:// user : password @server / directory / file

■ Example ftp://jsmith:harmony@ftp.bigcompany.com/products/list

This formula shows the password embedded within the URL. Including an account
password in a public document (such as an HTML file) is a dangerous proposition,
because it is transmitted in plain text and viewable both in the HTML source and
browser address bar. Only public passwords should be embedded in any URL for an
authenticated service. Furthermore, if you omit the password, the user agent typically
prompts you to enter one if a password is required. Thus, it is more appropriate to
provide a link to the service and then require the user to enter a name and password, or
just provide the user ID and have the user agent prompt for a password, as happens in
this example:

■ Formula ftp:// user @server / directory / file

■ Example ftp://jsmith@ftp.bigcompany.com/products/sales

The FTP protocol assumes that a downloaded file contains binary information. You
can override this default assumption by appending a type code to an FTP URL. The
following are three common values for type codes:

■ An a code indicates that the file is an ASCII text file.

■ The i code, which is also the default, indicates that the file is an image/
binary file.

■ A d code causes the URL to return a directory listing of the specified path
instead of a file.

An example formula is presented here for completeness:

■ Formula ftp:// server / directory / file ;type= code

■ Example ftp://ftp.bigcompany.com/products;type=d

In reality, the type codes are rarely encountered, because the binary transfer format
generally does not harm text files, and the user agent is usually smart enough to handle
FTP URLs without type codes. Like many other URLs, the port accessed can be
changed to something besides the default port of 21, but this is not recommended.

W
EB

A
N

D
H

TM
L

B
A

S
IC

S

C h a p t e r 4 : L i n k s a n d A d d r e s s i n g 123

Gopher
The Gopher system, the first popular document-based technology on the Internet,
arose in the early 1990s as client/server architecture appropriate for campus
information systems. Gopher provided a way to organize and navigate documents
hierarchically. Some Gopher servers continue to operate, but most have been replaced
by the more popular HTML-based Web content. However, for backward compatibility,
you may find it important to link a Web page to Gopher-based information using a
Gopher-style URL.

A Gopher URL follows the same formula used by other protocols to specify a
server and optional port address. However, compared to HTTP or FTP, Gopher URLs
differ in the way that they specify resources on a server. This specification begins with
a single-digit code that indicates the resource type referred to. The default code is 1,
which indicates a directory list. Following this is a selector string, which corresponds to
the directory and file specification found in other URL formulas. The following table
lists common codes used in Gopher URLs:

Code Resource Type

0 Text file

1 Directory listing

2 CSO phone book server

3 Error

4 Macintosh binhex file

5 DOS binary file

6 UNIX-uuencoded file

7 Full-text index search

8 telnet session

9 Binary file

The following formula and example show how these codes might be used:

■ Formula gopher:// server : port / type +directory path/file

■ Example gopher://gopher.bigcompany.com/4mac/somefile.hqx

Because of the encoding and the use of the file type numbers, a Gopher URL can
look extremely complex. In the preceding example, 4 indicates a Macintosh BinHex file.
Normally, users see 00 or 0 for files, and 1 or 11 for directories. The numbers are often

124 H T M L : T h e C o m p l e t e R e f e r e n c e

repeated, because some Gopher strings begin with a copy of the content type. Readers
may wonder why Web pages do not use such numeric codes to indicate content type.
MIME types (discussed in Chapter 16) provide a far better solution. Beyond the file
types and encoded characters, Gopher is very similar to other file-retrieval URLs.
Gopher may also include electronic forms for searching that, like HTTP, add a query
string after a question mark. For example, gopher://mudhoney.micro.umn.edu:
4326/7?Mexico. Notice the use of the 7 code to indicate that the type of data is a
full-text index search. Also notice that, like many other protocols, Gopher may run on
another port than its standard port of 70. This may be specified in the URL. As noted
earlier, this is not recommended.

mailto
Atypically, the mailto protocol does not locate and retrieve an Internet resource. Instead,
it opens a window for editing and sending a mail message to a particular user address:

■ Formula mailto: user @server

■ Example mailto:president@whitehouse.gov

This rather simple formula shows standard Internet mail addressing; other,
more-complex addresses may be just as valid. Using mailto URLs is very popular in
Web sites to provide a basic feedback mechanism. Note that if the user’s browser hasn’t
been set up properly to send e-mail, this type of URL may produce error messages
when used in a link, prompting the user to set up mailing preferences. Because of this
problem, page authors are warned not to rely solely on mailto-based URL links to
collect user feedback.

Some browsers have introduced proprietary extensions to the mailto protocol, such as
the subject extension. These extensions currently aren’t standard and will cause other
browsers to be unable to send e-mail using the link. Work is underway to standardize
extensions to the mailto protocol; but, for now, use of the proprietary extensions is
discouraged.

news
A news URL invokes a news browser that allows access to USENET newsgroups. A
news URL can take one of the following two alternative approaches, each of which
has limitations:

■ Request a named newsgroup Like the mailto URL, in this form, the URL
doesn’t specify which news server to use to fulfill the request. A default news
server address is usually set as a Web browser preference. Unfortunately, not
all news servers may carry the same groups. News archives are large and tend
to be distributed across multiple servers. If the requested newsgroup does not
exist on the default news server, it will not be found.

W
EB

A
N

D
H

TM
L

B
A

S
IC

S

C h a p t e r 4 : L i n k s a n d A d d r e s s i n g 125

■ Formula news: newsgroup

■ Example news:alt.get-rich-quick

■ Request a message on a particular news server, using a server-specific
message identifier, such as 13c65a7a Because messages generally have an
expiration date, this approach has limited value. In addition, the message
identifier obviously varies from server to server, so it is not easily transferable.

■ Formula news: message @server

■ Example 13c65a7a@news.bigcompany.com

Both the second form of the news URL and the NNTP URL (to be discussed next)
show the limitations of URLs when dealing with time-sensitive information. Very little
URL technology exists to deal with data that changes as rapidly as USENET news. News
URLs generally are used simply to access a group rather than a particular message.

NNTP
The Network News Transport Protocol (NNTP) allows the retrieval of individual USENET
articles, qualified by server, newsgroup, and article number. Like many protocols, an
optional port value can be specified to direct a user agent to a specific server port. The
NNTP URL has a limitation in that a particular article number is referenced. Article
numbers will vary from server to server so this URL is not transportable. Furthermore,
articles generally expire rather quickly, so fully specified NNTP URLs are of somewhat
limited value.

■ Formula nntp:// server : port / newsgroup / article-number

■ Example nntp://news.bigcompany.com/alt.get-rich-quick/118

The default port value of nntp is 118, but another port value may be set in the URL.
A special version of NNTP that adds security runs on port 563. The form of the URL is
nntps://secnews.bigcompany.com/alt.get-rich-quick/118.

In general, the news URL appears to be more commonly used on the Web.

telnet
The telnet protocol allows a user to open an interactive terminal session on a remote host
computer. A minimal telnet URL, shown next, simply gives the remote system’s name.
After a connection is made, the system prompts for an account name and password.

■ Formula telnet:// server

■ Example telnet://host.bigcompany.com

As an authenticated protocol, telnet generally requires a defined user account on
the remote system. When this is unspecified, the user agent or helper application
handling telnet prompts for such information. Like FTP, a telnet URL can also contain

126 H T M L : T h e C o m p l e t e R e f e r e n c e

an account name and password as parameters. But, as with FTP URLs, be careful about
including passwords in public access documents, such as HTML files on the Web.
Because of the risk of password interception, the password is optional in the formula:

■ Formula telnet:// user : password @server

■ Example telnet://jsmith:harmony@host.bigcompany.com

■ Example telnet://jsmith@host.bigcompany.com

Finally, any telnet URL can direct a request to a specific port by appending the port
address to the server name:

■ Formula telnet:// server : port

■ Example telnet://host.bigcompany.com:94

Some telnet information sources may be configured to run on a particular port
other than port 23, the standard telnet port. Consequently, use of the port within a
telnet URL is more common than with other URLs.

Other Protocols
A wide variety of other protocols can be used. However, a browser may not support
many of these URL forms. Some protocols, such as the wais protocol, have historical
interest. Little evidence suggests that people actually use this protocol much on the
Web, despite its presence in books that are only one or two years old. Beyond old
protocols like wais, other protocols include operating-biased protocols, such as finger,
and esoteric protocols for things like VEMMI video text services. New protocols are
being added all the time. In fact, dozens of proposed or even implemented protocols
exist that can be referenced with some form of nonstandard URL. If you are interested
in other URL forms, visit http://www.w3.org/pub/WWW/Addressing/schemes or
http://www.ics.uci.edu/pub/ietf/uri/ for more information.

Relative URLs
Up to this point, the discussion has focused on a specific form of URL, typically termed
an absolute URL. Absolute URLs completely spell out the protocol, host, directory, and
filename. Providing such detail can be tedious and unnecessary, which is where a
shortened form of URL, termed a relative URL, comes in to use. With relative URLs, the
various parts of the address—the site, directory, and protocol—might be inferred by
the URL of the current document, or via the <BASE> element. The best way to
illustrate the idea of relative URLs is by example.

If a Web site has an address of www.bigcompany.com, a user may access the home
page with a URL like http://www.bigcompany.com/. A link to this page from an
outside system would also contain the address http://www.bigcompany.com/. Once
at the site, however, no reason exists to continue spelling out the full address of the

W
EB

A
N

D
H

TM
L

B
A

S
IC

S

C h a p t e r 4 : L i n k s a n d A d d r e s s i n g 127

site. A fully qualified link from the home page to a staff page in the root directory
called staff.html would be http://www.bigcompany.com/staff.html. The protocol,
address, and directory name can be inferred, so all that is needed is the address
staff.html. This relative scheme works because http://www.bigcompany.com/ is
inferred as the base of all future links, thus allowing for the shorthand relative
notation. The relative notation can be used with filename and directories, as shown by
the examples in Table 4-3.

When relative URLs are used within a Web site, the site becomes transportable. By
not spelling out the server name in every link, you can develop a Web site on one
server and move it to another. Contrarily, if you use absolute URLs, all links have to be
changed if a server changes names or the files are moved to another site.

Of course, using relative URLs also has a potential downside: they can become
confusing in a large site, particularly if centralized directories are used for things such
as images. Imagine having URLs like ../../../images/logo.gif in files deep in a site
structure. Some users might be tempted to simply copy files to avoid such problems,
but then updating and caching issues arise. One solution is to use the <BASE> element.
Another solution is to use symbolic links on the Web server to reference one copy of
the file from multiple locations. However, because HTML is the subject here, the focus
is the former solution, using the <BASE> element.

The <BASE> element defines the base for all relative URLs within a document.
Setting the HREF attribute of this element to a fully qualified URL allows all other
relative references to use the defined base. For example, <BASE HREF="http://
www.bigcompany.com/"> sets all the anchors later that aren’t fully qualified to prefix
http:// www.bigcompany.com / to the destination URL. The <BASE> element may
occur only once in an HTML document—within its head—so creating sections of a
document with different base URL values is impossible. Such a feature might someday

128 H T M L : T h e C o m p l e t e R e f e r e n c e

Current Page Address Destination Address Relative URL

http://www.bigcompany.com/
index.htm

http://www.bigcompany.com/
staff.htm

staff.htm

http://www.bigcompany.com/
index.htm

http://www.bigcompany.com/
products/gadget1.htm

products/gadget1.htm

http://www.bigcompany.com/
products/gadget1.htm

http://www.bigcompany.com/
index.htm

../index.htm

Table 4-3. Relative URL Formation Examples

W
EB

A
N

D
H

TM
L

B
A

S
IC

S

C h a p t e r 4 : L i n k s a n d A d d r e s s i n g 129

be added to the <DIV> element or a similar sectioning element; but, until then, HTML
authors have to deal with shorthand notation being useful in some places but not
in others.

Linking in HTML
The discussion thus far has focused solely on the forms of URLs. Little has been said
about how to link objects together on the Web. Later in this chapter, the discussion
returns to URLs and their counterparts, URIs, URCs, and URNs.

The Anchor Element
Using a URL enables you to specify the location of many types of information
resources, both on the Internet and within a local area network. But how, exactly, is
HTML used to specify a hyperlink that links one document to another? The most
common way to define hyperlinks is with the anchor element, <A>. In its most basic
form, this element needs two pieces of information: the URL of the target resource and
the document content needed to activate the hyperlink. Assigning a URL value to an
<A> element’s HREF attribute specifies the target resource. Most defined hyperlinks
probably use an HTTP URL to link one HTML document to another. Remember,
however, that URLs to other information resources are also possible.

The <A> element’s content specifies a document’s “hot spot” for activating the
hyperlink. Anchor content may include text, images, or a mixture of the two. By
enclosing some text or other content with the <A> and tags, you make the item
into a link that, when selected, requests a new object to be accessed. In the following
code fragment, the text “Linked content” will load the URL referenced by the HREF
attribute when it’s selected:

 Linked content

An <A> element may not enclose another <A> element. The code <A HREF=
"URL1">LinkedMore linked makes no sense.

The simplest hyperlink combines an <A> element with a URL that contains only a
Web server address. Implicitly, the referenced document is the server’s home page,
which is the default document returned from the Web server’s root directory. Many
more-complex examples of links are also possible. The following are various examples
of HTTP links, each of which is followed by a short description:

 Visit the President

130 H T M L : T h e C o m p l e t e R e f e r e n c e

Adding a link to the home page of a Web site with a basic HTTP URL references the
home page of the Web site.

 MS Web Gallery

Adding a directory path to the URL references the default document in a
specific directory.

 Thomas Bio

Adding a filename to a URL fully describes the document location.

 Go to top

Adding a fragment to a filename describes a particular location within a document.

 Staff

Anchors may use relative URLs.

 Back to home

Relative URLs may be complex.

 Access FTP archive

Anchors are not limited to HTTP URLs.

 More information?

Beyond retrieving files, anchors may trigger e-mail or even run programs.
The following example shows a complete example of relative and absolute URLs

and their use within an HTML document:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

W
EB

A
N

D
H

TM
L

B
A

S
IC

S

<HEAD>

<TITLE> Link Example 3 </TITLE>
</HEAD>

<BODY>
<H1 ALIGN="center"> Green Gadgets </H1>
<HR>

<P ALIGN="center"> Information about the mysterious Green Gadget--the

wonder tool of the millenium. </P>

 Specifications
 Accessories

 Distributors
 Download order form

<P ALIGN="center">

 Back to Big Company Home Page
</P>
<HR>

<ADDRESS>
Questions?

 info@bigcompany.com

</ADDRESS>
</BODY>

</HTML>

A rendering of the link example is shown in Figure 4-3.

C h a p t e r 4 : L i n k s a n d A d d r e s s i n g 131

132 H T M L : T h e C o m p l e t e R e f e r e n c e

Link Renderings
In most browsers, text links are indicated by underlined text. Coloring the text—blue if
the destination has never been visited, purple if it has been visited—is another
common convention. If a link includes an image, the border of the image will also be
blue or purple, unless the border attribute has been set to zero. HTML authors can
override these default link colors with changes to the LINK, ALINK, and VLINK
attributes of the <BODY> element. The LINK attribute changes the color of all
unvisited links; the VLINK attribute changes all visited links. The ALINK attribute
changes the color of the active link, which is the brief flash that appears when a link is
pressed. By using an HTML style sheet, authors can also change the decoration of links
to turn off underlining, or even display links in another fashion. These two changes are
shown in the following example markup:

Figure 4-3. Rendering of combined link example

W
EB

A
N

D
H

TM
L

B
A

S
IC

S

C h a p t e r 4 : L i n k s a n d A d d r e s s i n g 133

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">

<HTML>
<HEAD>

<TITLE> Link Style Changes </TITLE>
<STYLE TYPE="text/css">
<!-- A {text-decoration: none} /* avoid underlining links */ -->

</STYLE>

</HEAD>

<BODY LINK="blue" ALINK="red" VLINK="red">

 Test Link to Yahoo!
</BODY>

</HTML>

More information on the body attributes can be found in the element reference in
Appendix A, and in Chapter 6, which covers layout facilities in HTML.

Aesthetically and logically, changing link colors or removing underlining makes
sense. It may also confuse readers who have come to expect a standard color scheme
for links. Occasionally, authors may try to encourage return visits by changing the
setting for visited links to remain blue, or may reverse colors for layout consistency.
Such changes can significantly impair the usability of the site by thwarting user
expectations.

Like it or not, the standard Web experience has taught users to click underlined text
that is blue or purple. Such user habits suggest that underlining for emphasis be used
sparingly, if at all, in HTML documents. Furthermore, HTML text probably shouldn’t
be colored blue or purple, unless it obviously isn’t a link. Controlling link colors is very
important, but it is only one of many aspects of anchors that can be controlled.

Anchor Attributes
The <A> element has many possible attributes that are specific to it, besides HREF, as
shown in Table 4-4. The more important attributes are discussed in the sections to
follow, along with the concepts of binding scripts to anchors, using anchors with
images, and creating a special type of image link called an image map. Refer to the
element reference (Appendix A) to see a complete listing of all possible attributes for
the <A> element.

134 H T M L : T h e C o m p l e t e R e f e r e n c e

In HTML 4, the <A> element may also support the SHAPE and COORDS attributes,
which can be used with the <OBJECT> element to create a generalized form of image
maps. These extensions to <A> are discussed in the element reference in Appendix A, as
well as in Chapter 5, which discusses the <OBJECT> element in relation to images.
Today, however, these attributes of <A> are not widely supported. HTML authors are
encouraged to use client-side image maps, which are discussed later in this chapter.

Using the NAME Attribute
The <A> element usually defines a hyperlink’s source location: where the link goes and
what you click to go there. One possible destination for a hyperlink is a named location

Attribute Name Possible Value Description

HREF A URL Sets the URL of the destination object
for the anchor

NAME Text Names the anchor so that it may be a
target of another anchor

ID Text Identifies the anchor for target by
another anchor, style sheet access, and
scripting exposure

TARGET A frame name Defines the frame destination of
the link

TITLE Text Sets the hint text for the link

ACCESSKEY A character Sets the key for keyboard access to
the link

TABINDEX A numeric value Sets the order in the tabbing index for
using the TAB key to move through
links in a page

REL Text Defines the relationship of the object
being linked to

REV Text Defines the relationship of the current
object to the object being linked to

Table 4-4. Common Anchor Attributes

W
EB

A
N

D
H

TM
L

B
A

S
IC

S

C h a p t e r 4 : L i n k s a n d A d d r e s s i n g 135

inside an HTML document. The <A> element is also used to define these locations in a
special usage known as setting a fragment, though the term marker might make more
sense. To set a marker, the NAME attribute replaces the HREF attribute. The value of
the NAME attribute is an arbitrary, symbolic name for the marker location that must be
unique within the document. Wherever the marker is placed within an HTML
document becomes a named candidate destination for hyperlinks. For example, the
HTML markup This is a marker sets the text “This is a
marker” to be associated with the fragment identifier #marker.

Unlike hyperlink anchors, a marker location is not underlined or in any way
visually distinguished.

In practice, when an <A> element is used solely as a marker, it often doesn’t
enclose any text, though this doesn’t suggest that the close tag should be omitted, as it
often is. Setting a marker such as is accepted by most browsers, but
 is the valid form.

An <A> element can serve both as a destination and a link at the same time.
For example,

 Yahoo!

creates a link to a site and names the anchor so that it may be referenced by other links.
The dual use of the <A> element may cause some confusion, but it is valid HTML.

As discussed in Chapter 3, under the current version of HTML, the ID attribute is
also available for nearly every element. It can also be used to set a marker. The
preceding example could have been written <A ID="yahoo_link" HREF="http://
www.yahoo.com">Yahoo!, thus exposing the anchor for targeted linking, style
sheets, and dynamic manipulation via a scripting language. For backward compatibility,
the NAME attribute should also be used, because many browsers do not support ID fully.

The need for named anchors isn’t always obvious. Thanks to the unidirectional
nature of links on the Web, they can be used to navigate to locations within the same
document. This is especially useful in lengthy reference works. Such link usage can be
accomplished by using markers to define named locations and anchors that refer to
them. Remember that the URL formula to refer to a location within the current
document is simply the pound symbol (#), followed by a marker name. Thus, code
such as Top of the document could be used if a marker called
“top” was set at the start of the document. Be careful to always use the # symbol with
marker names. Otherwise, the user agent will probably interpret the link as referencing
a file rather than a marker.

136 H T M L : T h e C o m p l e t e R e f e r e n c e

In the more general case, a marked location in any HTML document can be
referenced by placing # and a marker name after its normal URL. For example,

 Specification Section

will link to a named marker called “spec” in the products.htm file. A complete example
of linking within a file and to markers outside the file is shown here:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>
<HEAD>

<TITLE> Name Attribute Example </TITLE>
</HEAD>

<BODY>

Go to the bottom of this document.
 Link right
to a marker in another document.

<P>To make this work we need to simulate the document being very long by
using many breaks. </P>

<STRONG ID="middle"> The Middle

<HR>
 Return to Top

 Go to middle
</BODY>

</HTML>

Named values must be unique, whether they are set by using the NAME attribute or the
ID attribute.

TITLE Attributes for Anchors
Normally, the TITLE attribute, as discussed in Chapter 3, may not seem terribly
helpful to a user, because it provides only basic advisory information about the use of a
particular element. In the case of anchors, however, TITLE is very useful, because it
can be used to provide tool tip information or help balloons for the link. In browsers

such as Internet Explorer, if a user holds the mouse over the link long enough, a tool
tip showing the information specified by the TITLE attribute will be displayed. The
following code fragment provides some helpful information for the link:

<A HREF="staff/index.htm"

TITLE="Resumes and information about our staff"> Staff

If the TITLE attribute is not used, the destination URL generally is displayed.
Figure 4-4 shows a tool tip for a link under Internet Explorer 4.

Although the TITLE attribute is usable in nearly every HTML element under Internet
Explorer, using it makes sense mainly for links, images, binary objects, and forms.

The TITLE attribute serves another purpose: it provides the title information for a
bookmark when a link is bookmarked before the destination page is visited. While this
may not be intuitive, with many browsers, you can right-click a link to access a menu
that enables you to bookmark the link before it is visited. Then, when the page is
visited, the information enclosed within the <TITLE> element of the destination page
is used in the bookmark instead of the information in the TITLE attribute of the anchor
that loaded the page. (Note that the TITLE attribute and the <TITLE> element are two
entirely different things.)

W
EB

A
N

D
H

TM
L

B
A

S
IC

S

C h a p t e r 4 : L i n k s a n d A d d r e s s i n g 137

Figure 4-4. Tool tip rendering of the TITLE attribute in Internet Explorer 4

Accelerator Keys
The HTML 4 proposed specification adds the ACCESSKEY to the <A> element, as well
as to various form elements. This currently is supported primarily by Internet Explorer.
With this attribute, you can set a key to invoke an anchor, without requiring a pointing
device to select the link. The link is activated with the combination of the accelerator
key, usually ALT, and the key specified by the attribute. So,

 Yahoo!

makes a link to Yahoo!, which can be activated by pressing ALT+Y. So far, many
browsers do not appear to support fully this upgrade to link access.

Although adding keyboard access to a Web page seemingly would be a dramatic
improvement, HTML authors are cautioned to be aware of access key bindings in the
browsing environment. Under Internet Explorer 4 and above, eight keys are already
reserved for browser functions. Netscape’s Communicator 4 and above differ in one
accelerator key. Assuming that both browsers will eventually support this function
(Netscape doesn’t at the time of this update), authors are cautioned to stay away from
accelerators that use the keys in Table 4-5.

One other problem with accelerator keys is how to show them in the page. In most
software, underlining indicates the letter of the accelerator key. Links are generally

138 H T M L : T h e C o m p l e t e R e f e r e n c e

Key Mapping Notes

F File menu

E Edit menu

C Communicator menu Netscape Communicator only

V View menu

G Go menu

A Favorites menu Internet Explorer only

H Help

LEFT ARROW Back in history

RIGHT ARROW Forward in history

Table 4-5. Reserved Browser Key Bindings

underlined in browsers, so this approach isn’t feasible. Style sheets can be used to
change link direction, so underlining the first letter is possible; but then the user may
be disoriented, expecting links to be fully underlined. Another approach to indicating
the accelerator keys might be to set the access key letter of a text link in bold or a
slightly larger size.

TABINDEX Attribute
The TABINDEX attribute of the <A> element (which is defined in HTML 4, but poorly
supported by browsers) defines the order in which links will be tabbed through in a
browser that supports keyboard navigation. The value of TABINDEX is usually a
positive number. Browsers tab through links in order of increasing TABINDEX values,
but generally skip over those with negative values. So, <A HREF="about.htm"
TABINDEX="1"> sets this anchor to be the first thing tabbed to by a browser. If the
TABINDEX attribute is undefined, the browser tends to tab though links in the order
in which they are found within an HTML document.

WebTV supports a usability improvement similar to TABINDEX: the SELECTED
attribute. When you add the word SELECTED as an attribute to an anchor, the WebTV
browser preselects the anchor with the yellow highlight rectangle. If two or more anchors
are selected in a page, the last one appearing in the document will be selected. Although
it seems that the browser would scroll to the first item selected if it did not appear in the
first screen, in practice, the WebTV browser does not do this.

TARGET Attribute
The TARGET attribute is used in conjunction with frames, which are discussed in
Chapter 8. The attribute is also part of the HTML 4 proposal. To target a link so that the
result loads in a particular frame, the TARGET attribute is added to the <A> element.
Generally, a frame has a name, so setting the TARGET equal to the frame name results
in the link loading in the frame named in the attribute. For example, when selected, a
link such as

loads the object referenced by the URL into the frame named "display_frame". If the
TARGET attribute is left out, the current window or frame the document is in is used.
Besides author-named frames, the following are several reserved names for frames
that, when used with the TARGET attribute, have special meaning: _blank, _self,
_parent, and _top. For more information about frames, as well as instructions on how
to use the <A> element with frames and the various reserved frame names, refer to the
element reference (Appendix A) and Chapter 8.

W
EB

A
N

D
H

TM
L

B
A

S
IC

S

C h a p t e r 4 : L i n k s a n d A d d r e s s i n g 139

Anchors and Link Relationships
The <A> element has the following two attributes, whose meanings are often
misunderstood (and these attributes aren’t widely supported by browsers):

■ REL Used to describe the relationship between the document and the
destination document referenced by the anchor’s HREF attribute. For example,
if the destination of the link specifies the glossary associated with a document,
the anchor might read

■ REV Defines the reverse of the relationship that REL defines—in this case,
what the relationship is from the destination document’s perspective. An
example is a linear set of documents in which the REL attribute is set to "next"
and the REV attribute is set to "prev", as shown in the following code fragment:

 Page 2

Although the REL and REV attributes might seem very useful, few, if any,
browsers support them. Currently, the only major use of these attributes is to
document the relationship of links with the <A> elements themselves. The <LINK>
element (discussed later in this chapter), which has semantic-link purposes similar to
the REL and REV attributes, is actually supported in a limited manner by some
browsers. A list of many of the proposed values for the REL and REV attributes can be
found in this chapter’s upcoming section about link relationships.

Scripting and Anchors
Adding logic to anchors is possible through the use of client-side scripting languages,
such as JavaScript or VBScript. Under HTML 4, core event attributes have been added
to the <A> element and include onclick, onmouseover, onmouseout, and other
attributes, which can be bound to scripting events. The events named correspond to an
anchor being clicked (onclick), a pointer being positioned on a link (onmouseover),
and a pointer leaving a link (onmouseout). One obvious use of such events is to animate
links so that when a mouse passes over the link, the text changes color, and when the
link is clicked, the system issues a click sound. Generically, this is the idea of a rollover
button. Besides the basic events that might be useful to create rollover links or trigger
programming logic, event models from Microsoft and Netscape may include a variety
of other events, such as the assigned Help key on the keyboard (generally F1) being
pressed or other keys on the keyboard being pressed or released. HTML authors
interested in scripting anchor activities should consult Chapters 13 and 14. Combined
with images, anchor scripting additions can be used to create very persuasive Web pages.

140 H T M L : T h e C o m p l e t e R e f e r e n c e

W
EB

A
N

D
H

TM
L

B
A

S
IC

S

C h a p t e r 4 : L i n k s a n d A d d r e s s i n g 141

Images and Anchors
As mentioned earlier, <A> elements may enclose text and other content, including
images. When an anchor encloses an image, the image becomes hot. A hot image can
activate the link and provide a basic mechanism for a graphic button. Normally, a
browser shows an image to be part of an anchor by putting a colored border around
the image—generally, the same color as the colored link text—either blue or purple.
The browser may also indicate the image is a link by changing the pointer to a different
shape (such as a finger) when the pointer is positioned over an image link. If combined
with scripting, the anchor may also modify the size or content of the image, creating a
form of animated button. The following HTML markup code shows how an anchor can
be combined with the element, as discussed in Chapter 5, to create a button:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>
<HEAD>

<TITLE> Anchors and Images </TITLE>
</HEAD>

<BODY>

Button with a border

Same button without a border

<IMG SRC="about.gif" ALT="About Button" BORDER="0" HEIGHT="55"
WIDTH="55">

</BODY>

</HTML>

Notice how the BORDER attribute is set to "0" to turn off the image’s border.
Further, note that the code contains a small but significant error. When a space exists
between the close of an element and the closing element, a small blue or
purple line, or “tick,” may occur, as shown in Figure 4-5. To remove a tick, make
certain that no space is between the element and the closing tag.

Although ticks aren’t the worst offense on the Web, they indicate a lack of attention to
detail in Web page coding. In print literature, spelling errors or small nicks or ticks on
an image would be cause for serious alarm. Eventually, the same level of standards will
be applied to Web pages, so HTML authors should begin to look for such small mistakes.
Be careful when looking for ticks, though. Some browsers, such as Internet Explorer,
may actually try to fix such small spacing problems for you, leading you to believe there
isn’t a tick if you look at it only under one browser. Testing in many browsers and
validation of HTML markup should help catch subtle errors like ticks.

All the examples given so far show images with only one destination. Wherever a
user clicks on the image link, the destination remains the same. In another class of
image links, called image maps, different regions of the image can be made hot links for
different destinations.

Image Maps
An image map is an image that contains numerous hot spots that may result in a
different URL being loaded, depending on where the user clicks. The two basic types of
image maps are server-side image maps and client-side image maps. In the server-side
image map, the following process is followed:

1. The user clicks somewhere within the image.

142 H T M L : T h e C o m p l e t e R e f e r e n c e

Figure 4-5. Ticks—a common problem with image links

W
EB

A
N

D
H

TM
L

B
A

S
IC

S
2. The browser sends a request to the Web server, asking for the URL of the

document associated with the area clicked. The coordinates clicked are sent to a
program on the server, usually called imagemap, which decodes the information.

3. After consulting a file that shows which coordinates map to which URL, the
server sends back the information requested.

4. After receiving the response, the browser requests the new URL.

The concept of server-side image maps has some major downsides. First, users
really don’t have a sense, URL-wise, where a particular click will take them. All that
users see as they run a mouse over the image is a set of coordinates showing the
current x, y value. The second—and more significant—major problem is that the server
must be consulted to go to the next page. This can be a major bottleneck that slows
down the process of moving between pages. The slow speed of decoding, combined
with the possibility that a user can click a hot spot that is not mapped and have nothing
happen, makes client-side image maps preferable to server-side maps.

With client-side image maps, all the map information—which regions map to
which URLs—can be specified in the same HTML file that contains the image.
Including the map data with the image and letting the browser decode it has several
advantages, including

■ A server doesn’t need to be visited to determine the destination, so links are
resolved faster.

■ Destination URLs can be shown as the user’s pointer moves over the image.

■ Image maps can be created and tested locally, without requiring a server or
system administration support.

While this discussion makes it obvious that client-side image maps are far superior
to their server-side cousins, very old browsers may not support this feature. This
doesn’t have to be a problem, however, because you can include simultaneous support
for both types of image maps.

Server-Side Image Maps
To specify a server-side image map, you use the <A> element to enclose a specially
marked element. The <A> element HREF attribute should be set to the URL of
a program or map file to decode the image map. The element must contain the
attribute ISMAP so that the browser can decode the image appropriately.

Depending on the Web server being used, support for server-side image maps may or
may not be built in. If image maps are supported directly, the <A> element simply must
point to the URL of the map file directly and it will be decoded. This is shown in the
example in Figure 4-6. On some older servers, however, the anchor may have to point to
an image map program in that server’s cgi-bin directory.

C h a p t e r 4 : L i n k s a n d A d d r e s s i n g 143

As with all linked images, turning off the image borders may be desirable, by
setting the element’s BORDER attribute equal to 0. A simple example showing
the syntax of a server-side image map is shown here, a rendering of which is shown in
Figure 4-6:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>
<HEAD>

<TITLE> Server-side Image Map Example </TITLE>
</HEAD>

<BODY>

<H1 ALIGN="center"> Server-side Imagemap Test </H1>

<DIV ALIGN="center">

<IMG SRC="shapes.gif" ISMAP BORDER="0" WIDTH="400"
HEIGHT="200">

</DIV>
</BODY>

</HTML>

As previously mentioned, server-side image maps do not provide adequate
feedback to the user and may incur performance penalties. Figure 4-6 shows that the
browser provides image coordinate information in the status bar, rather than a
destination URL with a server-side image map.

HTML authors are encouraged to prefer client-side image maps, and to use
server-side image maps only as needed.

Client-Side Image Maps
The key to using a client-side image map is to add the USEMAP attribute to the
 element and have it reference a <MAP> element that defines the image map’s
active areas. An example of the element syntax is <IMG SRC="controlbar.gif"
USEMAP="#controlmap">. Note that, like server-side image maps, the image will be
indicated as a link regardless of the lack of the <A> element surrounding the .
The BORDER attribute should be set to zero, if necessary.

The <MAP> element generally occurs within the same document, although support
for it may exist outside of the current document. This is similar, in a sense, to the way
server-side maps work. The <MAP> element may occur anywhere within the body of
an HTML document, although it is usually found at the end of an HTML document.

144 H T M L : T h e C o m p l e t e R e f e r e n c e

W
EB

A
N

D
H

TM
L

B
A

S
IC

S

Theoretically, a client-side image map file may exist within another file, but most
browsers do not support such a feature.

The <MAP> element has one attribute, NAME, which is used to specify the
identifier associated with the map. The map name is then referenced within the
 element, using the USEMAP attribute and the associated fragment identifier.
The <MAP> element must have a closing </MAP> tag. Within the <MAP> and
</MAP> elements are defined shapes that are mapped onto an image, defining the hot
spots for the image map. Shapes are defined by the <AREA> element, which is found
only within the <MAP> element. The <AREA> element requires no closing element
and has a variety of attributes, as shown in Table 4-6.

The most important attributes of an <AREA> entity are HREF, SHAPE, and
COORDS. The HREF attribute defines the destination URL for the browser, if that
particular region of the image is selected. The SHAPE and COORDS attributes define
the particular region in question. When the SHAPE attribute is set to RECT, it defines a
rectangular region, and the coordinates should be set to provide the top-left and
bottom-right coordinates of the image. If the SHAPE attribute is set to CIRCLE, the
COORDS attribute must provide the x, y coordinates of the center of the circle,
followed by its radius. If the shape is set to POLY, it indicates that the area defined is

C h a p t e r 4 : L i n k s a n d A d d r e s s i n g 145

Figure 4-6. Server-side image map feedback

146 H T M L : T h e C o m p l e t e R e f e r e n c e

an irregular polygon; each coordinate makes up a point in the polygon, with lines
between each successive point, and the last point connected to the first. Areas of the
image not assigned values can be assigned a value of default.

If the SHAPE attribute is not set or omitted, RECT is assumed.

Attribute Name Possible Values Description

SHAPE RECT, CIRCLE, and POLY Sets the type of shape

COORDS x, y coordinate pairs Sets the points that define
the shape

HREF A URL Defines the destination of
the link

ID Text Identifies the anchor for
target by another anchor,
style sheet access, and
scripting exposure

TARGET A frame name Defines the frame
destination of the link

NOHREF N/A Indicates that the region has
no destination

ALT Text Defines the alternative text
for the shape

TITLE Text Sets the hint text for a shape

TABINDEX A number Sets numeric order in
tabbing sequence

onclick A script Relates the click event of a
link with a script

onmouseover A script Relates mouse over event
with a script

onmouseout A script Relates mouse out event
with a script

Table 4-6. Attributes for <AREA>

Table 4-7 summarizes the possibilities for the AREA element and provides examples.

Under many browsers, the SHAPE attribute also supports RECTANGLE, CIRC, and
POLYGON. HTML authors are encouraged to use only RECT, CIRCLE, and POLY,
because they are defined by the standard.

The various x and y coordinates are measured in pixels from the top-left corner (0,0)
of the mapped image. Percentage values of the image’s height and width also may be
used. For example, <AREA SHAPE=RECT COORDS="0,0,50%,50%"> defines a
rectangular region from the upper-left corner to a point halfway up and down and
halfway across. While percentage-style notation might allow the image to resize, it
generally isn’t useful for any but the most basic image maps. The biggest difficulty
with image maps is how to determine the coordinates for the individual shapes
within the image. Rather than measuring these values by hand, HTML authors are
encouraged to use an image mapping tool. Many HTML editing systems include
image-mapping facilities. Mapedit (http://www.boutell.com/mapedit) for Windows
and UNIX, and MapMaker (http://www.kickinit.net/mapmaker/) for Macintosh also
provide basic mapping facilities. A small list of image map software can be found at
http://www.htmlref.com/.

Using any HEIGHT and WIDTH values besides the actual sizes for a mapped image
isn’t recommended. Once a map has been mapped, resizing will ruin it.

W
EB

A
N

D
H

TM
L

B
A

S
IC

S

C h a p t e r 4 : L i n k s a n d A d d r e s s i n g 147

Shape Coordinate Format Example

RECT left-x, top-y, right-x, bottom-y <AREA SHAPE="RECT"
COORDS="0,0,100,50"
HREF="about.htm">

CIRCLE center-x, center-y, radius <AREA SHAPE="CIRCLE"
COORDS="25,25,10"
HREF="products.htm">

POLY x1, y1, x2, y2, x3, y3,… <AREA SHAPE="POLY"
COORDS=
"255,122,306,53,334,62,255,122"

HREF="contact.htm">

Table 4-7. Shape Format and Examples

148 H T M L : T h e C o m p l e t e R e f e r e n c e

The following is an example of using a client-side image map, the results of which
are rendered in Figure 4-7:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>
<HEAD>

<TITLE> Client-side Image Map Example </TITLE>
</HEAD>

<BODY>

<H1 ALIGN="CENTER">Client-side Imagemap Test </H1>

<DIV ALIGN="CENTER">
<IMG SRC="shapes.gif" USEMAP="#shapes" BORDER="0" WIDTH="400"

HEIGHT="200">
</DIV>

<!-- Start of Client-Side Image Map -->

<MAP NAME="shapes">
<AREA SHAPE="RECT" COORDS="6,50,140,143" HREF="rectangle.htm"

ALT="Rectangle">

<AREA SHAPE="CIRCLE" COORDS="195,100,50" HREF="circle.htm"
ALT="Circle">

<AREA SHAPE="POLY"

COORDS="255,122,306,53,334,62,338,0,388,77,374,116,323,171,255,122"
HREF="polygon.htm" ALT="Polygon">

<AREA SHAPE="default" HREF="defaultreg.htm">

</MAP>
</BODY>

</HTML>

You can combine support for both server-side and client-side image maps into one
file. The browser typically overrides the server-side support with the improved
client-side style. This approach guarantees backward compatibility with older
browsers. To support both image maps, use the ISMAP and USEMAP attributes in

W
EB

A
N

D
H

TM
L

B
A

S
IC

S

C h a p t e r 4 : L i n k s a n d A d d r e s s i n g 149

conjunction with an embedded map and a remote map, as shown by the following
code fragment:

<IMG SRC="shapes.gif" USEMAP="#shapes" BORDER="0" ISMAP WIDTH="400"

HEIGHT="200">

Image Map Attributes
Client-side image maps have a variety of attributes that can be used with the <AREA>
element. Server-side image maps have no attributes other than those normally
associated with the element, such as BORDER. The important attributes are
discussed here, as well as the issues of adding scripting facilities to image maps.

TARGET
The <AREA> element for client-side image maps has been extended to support a
TARGET attribute, much like the addition to the <A> element. The TARGET value

Figure 4-7. Rendering of client-side image map

150 H T M L : T h e C o m p l e t e R e f e r e n c e

should be set to the name of a frame or window. Generally, a frame has a name, so
setting TARGET to the frame name results in the link loading in the frame named in
the attribute. When selected, a link such as

<AREA SHAPE="RECT" COORDS="0,0,50%, 50%" HREF="http://www.yahoo.com"

TARGET="display_frame">

loads the page referenced by the URL set by HREF into the frame that is named
"display_frame". If the TARGET attribute is omitted, the current window or frame
that the document is in is used. Besides author-named frames, the following are several
reserved names for frames that, when used with the TARGET attribute, have special
meaning: _blank, _self, _parent, and _top. For more information about frames, as well
as instructions for how the <AREA> element is used with frames and the various
reserved frame names, refer to the element reference (Appendix A) and Chapter 8.

NOHREF
The NOHREF attribute appears to have little use, but it can be used to set a region in
the map that does nothing when clicked. This might be useful when attempting to cut a
hole in something. For example, an image of a donut might make a great image map,
particularly if the hole in the middle of the donut isn’t an active, clickable area. The
NOHREF attribute makes this simple. Just define a large click region for the whole
image and then declare the middle of the image nonclickable with the NOHREF
attribute. An example of this is shown here:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>

<HEAD>

<TITLE> NOHREF Example</TITLE>
</HEAD>

<BODY>

<IMG SRC="donut.gif" WIDTH="300" HEIGHT="300" BORDER="0"
ALT="Donut Widget" USEMAP="#donut">

<MAP NAME="donut">

<AREA SHAPE="circle" COORDS="150,150,81" NOHREF>
<AREA SHAPE="circle" COORDS="150,150,146" HREF="donut.htm">

<AREA SHAPE="default" NOHREF>
</MAP>
</BODY>

</HTML>

W
EB

A
N

D
H

TM
L

B
A

S
IC

S
When this code is rendered under Netscape, the hand cursor, indicating a clickable

area, disappears when it passes over the nonclickable area; under Internet Explorer, the
cursor appears the same, but the area still isn’t clickable.

Given that NOHREF creates an inactive region that sits on top of another, what
happens when one region overlaps another? According to the specification, if two or
more regions overlap, the region defined first within the <MAP> element takes
precedence over subsequent regions. This rule implies that <AREA> elements with the
NOHREF attribute should be placed before <AREA> elements that are active, so that
clicking the <AREA> element with the NOHREF attribute doesn’t take the user to a
new URL as a result of a previously placed, overlapping active <AREA> element.

ALT and TITLE
Image maps have some major drawbacks, even in their client-side aspect, with
text-based browsers. The ALT attribute can be used, as shown in the previous
examples, and should provide text labels that are displayed in the status line when the
pointer passes over the hot spots. Although the TITLE attribute can be added to all
elements and can provide a function similar to ALT in graphical browsers, in practice,
browsers seem to pick up ALT before TITLE. To be on the safe side, you can use both
attributes simultaneously. One unfortunate problem with the ALT attribute and
client-side image maps is that nongraphical browsers don’t always pick up the ALT
attributes and build meaningful renderings. Instead of a set of links, the viewer might
only see a cryptic message, as shown in Figure 4-8.

HTML authors are encouraged to provide secondary navigation that mirrors the
choices available in the image map. This secondary navigation should consist of text
links located below the image, which makes the site accessible for nongraphical user
agents and may improve the site’s usability. Users on slow connections may opt to
select text links before the image is completely downloaded. An example of text links
in conjunction with an image map is shown in Figure 4-9. Also, when using server-side
image maps, you can make the inactive, or default, area link to a new page that
contains a text menu of the choices provided via the image map. In this way, a user
who selects the ISMAP provided by an older browser receives the menu, not the map.

Discussion of the design and navigation issues surrounding image maps is left to
books that focus on site design. When possible, HTML authors should avoid relying
too heavily on single-image–style image maps for navigation purposes.

TABINDEX
Under the HTML 4 proposed specification, you can use the TABINDEX attribute of
the <AREA> element to define the order in which hot spots in a client-side image map
are tabbed through in a browser that supports keyboard navigation. The value of
TABINDEX typically is a positive number. A browser tabs through links in order of

C h a p t e r 4 : L i n k s a n d A d d r e s s i n g 151

152 H T M L : T h e C o m p l e t e R e f e r e n c e

increasing TABINDEX values, but generally skips over those with negative values. So,
the following line sets this anchor to be the first thing tabbed to:

<AREA SHAPE="RECT" COORDS="0,0,50%,50%" HREF="http://www.yahoo.com/"

TABINDEX="1">

Figure 4-8. Nonmeaningful image map renderings

W
EB

A
N

D
H

TM
L

B
A

S
IC

S

C h a p t e r 4 : L i n k s a n d A d d r e s s i n g 153

If the TABINDEX attribute is undefined, the browser tends to tab though links in
the order in which they are found within an HTML document. Currently, browser
support of TABINDEX within image maps is sparse.

SCRIPTING
As already noted, you can add logic to image maps with client-side scripting
languages, such as JavaScript or VBScript. Three extensions to the <AREA>
element—onclick, onmouseover, and onmouseout—can be bound to scripting
events that provide feedback when a mouse passes over a link. This is the rollover idea
discussed earlier. However, the <AREA> element is less flexible than using anchors
in conjunction with single images, because replacing only a portion of the image
on-the-fly is impossible. Most rollover-style Web interfaces do not use image maps,
but rely instead on images cut up and pieced together to resemble an image map.

Figure 4-9. Image map with secondary text navigation

Semantic Linking with the <LINK> Element
Syntactically, a link to another document created by an anchor says nothing about the
relationship between the current document and the object being pointed to. You can
use the TITLE attribute to provide a hint or advisory information about the link, so
that the viewer of a page may associate meaning with a link. The linked image or text
might also give some clue about what happens when the link is selected, but in HTML
itself, links lack any semantic meaning. The <LINK> element, however, does provide a
way to define the relationship between linked objects. The concept of the <LINK>
element is that a document may have predefined relationships that can be specified,
and that some of these relationships might be useful to a browser when offering
navigation choices, rendering a page, or preparing a page to be printed. Although
<LINK> has been around for several years, until recently, few browsers have
supported <LINK> in any way. With the rise of style sheets, scripting, and proprietary
extensions, <LINK> is finally being supported by browsers, at least in a limited
manner.

The <LINK> element is found in the head of an HTML document, where it may
occur more than once. The two most important attributes of the element are HREF and
REL. Like the HREF attribute for the <A> element, the HREF attribute for <LINK>
specifies the URL of another document, while REL specifies the relationship with that
document. The value of REL is often called the link type. The basic syntax of the
<LINK> element is <LINK HREF="URL" REL="relationship">. Under HTML 4,
<LINK> also supports a reverse semantic relationship, indicated by the REV attribute,
as well as the TITLE attribute, which can be used to set advisory information for the
link. The most mysterious aspect of the <LINK> element is the value of the REL and
REV attributes.

Link Relationships in Detail
Like the REL attribute for the <A> element, the REL attribute for <LINK> defines the
relationship between the current document and the linked object. The value of the REL
attribute is simply a text value, which can be anything the author desires. However, a
browser might interpret standardized relationships in a particular way. For example, a
browser might provide special icons or navigation features when the meaning of a link
is understood. Currently, no standard set of document relationship values exists, but
the HTML 4 specification lists some proposed relationship values, as shown in Table
4-8. Note that these values are not case-sensitive.

Beyond the HTML 4 proposed relationships, various other relationships are being
discussed. In fact, HTML authors can make up their own relationships if they desire, but
should be careful to avoid using PREV or NEXT as REL or REV values, because they
tend to hold special meaning for browsers. Table 4-9 shows some proposed REL values.

The most interesting of the proposed relationships are those that are actually
supported by a browser. Otherwise, they serve as little more than comments to a
document’s reader about the meaning of a link.

154 H T M L : T h e C o m p l e t e R e f e r e n c e

W
EB

A
N

D
H

TM
L

B
A

S
IC

S

C h a p t e r 4 : L i n k s a n d A d d r e s s i n g 155

REL Value Explanation Example

ALTERNATE The link references an altern-
ative version of the document
that the link is in. This may be a
translated version of the
document, as suggested by the
LANG attribute.

<LINK HREF="frenchintro.htm"
REL="ALTERNATE"
LANG="fr">

APPENDIX The link references a document
that serves as an appendix for a
document or site.

<LINK HREF="intro.htm"
REL="APPENDIX">

BOOKMARK The link references a document
that serves as a bookmark; the
TITLE attribute may be used to
name the bookmark.

<LINK HREF="index.htm"
REL="BOOKMARK"
TITLE="homepage">

CHAPTER The link references a document
that is a chapter in a site or
collection of documents.

<LINK HREF="Ch01.htm"
REL="CHAPTER">

CONTENTS The link references a document
that serves as a table of contents,
most likely for the site, though it
might be for the document. The
meaning is unclear.

<LINK HREF="toc.htm"
REL="CONTENTS">

INDEX The link references a page
that provides an index for the
current document.

<LINK HREF="docindex.htm"
REL="INDEX">

GLOSSARY The link references a document
that provides a glossary of
terms for the current document.

<LINK HREF="glossary.htm"
REL="GLOSSARY">

COPYRIGHT The link references a page that
contains a copyright statement
for the current document.

<LINK HREF="copyright.htm"
REL="COPYRIGHT">

NEXT The link references the next
document to visit in a linear
collection of documents. It
can be used, for example, to
“pre-fetch” the next page, as
in the WebTV browsers.

<LINK HREF="page2.htm"
REL="NEXT">

Table 4-8. REL Values Proposed by HTML 3.2

156 H T M L : T h e C o m p l e t e R e f e r e n c e

REL Value Explanation Example

PREV The link references the previous
document in a linear collection
of documents.

<LINK HREF="page1.htm"
REL="PREVIOUS">

SECTION The link references a document
that is a section in a site or
collection of documents.

<LINK HREF="Sect07.htm"
REL="SECTION">

START The link references the first
document in a set of
documents.

<LINK HREF="begin.htm"
REL="START">

STYLESHEET The link references an external
style sheet.

<LINK HREF="style.css"
REL="STYLESHEET">

SUBSECTION The link references a document
that is a subsection in a
collection of documents.

<LINK HREF="Sect07a.htm"
REL="SUBSECTION">

HELP The link references a help
document for the current
document or site.

<LINK HREF="help.tm"
REL="HELP">

Table 4-8. REL Values Proposed by HTML 3.2 (continued)

REL Value Explanation Example

NAVIGATE The target document
contains information, such
as an image map, that helps
users gain a sense of how to
navigate the site.

<LINK HREF="navbar.gif"
REL="NAVIGATE">

CHILD Many Web sites have a
hierarchical or tree
structure. The child
relationship identifies a
subordinate or
subdocument in the
hierarchy. Any document
may have multiple CHILD
documents within the
same hierarchy.

<LINK HREF="subpage.htm"
REL="CHILD">

Table 4-9. Some Proposed REL Values

W
EB

A
N

D
H

TM
L

B
A

S
IC

S

C h a p t e r 4 : L i n k s a n d A d d r e s s i n g 157

REL Value Explanation Example

PARENT The opposite of the child
relationship, the parent
relationship identifies the
superior or container
node in a hierarchical
environment.

<LINK HREF="index.htm"
REL="PARENT">

SIBLING Another hierarchical
relationship, the sibling
relationship identifies a
sibling in the current
hierarchy. Any document
can have multiple SIBLING
documents in the same
hierarchy.

<LINK HREF="product2.htm"
REL="SIBLING">

BEGIN or FIRST The BEGIN or FIRST
relationship identifies the
start of a sequence of
documents of which the
current document is part.
The obvious meaning of this
relationship is to reference
the first document in a
linear sequence.

<LINK HREF="page1.htm"
REL="BEGIN">

END or LAST The END or LAST
relationship identifies the
end of a sequence of
documents of which the
current document is a part.
The obvious meaning of this
relationship is to reference
the last document in a
linear sequence.

<LINK REL="END"
HREF="conclusion.htm">

BIBLIOENTRY The BIBLIOENTRY
relationship identifies a
bibliographic entry.

<LINK HREF="biblio.htm#doc1"
REL="BIBLIOENTRY">

BIBLIOGRAPHY The BIBLIOGRAPHY
relationship identifies
a bibliography.

<A HREF="biblio.htm"
REL="BIBLIOGRAPHY">…

Table 4-9. Some Proposed REL Values (continued)

158 H T M L : T h e C o m p l e t e R e f e r e n c e

REL Value Explanation Example

CITATION The CITATION
relationship identifies a
bibliographic citation.
Typically, this is used with
anchors rather than the
<LINK> element, and
possibly in conjunction with
the <CITE> element.

<A REL="CITATION"
HREF="#Sources">Smith [1]

DEFINITION The DEFINITION
relationship identifies a
definition of a term. The
meaning of the term may be
found in the document
referenced by the
GLOSSARY relationship.

<A REL="DEFINITION"
HREF="glossary.htm#widget">

Widget

FOOTNOTE The FOOTNOTE
relationship identifies a
footnote. This relationship is
generally used with the <A>
element. Theoretically, a
browser may open a small
pop-up window to display
the footnote.

<A REL="FOOTNOTE"
HREF="note1.htm">Extra info

MADE The MADE relationship has
been used to identify the
author or “maker” of an
HTML document. The
maker might include a tool
if this is used with the
<LINK> element.

<A REV="MADE"
HREF=
"mailto:webmaster@bigcompany.com">
Webmaster

AUTHOR The AUTHOR relationship
identifies a link to
information about the
author of the current
document, or a method to
contact the author.

<LINK REL="AUTHOR"
HREF="author.htm">

Table 4-9. Some Proposed REL Values (continued)

W
EB

A
N

D
H

TM
L

B
A

S
IC

S

C h a p t e r 4 : L i n k s a n d A d d r e s s i n g 159

REL Value Explanation Example

EDITOR The EDITOR relationship
identifies a hypertext link to
an editor. It may include a
mailto URL or a link to an
editor’s personal home page.

<LINK REL="EDITOR"
HREF=
"mailto:editor@bigcompany.com">

PUBLISHER The PUBLISHER
relationship identifies a
link to information about a
document’s publisher or a
way to contact the publisher
via a mailto URL.

<LINK REL="PUBLISHER"
HREF=
"http://www.osborne.com">

DISCLAIMER The DISCLAIMER
relationship identifies a
link to a legal disclaimer
applying to the document.

<LINK REL="DISCLAIMER"
HREF="legal.htm">

TRADEMARK The TRADEMARK
relationship identifies a
link to a trademark notice
concerning the current
document.

<LINK REL="TRADEMARK"
REF="trademark.htm">

META The META relationship
identifies a link to a
document containing
meta-information
(information about
information) related to the
current document. This is a
very general relationship.
The information linked to
could be just about anything.

<LINK REL="META"
HREF="descript.htm">

TRANSLATION The TRANSLATION
relationship specifies a
link to a document
with a translation to
another language.

<LINK REL="TRANSLATION"
HREF="japanese.htm">

STYLESHEET The STYLESHEET
relationship identifies a
style sheet for the
current document.

<LINK REL="STYLESHEET"
HREF="corporate.css">

Table 4-9. Some Proposed REL Values (continued)

WebTV Support for <LINK>
The only fairly common browser to support <LINK> is WebTV. In the WebTV
environment, <LINK> is used to improve performance. If the REL attribute is set with
the value of next and an HREF is specified, the browser will “prefetch” the page in
question. If the content of the next page is stored in a memory cache, the page loads
much faster than if the page has to be requested from the server. If a WebTV user is
being presented a brief set of pages in a linear fashion, like a slide-show or tour, the
next page could be preloaded with the <LINK> element. For example, <LINK
REL="next" HREF="second.htm"> loads the next page, called second.htm, in advance.
This technique assumes that the user is going to a predictable next page. This may not
be easy to determine for all possible Web site organizations.

HTML authors not using WebTV who are interested in prefetching pages can use
Microsoft’s preloader ActiveX control. Images also can be prefetched by setting both
their HEIGHT and WIDTH attributes to 1: <IMG SRC="image_on_nextpage.gif"
HEIGHT="1" WIDTH="1">. This technique loads an image into the page, but the
image appears as a barely perceptible dot. Then, when the next page loads, the image will
have been precached by the browser. Combined with a scripting language, the loading of
images can be handled after the current page has loaded, by using the onload event
attribute for the <BODY> element.

<LINK> and Style Sheets
A variety of attributes are defined for the <LINK> element, including TYPE, MEDIA,
and TARGET. These new attributes are already supported in browsers such as Internet
Explorer and Netscape for handling style sheets. The <LINK> element allows a style
sheet for a document to be referenced from a separate file. If the markup code <LINK
REL="stylesheet" HREF="corpstyle.css"> is inserted in the head of an HTML
document, it associates the style sheet corpstyle.css with the current document. The
REL value of STYLESHEET indicates the relationship.

The ALTERNATE STYLESHEET relationship, which would allow users to pick
from a variety of styles, has also been suggested. To define several alternative styles,
the TITLE attribute must be set to group elements belonging to the same style. All
members of the same style must have exactly the same value for TITLE. For example,
the following fragment defines a standard style called basestyle.css, while two
alternative styles, titled 640by480 and 1024by768, have been added; these refer to style
sheets to improve layout at various screen resolutions:

<LINK REL="alternate stylesheet" TITLE="640by480"

HREF="small-1.css">
<LINK REL="alternate stylesheet" TITLE="640by480"

HREF="small-2.css">
<LINK REL="alternate stylesheet" TITLE="1024by768" HREF="big.css">

<LINK REL="stylesheet" HREF="basestyle.css">

160 H T M L : T h e C o m p l e t e R e f e r e n c e

W
EB

A
N

D
H

TM
L

B
A

S
IC

S
A Web browser should provide a method for users to view and pick from the list of

alternative styles, where the TITLE attribute might be used to name each choice.
Currently, this alternative choice for style sheets is not supported by any popular
browser.

Because the potential exists for many different kinds of linked objects, the TYPE
attribute was added to the <LINK> element to indicate the data type of the related
object. TYPE can be especially helpful when used to indicate the type of style sheet
being used, because many style sheet technologies currently exist. TYPE is used by
browsers to indicate the type of the linked style, as in this example:

<LINK REL="STYLESHEET" HREF="corpstyle.css" TYPE="text/css">

For style sheets, TYPE usually takes a MIME type, which indicates the format of the
style sheet being linked to.

The MEDIA attribute is another new attribute for the <LINK> element, but it isn’t
widely supported. For style sheets, this attribute would indicate what type of media
the style sheet should be used with. The same document could thus reference one style
when it is viewed on a computer screen and a different style sheet when it is printed.
This would allow a different style for printing versus screen. The browser is then
responsible for filtering out those style sheets that aren’t appropriate for the current
environment. The following code fragment shows an example of this idea:

<LINK REL="STYLESHEET" MEDIA="PRINT" HREF="corp-print.css">

<LINK REL="STYLESHEET" MEDIA="SCREEN" HREF="corp-screen.css">

A variety of values have been proposed for the MEDIA attribute, including PRINT,
PROJECTION, SCREEN, BRAILLE, AURAL, and ALL. When not specified, ALL
would be the default type, suggesting that the style be used in all output environments.

Meta-Information
Meta-information is simply information about information. Information on the Web
often involves many pieces of associated, descriptive information that isn’t always
explicitly represented in the resource itself. Examples of meta-information include the
creator of a document, the document’s subject, the publisher, the creation date, and even
the title. When used properly, descriptive meta-information has many benefits. It can
make information easier to locate, by providing search engines with more-detailed
indexing information, rate information to protect minors from viewing certain content,
and a variety of other things. As already discussed, meta-information is related to
linking, because it helps provide meaning for a document’s role in a global or local
information space. Meta-information can also provide room for miscellaneous
information related to the document. HTML’s primary support for meta-information is
through the <META> element, which allows authors to add arbitrary forms of metadata.

C h a p t e r 4 : L i n k s a n d A d d r e s s i n g 161

162 H T M L : T h e C o m p l e t e R e f e r e n c e

<META> and the NAME Attribute
A <META> element that uses the NAME attribute is the easiest to understand. The
NAME attribute specifies the type of information. The CONTENT attribute is set to the
content of the meta-information itself. For example,

<META NAME="Favorite Sandwich" CONTENT="Turkey and Swiss">

defines meta-information indicating the document author’s favorite lunch. While
meta-data can be inserted into a document and list characteristics limited only by an
author’s imagination, some well-understood values exist that have meaning for Web
search tools, such as AltaVista, HotBot, and Infoseek. Many search robots understand
the AUTHOR, DESCRIPTION, and KEYWORDS values for the NAME attribute.
By setting the NAME and CONTENT attributes, HTML authors can add meta-
information to the head of their documents and improve the indexing of their pages
by Web search robots. The following code sets the description of a Web page for a
fictitious company that makes Green Gadgets:

<HTML>

<HEAD>
<TITLE> Big Company, Inc. Home Page </TITLE>

<META NAME="AUTHOR" CONTENT="Big Company, Inc.">
<META NAME="DESCRIPTION" CONTENT="#1 vendor of Green Gadgets.">
<META NAME="KEYWORDS" CONTENT="Big, Company, Gadgets, Green, San Diego">

</HEAD>

<BODY>
...
</BODY>

</HTML>

As this example demonstrates, HTML authors can improve the indexing of their
pages simply by providing the appropriate keywords in the correct <META> element
format and alerting the search robot to the site’s existence. In many cases, the site may
already be indexed, without submission. Authors who don’t want search robots
indexing their sites can put in their Web server’s root directory a file called robots.txt,
which provides information regarding which directories or files shouldn’t be indexed.
All well-behaved Web robots should request the robots.txt file first, before deciding
what to index on a site. If a site is known as http://www.bigcompany.com/, a
well-behaved robot will begin by requesting http://www.bigcompany.com/robots.txt
and analyzing that file. After analyzing the file, the robot will index part, all, or none
of the site. The format of the robots.txt file is relatively simple. It includes a field for

C h a p t e r 4 : L i n k s a n d A d d r e s s i n g 163

W
EB

A
N

D
H

TM
L

B
A

S
IC

S
specifying a user agent, followed by a Disallow field, which indicates what is
disallowed. For example, if a robots.txt file contains

User-agent: *

Disallow: /

then every robot is barred from indexing anything from the root directory on down. In
other words, the whole site would be skipped. A robots.txt file has only one User-agent
field. Wildcards such as * may be used, or particular agents can be named directly.
There may be multiple Disallow fields that specify different relative URLs that
should not be visited, so you can name each directory separately. For example,
Disallow: /staff bars robots from a file named staff, as well as any information in
the subdirectory called staff.

The robots.txt file must reside in the Web server’s root directory and must be named in
lowercase. Blank lines aren’t permitted in the file. Errors in the file may result in the file
being ignored.

You can also put a <META NAME="ROBOT" CONTENT="NOINDEX,
NOFOLLOW"> element in the head of nonindexed documents, but this isn’t as widely
supported as using a robots.txt file. The robot version of the <META> element allows
CONTENT values of ALL, INDEX, NOINDEX, and NOFOLLOW.

Although many Web-searching services freely publish their formats for indexing,
others do not. The reason for this secrecy of indexing rules is that many HTML authors
attempt to attract traffic to their site by putting an excessive amount of “spider bait”
and <META> elements in their page, hoping to get higher rankings in search results.
Loading a <META> element with excessive keywords may backfire, however, and
result in the page being dropped from search engines. Most search engines take a few
dozen words, approximately 1,024 characters at most.

Even if people didn’t try to defeat search engine indexing algorithms, the current
approach to cataloging the Web is far from sufficient. Most search engines return far
too much information, with no sense as to the value, quality, or decency of the links
returned. Many groups are already working on standard sets of meta-data for Web
documents. When more-standardized meta-information is established, the
organization of the Web should significantly improve, and browsers should be
able to provide better decisions about content appropriateness.

META and HTTP-EQUIV
The other form of the <META> element uses the HTTP-EQUIV attribute, which
directly allows the document author to insert HTTP header information. The browser
can access this information during read time. The server may also access it when the
document is sent, but this is rare. The HTTP-EQUIV attribute is set to a particular

HTTP header type, while the CONTENT value is set to the value associated with the
header. For example,

<META HTTP-EQUIV="Expires" CONTENT="Wed, 04 Jun 1999 22:34:07 GMT">

placed in the head of a document sets the expiration date to be June 4, 1999. A variety
of HTTP headers can be placed in the <META> element. The most useful headers are
those for two concepts, known as client-pull and site filtering.

Client-Pull
Beginning with Netscape, an extension was made that allows a page to be
automatically loaded after a certain period of time. This concept is called client-pull. For
example, you can build an entry page, or splash page, that welcomes visitors to a site
and then automatically follows with a second page after a certain period of time. The
following example <META> element loads a page called secondpage.htm ten seconds
after the first page loads:

<META HTTP-EQUIV="REFRESH" CONTENT="10;URL=secondpage.htm">

Using the client-pull form of the <META> element is easy. Just set the content
equal to the desired number of seconds, followed by a semicolon and the URL (full or
relative) of the page to load. Note, however, that not all browsers support this form of
meta-refresh.

The client-pull concept is often discussed with a related idea called server-push, which
primarily is used to create simple animations. However, server-push animation and
other such tricks no longer need to be addressed, because they are more easily
accomplished by using animated GIF images or JavaScript.

The <META> element is very open-ended. The World Wide Web Consortium
(W3C) is already developing more sophisticated approaches for representing
meta-data. The most interesting approach is probably PICS, described next, which
provides a standard for site filtering.

Site Filtering
One major use of meta-information for links and pages is site filtering. At its base level,
a filter can be used to restrict access to certain files or types of information. As a
technology, this sounds rather innocuous, but when extended, site filtering can lead
quickly to censorship. Whether filtering information on the Internet is right or wrong is
an area of great debate. Obviously, parents and educators are extremely concerned
with the availability of pornographic, violent, or other “inappropriate” types of

164 H T M L : T h e C o m p l e t e R e f e r e n c e

information on the Internet. Deciding what is inappropriate is the key to the censorship
problem, because definitions of what should be allowed vary from person to person.
Regardless of how “inappropriate” is defined, few people would disagree that
information considered inappropriate by just about everyone does exist on the Internet.
The perceived extent of this information tends to be directly related to a person’s belief
system. The W3C has proposed the Platform for Internet Content Selection, or PICS
(http://www.w3.org/pub/WWW/PICS/), as a way to address the problem of content
filtering on the Web.

The idea behind PICS is relatively simple. A rated page or site will include a
<META> element within the head of an HTML document. This <META> element
indicates the rating of the particular item. A rating service, which can be any group,
organization, or company that provides content ratings, assigns the rating. Rating
services range from independent, nonprofit groups such as the Recreational
Software Advisory Council (RSAC) (http://www.rsac.org), which already
implements a rating system for video games, to software vendors such as Net Sheperd
(http://www.netshepherd.com), which sells rating services and software. The rating
label used by a particular rating service must be based on a well-defined set of rules
that describes the criteria for rating, the scale of values for each aspect of the rating, and
a description of the criteria used in setting a value. Usually, the specification of a rating
is found in a RAT file that can be accessed by browser or filtering software. Figure 4-10

C h a p t e r 4 : L i n k s a n d A d d r e s s i n g 165

W
EB

A
N

D
H

TM
L

B
A

S
IC

S

((PICS-version 1.0)
(rating-system "http://www.rsac.org/Ratings/Description/")

(rating-service "http://www.rsac.org/ratingsv01.html")

(name "RSACi")
(description "The Recreational Software Advisory Council

rating service for the Internet. Based on the work of Dr.
Donald F. Roberts of Stanford University, who has studied
the effects of media for nearly 20 years.")

(category
(transmit-as "v")

(name "Violence")

(label
(name "Level 0: No violence")

(description "No aggressive violence; No natural or
accidental violence.")
(value 0))

(label

Figure 4-10. RSACi rating system RAT file

166 H T M L : T h e C o m p l e t e R e f e r e n c e

shows a RAT file for the violence category of RSAC-based (RSACi) PICS ratings. Other
categories not shown include sex, nudity, and language.

To add rating information to a site or document, a PICS label in the form of a
<META> element must be added to the head of an HTML file. This <META> element
must include the URL of the rating service that produced the rating, some information
about the rating itself (such as its version, submitter, or date of creation), and the rating
itself. Many rating services, such as RSACi, the Internet rating system from RSAC,
allow free self-rating. Filling out a form and answering a few questions about a site’s
content is all that is required to generate an RSACi PICS label, as shown in Figure 4-11.

After you complete and submit the questionnaire in Figure 4-11, you receive an
e-mail containing the appropriate meta-information, which can then be placed in the
head of your HTML documents. An example of a PICS label using the RSACi rating is
shown here:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<HTML>

<HEAD>

<TITLE> PICS Meta Tag Example </TITLE>
<META http-equiv="PICS-Label"

content='(PICS-1.1 "http://www.rsac.org/ratingsv01.html"

l gen true comment "RSACi North America Server"
by "webmaster@bigcompany.com" for

"http://www.bigcompany.com" on

"1997.05.26T13:05-0500" r (n 0 s 0 v 0 l 1))'>
</HEAD>

<BODY>
<H1 ALIGN="center"> Big Company, Inc. </H1>

<HR>

There's nothing offensive at this site.
</BODY>

</HTML>

Under the RSACi rating system, information is rated based on nudity, sex, violence,
and language, on a five-category scale from 0 to 4. In this case, the rating is for a typical
corporate site that generally has little “inappropriate” information concerning sex and
violence, but may use slang or jargon that could be misconstrued out of context.

The <META> element with PICS information must occur within the head of the
document. Otherwise, it will not be recognized. More than one <META> element may
be included within the head, so that multiple rating services can be used simultaneously.

W
EB

A
N

D
H

TM
L

B
A

S
IC

S

C h a p t e r 4 : L i n k s a n d A d d r e s s i n g 167

When filtering software reads a file that contains a rating, it determines whether the
information should be allowed or denied. Very strict filtering environments may deny
all sites that have no rating, so sites with a broad audience are encouraged to use
ratings, to avoid restricting readership.

Filtering technology that supports PICS is beginning to achieve widespread
acceptance and use. Internet Explorer 3 and 4 already include PICS-based rating
filtering, as shown in Figure 4-12.

Many filtering software packages, like SurfWatch (http://www.surfwatch.com)
software, are extremely popular both with parents and corporate users trying to limit
employee Web abuse. Of course, the technology itself can’t cure the problem. Trust in a
particular ratings system is a major stumbling block in adoption of the filtering idea.
Even when trust is gained, if the rating system seems confusing or arbitrary, its value is
lowered. In the “real world,” Hollywood’s MPAA movie rating system has a single
value of G, PG, PG-13, R, or NC-17 for each movie. The assignment of a particular
movie rating is based on many factors that often seem arbitrary to casual observers.
When considering movies, parents may wonder how scenes of a dinosaur ripping a
man to shreds merits a PG or PG-13 rating, while the use of certain four-letter words

Figure 4-11. Rating form

168 H T M L : T h e C o m p l e t e R e f e r e n c e

indicates an R rating. Certainly similar situations occur on the Internet. Because of the
imprecise nature of ratings, the topic is a loaded one, both off and on the Internet.

Beyond simple content rating, some potential benefits of PICS aren’t immediately
obvious. With PICS-based environments, employers could limit employee access to Web
sites that are used for day-to-day business. The idea of PICS can be extended not just to
deny or allow information, but to prefer it. Imagine a filtering service for search engines
that could return sites that have a particular quality of content or level of accuracy. In the
general sense, labels are important, because they allow documents to move beyond a
mere description of where the document is to what the document is about.

Linking Issues
One of the biggest problems with linking documents together with <A>, <AREA>, or
<LINK> is that the link often breaks. Authors and users alike are already familiar with
links to outside sites that change, resulting in the annoying 404 Not Found messages so
common on the Web. Unfortunately, documents do move around. Some have a very
limited lifetime. Even if a link is good, intermittent problems on the Internet can make
outside links temporarily stall or break. Clicking a link only to have the browser slowly

Figure 4-12. PICS rating support under Internet Explorer

attempt to resolve the host can be a frustrating interruption for a user. As you’ll see
next, document authors can do a great deal to ensure that outside linking and broken
link problems are the exception rather than the norm.

While it is impossible to keep other sites from changing addresses, you can be a
good network citizen and not move linked files around carelessly. Most Web servers
are equipped to provide referrer information that indicates the URL of a linking
document. If you must move a document, you can alert the Webmasters of the
referring URLs about the move and have them update their links. An even better idea
is to forward documents to a new location rather than remove them. Web servers can
be set up to redirect users to new sites or directories if things must be moved around.
In some cases, however, a user may eventually click a broken link to the site, regardless
of what precautions you take. For such eventualities, rather than provide a vague error
message, you can create a custom message that helps the user locate the document
sought. For example, a “404 Not Found” message could be returned with a link
included to a site map, table of contents, or search engine that the user can access to
search for the specific document. An example of a customized server error message is
shown in Figure 4-13.

C h a p t e r 4 : L i n k s a n d A d d r e s s i n g 169

W
EB

A
N

D
H

TM
L

B
A

S
IC

S

Figure 4-13. Customized 404 error message

The other aspect of linking that can be troublesome often occurs when a user moves
from a site to an outside link. Because of conditions on the Internet or at the end server,
outside sites might not always respond right away—if at all. To warn users that they
are leaving the site and accessing an outside server, a small icon can be placed next to a
link, such as the one Microsoft uses with great success, shown here:

The chaotic nature of the Internet means that links will break and documents will
move. Unfortunately, URLs themselves provide very little infrastructure to alleviate
these problems. New ideas, such as uniform resource names (URNs), might help
improve this situation.

Beyond Location
An amazing wealth of information is available on the Web. Although many people
complain of information overload, the real problem isn’t volume. It’s relevance. How
can a particular piece of information be located quickly and easily? If the Web were
ideal, it would be like the computer on Star Trek, which always seems to deliver in a
matter of seconds any information a user requests. On the Internet, a request to a
search tool often yields an overwhelming list of tens of thousands of entries. Some of
these entries may be outdated, the documents to which others refer may have moved,
or the server specified in an entry may be unreachable. While the Web isn’t science
fiction, many of the computer and information systems presented in science fiction
represent valid goals for the Web. The key problem with building a more organized
Web is URL-based addressing.

Problems with URLs
The primary problem with URLs is that they define location rather than meaning.
URLs specify where something is located on the Web, not what it is or anything about
it. URLs specify where to go, not what to get. URLs blur the line between what a
document is and where it is actually located. This may not seem to be a big deal, but it
is. This issue becomes obvious when the problems with URLs are enumerated:

■ URLs aren’t persistent. Documents move around, servers change names, and
documents might eventually be deleted. This is the nature of the Web, and the
reason why the 404 Not Found message is so common. When users hit a broken
link, they might be at a loss to determine what happened to the document and

170 H T M L : T h e C o m p l e t e R e f e r e n c e

how to locate its new home. Wouldn’t it be nice if, no matter what happened, a
unique identifier indicated where to get a copy of the information?

■ URLs tend to be long and confusing. People often have to transcribe addresses.
For example, the following is quite a lot to write on a piece of literature:

http://www.bigcompany.com/products/supergadget/specsheets/prod1.htm

Marketing firms already are scrambling for short domain names and site
structures that use short URLs, such as http://www.bigcompany.com/prod1.
Advertisers often omit http:// in their promotional material. Although most
browsers fill in http://, omitting it could cause problems with older browsers
that require complete URLs.

■ URLs create an artificial bottleneck and extreme reliance on DNS services, by
specifying location rather than meaning. For example, the text of the HTML 4
specification is a useful document and certainly has an address at the W3C Web
site. But does it live other places on the Internet? It probably is mirrored in a
variety of locations, but what happens if the W3C server is unreachable, or DNS
services fail to resolve the host? In this case, the resource is unreachable. URLs
create a point source for information. Rather than trying to find a particular
document, wherever it might be on the Internet, Web users try to go to a
particular location. Rather than talking about where something is, Web users
should try to talk about what that something is.

URNs, URCs, and URIs
Talking about what a document is rather than where it is makes sense when you
consider how information is organized outside the Internet. Nobody talks about which
library carries a particular book, or what shelf it is on. The relevant information is the
title of the book, its author, and perhaps some other information. But what happens if
two or more books have the same title, or two authors have the same name? This is
actually quite common. Generally, a book should have a unique identifier (such as an
ISBN number) that, when combined with other descriptive information (such as the
author, publisher, and publication date) uniquely describes the book. This naming
scheme enables people to specify a particular book and then hunt it down.

The Web, however, isn’t as ordered as a library. On the Web, people name their
documents whatever they like, and search robots organize their indexes however they
like. Categorizing things is difficult. The only unique item for documents is the URL,
which simply says where the document lives. But how many URLs does the HTML 4
specification have? A document may exist in many places. Even worse than a document
with multiple locations, what happens when the content at the location changes? Perhaps
a particular URL address points to information about dogs one day and cats the next.
This is how the Web really is. However, a great deal of research is being done to address
some of the shortcomings of the Web and its addressing schemes.

C h a p t e r 4 : L i n k s a n d A d d r e s s i n g 171

W
EB

A
N

D
H

TM
L

B
A

S
IC

S

URN
A new set of addressing ideas, including URNs, URCs, and URIs, are emerging to
remedy some of the Web’s shortcomings. A uniform resource name (URN) can locate a
resource by giving it a unique symbolic name rather than a unique address. Network
services analogous to the current DNS services will transparently translate a URN
into the URL (server IP address, directory path, and filename) needed to actually locate
a resource. This translation could be used to select the closest server, to improve
document delivery speed, or to try various backup servers in case a server is
unavailable. The benefit of the abstraction provided by URNs should be obvious
from this simple idea alone.

To better understand the idea behind URNs, consider the idea of domain names,
such as www.xyz.com. These names are already translated into numeric IP addresses,
like 192.102.249.3, all the time. This mapping provides the ability to change a machine’s
numeric address or location without seriously disrupting access to it, because the name
stays the same. Furthermore, numeric addresses provide no meaning to a user, while
domain names provide some indication of the entity in question. Obviously, the level
of abstraction provided by a system like DNS would make sense on the Web. Rather
than typing some unwieldy URL, a URN would be issued that would be translated to
an underlying URL. Some experts worry that using a resolving system to translate
URNs to URLs is inherently flawed and will not scale well. Because the DNS system is
fairly fragile, some truth may lie behind this concern. Another problem with this idea is
that, in reality, URNs probably won’t be something that is easy to remember, such as
urn: booktitle, but instead be something more difficult, such as urn:isbn: 0-12-518408-5.

URC
A uniform resource characteristic (URC), also known as a uniform resource citation,
describes a set of attribute/value pairs that defines some aspect of an information
resource. URCs are somewhat like the <META> data items or the PICS labels
associated with a Web document. The form of a URC is still under discussion, but
many of the ideas of URCs are already in use.

Combined, a URL, URN, and a collection of URCs describe an information
resource. For example, the document “Big Company Corporate Summary” might have
a unique URN such as urn://corpid:55127.

The syntax of the preceding URN is fictional. It simply shows that URNs probably
won’t have easily remembered names and that many naming schemes might be used,
such as ISBN numbers or corporate IDs.

The “Big Company Corporate Summary” would also have a set of URCs that
describes the rating of the file, the author, the publisher, and so on. In addition, the
document would have a location(s) on the Web where the document lives, such as one
of the following:

172 H T M L : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 4 : L i n k s a n d A d d r e s s i n g 173

W
EB

A
N

D
H

TM
L

B
A

S
IC

S
http://www.bigcompany.com/about/corp.htm
http://www.bigcompany.com.jp/about/corp.htm.

URI
Taken all together, a particular information resource has been identified. The collection
of information, which is used to identify this document specifically, is termed a uniform
resource identifier (URI).

Occasionally, URI is used interchangeably with URL. Although this is acceptable,
research into the theories behind the names suggests that URI is more generic than
URLs, and serves to encompass the idea of an information resource. Currently, a URL is
the only common way to identify an information resource on the Internet. Although
technically a URL could be considered a URI, this confuses the issue and obscures the
ultimate goal of trying to talk about information more generally than a network location.

While many of the ideas covered here are still being discussed, some systems,
such as Persistent URLs, or PURLS (http://www.purl.org), and Handles
(http://www.handle.net), already implement many of the features of URNs and
URCs. Furthermore, many browser vendors and large Web sites are implementing
special keyword navigation schemes that mimic many of the ideas of URNs and URCs.
Unfortunately, as of the writing of this book, none of these approaches are widely
implemented or accepted. Although any of these approaches probably can be
considered as true URIs when compared to the URLs used today, for the near future,
URLs are likely to remain the most common way to describe information on the Web.
Therefore, the system has to be extended to deal with new types of information and
access methods.

New URL Forms
URLs are here to stay; but, as new ideas are added to the Internet, URLs will evolve
into new forms. For example, as telephones and televisions are joined with desktop
computers and the Internet, addressing schemes for telephone numbers and TV
channels will become necessary. WebTV, video game consoles, and cellular phone
browsers already demonstrate that the Web is reaching users beyond the personal
computer or workstation. On these devices, some of the URL schemes described early
in the chapter are inappropriate. Many of these devices lack local storage, so the file
protocol, discussed earlier in this chapter, is of little use. On the other hand, many of
these devices usually have access to other sources of information, such as television
channels and telephone services. A television channel URL form might look like
tv://channel, where channel is either an alphanumeric name (like nbc or nbc7-39) or a
numeric channel number. Similar to the news URL form, differentiating between nbc in
one area and another would be unnecessary, because the system would be configured
to get the information locally. A phone URL might look like phone://phone-number,
with a numeric value for the phone number and any extra digit information required,

174 H T M L : T h e C o m p l e t e R e f e r e n c e

such as the country code or calling card information. For example, phone://+1-619-270-2086
might dial a phone number in the United States. An instruction to send a fax could be
written in a similar way, except with fax://phone-number.

New content types and URL schemes bring new challenges, particularly in the way
links and fragment identifiers are used within HTML documents. For example, how
will a particular scene in a video stream be addressed? Random access to large audio
and video files is very useful, particularly considering the download requirements for
such data. Subsections or “clips” of a data stream must be addressable via URLs that
describe a time range. How can a URL describe the idea of accessing an audio file
called mozart.audio and playing a ten-second clip starting at time 2:05? Once into clips,
particularly video clips, some mechanism will be needed to link from the data stream
to other data streams or objects on the Web. Some experimental systems already show
video with hot spots that work like image maps. Given that video will certainly be an
important media form on the Web of tomorrow and that other media forms also will
have to be added as well, it should be obvious that current URL schemes are far from
complete. Many new schemes are being proposed all the time. A variety of esoteric
schemes are out there already. If you are interested in new URL schemes, take a look at
the W3 area on addressing (http://www.w3.org/Addressing/) for more information.

Summary
Linking documents on the Web requires a consistent naming scheme. URLs provide
the basic information necessary to locate an object on the Internet, by including the host
name, directory, filename, and access protocol. URLs are written in a regular format, so
that an address can be written for any object. A common shorthand notation, relative
URLs, is particularly useful when creating links within a Web site. If a document’s URL
can be determined, whether it’s relative or fully spelled out, it can be specified in the
<A> element to create an anchor from one document to another. Links within HTML
documents can be made with text or with images. A special type of clickable image,
called an image map, allows areas of an image to be defined as “hot.”

Simply linking documents together is the most basic form of hypertext. By using
the <LINK> element, as well as the REL and REV attributes of the <A> element, you
can create relationships between documents. So far, the <LINK> element is primarily
used with style sheets. Once documents are linked together, providing extra
information about the document can be very useful. HTML provides such a facility
through the use of the <META> element. But even if Web authors master all aspects of
linking, a bigger picture remains to worry about. The Web is a chaotic environment,
and navigating among documents and linking documents presents serious challenges
to the HTML author. In the future, some of these problems may be solved by URNs,
URCs, and improved URLs, which, taken together, make up the uniform resource
identifier (URI). However, until URNs or similar technologies are more readily
available, HTML authors should be cautious about linking, and should consistently
check links in their sites.

Chapter 5
HTML and Images

175

Copyright 1999 The McGraw-Hill Companies. Click Here for Terms of Use.

Until recently, HTML (Hypertext Markup Language) has been true to the “text” in
its name. However, text alone wasn’t what made the Web popular. While the Web
dates from the early 1990s, the environment didn’t take off until Mosaic appeared with
support for inline images using the element. Today, images and other binary
objects are everywhere on the Web. The modern Web is more about hypermedia than
plain hypertext, but it is unlikely that the language will be renamed HMML anytime
soon. While images have played an important role in the success of the Web, they must
be used carefully. They should not be used just for decoration. They should provide
benefit, but at what cost? When used carelessly, Web visuals may require the user to
wait a long time for a page to render. Images can improve the message delivered, but
when abused they may confuse or hide a message as easily as they improve it. While
this is not a book about design and image use, the intersection of HTML and images is
important enough to warrant some discussion.

The Role of Images on the Web
When Mosaic first came out, the ability to view an image within the browser window
was a huge improvement. Gopher, the popular information system at the time, was
primarily textual. It didn’t support multimedia and navigation to the same degree as
the Web. At first, images often were used to show the logo of the company or present
a graph. Today, however, some sites seem to be more about the images than about
textual information. So what are images on the Web good for?

Web images can be used to illustrate an idea, show strictly visual information,
provide navigation, and serve as decoration. The saying “a picture is worth a thousand
words” is very true when illustrating an idea. Images can be used to show procedures,
product applications, design styles, and a variety of other concepts. Think about a Web
site that teaches people to dance. While it might be possible to explain the various
dance steps in writing, a diagram is far easier to understand. People may complain
about byte count and download time, but in terms of communication, a picture can
be worth a thousand bytes.

Beyond illustrating ideas, there are some topics that require visuals. If a
photographer puts up a Web site, how can that person illustrate what he or she does
without pictures? For things that are intrinsically visual in nature, pictures are
mandatory. Images can also be used for navigation. Visual cues can make it easier for
users to find their way around the tangled Web. Even a unique home page image can
serve as a consistent beacon, helping the user find his or her way back to a familiar
point of reference. Last but not least, images can provide decoration for a site. Pictures
make things more interesting, even if they just break up the monotony of page after
page of text. A splash of color and a few images can be pleasing. Too much decoration,
however, can turn a page into the online equivalent of an overdecorated Christmas tree
complete with pink snow flocking.

The basic problem with images on the Web relates to confusion about their value.
Far too often the quality of a Web site is judged solely on its look and feel—but what

176 H T M L : T h e C o m p l e t e R e f e r e n c e

W
EB

A
N

D
H

TM
L

B
A

S
IC

S
are sites really for? While perception and experience are important, ultimately the user
will not focus solely on the interface. The site must provide information or some other
beneficial function. In this sense, sites become like software. In a traditional software
product, what is most important: the look, the functionality, or both? The answer is both,
but over time the functionality far outweighs the look. Nevertheless, don't forget how
important the user interface is. A good-looking, logical user interface improves a site,
while a poorly designed user interface negatively affects the best content. Navigation
is important and should look graphically appropriate, but the logic behind it is what
really matters. While textured backgrounds, beveled buttons, and full-screen image
maps may look great, they don’t ensure that a site is logically organized. Pleasing
graphics that reflect well-thought-out site architecture can facilitate navigation
throughout the site. Confusing graphical navigation, on the other hand, may
actually ruin a site.

In the long run, purely decorative images are not terribly valuable. Rainbow bars
and multicolored bullets may make the site appear more exciting initially, but they
may eventually irritate the user by hindering speedy navigation of the site. The first
time a “What's New” animated GIF runs, the action may catch the user’s eye. But what
about the twentieth time? Decorating the page just for the sake of having images is not
a good reason.

Images are most important when they enhance the content of the Web site. An
image that provides more information than would be conveyed with plain text is truly
valuable. Even if the image significantly increases the download time of the page, the
supplementary information provided may be well worth it. What better way to
describe the body style of a car than with a visual? A text description of a low-profile
sports car with smooth curves doesn’t sell nearly as many cars as an actual picture.
Maps, diagrams, specifications, product pictures, portraits, and other visual
content—this is what Web images are for. About the only people who should be
adding pictures for their own sake to the Web site are those who create them for a
living—graphic artists, photographers, and so on. Even then, what the image presents
is still important.

Software products or Web sites that are entertainment driven may have a different
perspective on presentation because the presentation may actually be the content.

Image Preliminaries
Before discussing image use on the Web, consider how images are represented in a
computer. Images on a computer screen are made up of thousands of pixels (shorthand
for picture elements). A pixel is a tiny dot, the smallest unit of measure on a screen. The
number of pixels that can be displayed on a screen is termed the screen resolution.
Screen resolution equals the number of pixels across by the number of pixels down.

C h a p t e r 5 : H T M L a n d I m a g e s 177

The more pixels onscreen or in an image, the greater the detail or resolution of the
image. Some common screen resolutions are listed here:

640 × 480
800 × 600
1,024 × 768
1,280 × 1,024
1,600 × 1,200

The number of pixels is only one part of a digital image. Images also have color.
Every monitor supports a certain number of colors that can be displayed at once. The
more colors used, the more realistic the image will look. Color support is measured by
the number of bits used to store the color information for each pixel. Common color
resolutions are listed here:

■ Standard VGA 4 bits per pixel = 16 colors

■ Super VGA 8 bits per pixel = 256 colors

■ High resolution 16 bits per pixel = 65,536 colors, or simply thousands of colors

■ True color 24 bits per pixel = 16.7 million colors, generally referred to as
millions of colors

Computer-based images come in two basic flavors: vector images and bitmapped
images. Figure 5-1 illustrates the basic idea behind these images.

178 H T M L : T h e C o m p l e t e R e f e r e n c e

Figure 5-1. Idea of vector images versus bitmap images

W
EB

A
N

D
H

TM
L

B
A

S
IC

S
A vector image is described mathematically as a set of curves. When a computer

reads a vector image, it evaluates the mathematical information and draws the
resulting information on the screen. Because the image is defined mathematically, it is
very compact. For example, a vector image of a red circle might be described simply as
a circle with a radius of 50 pixels filled with red. While vector images are very useful
to describe shapes, lines, and other forms of illustration, photographic and similar
imagery are better described by a bitmap. A bitmap image is specified as a collection of
pixels of different color values. Because of the large number of pixels that may be in an
image, as well as the color information that must be described, bitmaps can be very
large. For example, an uncompressed bitmap image at 640 × 480 pixels—the typical
screen size—with 24 bits of color information would take up nearly 1MB. Bitmaps are
the most common image formats. They include images made up of a collection of dots
or pixels, such as photographs and television pictures.

The main problem with bitmaps is that the file sizes can be very large. Their
excessive size makes it impractical to transmit raw bitmaps across a network like the
Internet. One approach to dealing with the size problem is to compress the images. In
general, there are two forms of image compression: lossless and lossy. Lossless image
compression means that the compressed image is identical to the uncompressed image.
Because all the data in the image must be preserved, the degree of compression, and
the corresponding savings, is relatively minor. Lossy compression, on the other hand,
does not preserve the image exactly, but does provide a much higher degree of
compression. With lossy compression, the image quality is compromised for a smaller
byte count. Because the human eye may barely notice the loss, the trade-off may be
acceptable.

Image compression depends on the image file format. There are a variety of image
formats in the computer world, including vector image formats like Encapsulated
PostScript (EPS) and bitmap formats like GIF, TIFF, and JPEG. While the HTML
standard says nothing about what image formats can be used on the Web, the browser
vendors tend to support the same image types. On the Web, the primary image formats
are GIF (Graphics Interchange Format) and JPEG (Joint Photographic Experts Group).
A new format called PNG (Portable Network Graphics), which likely will eventually
become a Web image standard, is being heavily endorsed by the World Wide Web
Consortium (W3C); but, so far, browser support is spotty at best. Given the historical
association between UNIX and the Internet, the X image formats—XBM (X Bitmaps)
and XPM (X Pixelmaps)—are often supported natively by browsers. Page designers are
warned to use only GIF and JPEG images, as these are the most commonly supported
formats. Table 5-1 provides an overview of basic file types.

Internet Explorer also supports the bitmap (BMP) file type popular with Windows
users. This format has not been adopted widely on the Web.

GIF Images
GIF images are used extensively on the Web. They are probably the most widely
supported image format in browsers that handle graphics. GIF images come in two
basic types: GIF87 and GIF89a. Both forms of GIF support 8-bit color (256 colors), use

C h a p t e r 5 : H T M L a n d I m a g e s 179

the LZW (Lempel-Ziv-Welch) lossless compression scheme, and generally have the file
extension .gif. GIF 89a supports transparency and animation, both of which will be
discussed in this section. All references in this text refer to the more modern 89a form.

There is some concern about the use of GIF images due to the patent on the LZW
algorithm held by Unisys that would require payment for use of the proprietary scheme.
This concern is unsubstantiated. Nevertheless, the PNG format described in this chapter
has been positioned as a substitute for the GIF format.

The run-length encoding compression scheme used by GIF works well with
large areas of continuous color, so GIF is very efficient in compression of flat-style
illustration. Figure 5-2 shows the GIF compression scheme in practice. Notice in the
figure how the images with large horizontal continuous areas of color compress highly,
while those with variation do not. Simply taking a box filled with lines and rotating it
shows how dramatic the compression effect can be.

As mentioned earlier, GIF images support 8-bit color for a maximum of 256 colors
in the image. Consequently, some degree of loss is inevitable when representing
true-color images such as photographs. Typically, when an image is remapped from a
large number of colors to a smaller color palette, dithering occurs. Dithering attempts to
imitate colors by placing similar colors near each other. It also produces a speckling or
banding effect that may cause images to appear rough or fuzzy. Web authors should
be careful to use GIF images appropriately. Netscape and Microsoft currently use a
so-called “browser-safe” color palette of 216 colors that are common across systems
like the Macintosh or Windows. If a GIF image using a color outside this color palette is
displayed on an 8-bit system, dithering will occur. Authors looking to avoid image
problems such as dithering are invited to visit www.htmlref.com.

180 H T M L : T h e C o m p l e t e R e f e r e n c e

File Type File Extension

GIF (Graphics Interchange Format) .gif

JPEG (Joint Photographic Experts Group) .jpg or .jpeg

XBM (X Bitmaps) .xbm

XPM (X Pixelmaps) .xpm

PNG (Portable Network Graphics) .png

Table 5-1. Selected Internet Image File Types

W
EB

A
N

D
H

TM
L

B
A

S
IC

S

According to the GIF specification, layering can be used to create a GIF image that
supports more than 256 colors. However, not all browsers support this little-known
feature. Layering also allows for an interesting form of color interlacing, which can
bring in one set of colors before another.

GIF images also support a concept called transparency. One bit of transparency is
allowed, which means that one color can be set to be transparent. Transparency allows
the background that an image is placed upon to show through, making a variety of
complex effects possible. Transparency is illustrated in Figure 5-3.

GIF transparency is far from ideal, as it can result in a halo effect in certain
situations. For example, in order to smooth images, a technique called anti-aliasing is
used. Anti-aliased images appear smooth because the image is progressively made
light to fade into the background. However, because only one color of transparency can

C h a p t e r 5 : H T M L a n d I m a g e s 181

Figure 5-2. GIF compression scheme comparison

956 bytes 1,054 bytes

1,050 bytes 1,158 bytes 1,588 bytes 1,780 bytes

10,977 bytes4,563 bytes1,444 bytes1,029 bytes

182 H T M L : T h e C o m p l e t e R e f e r e n c e

be set in an image, the anti-aliasing colors may show up as a halo or residue around the
image. The idea of anti-aliasing is shown in Figure 5-4.

GIF images also support a feature called interlacing. Interlacing allows an image to
load in a venetian-blind fashion rather than from top to bottom a line at a time. The
interlacing effect allows a user to get an idea of what an image looks like before the
entire image has downloaded. The idea of interlacing is shown in Figure 5-5. Only 26
percent of this 163K image is loaded, producing an indistinct, highly pixelated image.
Once the image is completely loaded, it will present a clear image of an office building;
at this point in its progress, however, it already gives the user a good idea of what is
being downloaded. The previsualization benefit of interlacing is very useful on the
Web, where download speed is often an issue. While interlacing a GIF image is

Figure 5-3. Transparency with GIF images

W
EB

A
N

D
H

TM
L

B
A

S
IC

S

generally a good idea, occasionally it comes with a downside. First, interlaced images
may be slightly larger than noninterlaced images. Second, an interlaced image may not
always provide its intended previsualization benefit. For example, if the GIF image is
of graphic text, the text will probably not be readable until the image is fully loaded.

Starting with the GIF89a format, which was supported first by Netscape 2,
animation has been possible on the Web. The GIF89a format supports a series of GIF
images that act as the individual frames of animation. The animation can be set up so
one image is displayed after another, similar to a little flipbook. The animation
extension also allows timing and looping information to be added to the image. Today,
animated GIFs are one of the most popular ways to add simple animation to a Web
page because nearly every browser supports them. Browsers that do not support the
animated GIF format generally display the first frame of the animation in its place.
Even though plug-ins or other browser facilities are not required, authors should not
rush out to use animation on their pages. Excessive animation can be distracting as
well as inefficient to download, particularly when frames are not used efficiently. One

C h a p t e r 5 : H T M L a n d I m a g e s 183

Figure 5-4. Anti-aliased image versus aliased image

Anti-aliased

Aliased

approach to combat file bloat is to replace only the moving parts of an individual
animation frame. This may result in a dramatic saving of file size, as shown in
Figure 5-6.

In summary, because of their compression scheme and support for 8-bit color, GIF
images tend to be best suited for illustrations. GIF images do support interlacing,
which may provide previsualization for Web-based imagery. Because of the nature of

184 H T M L : T h e C o m p l e t e R e f e r e n c e

Figure 5-5. Example of interlacing

their image compression, GIF images may not be suitable for photographic-style
imagery, which is probably better left to the JPEG format discussed in the next section.
In their favor, GIF images are the most widely supported image format, and do have
advanced features such as transparency and animation. Probably the only controversial
aspect of the image format, besides its compression issues, is its pronunciation with
either a hard g or a j sound. The author prefers the hard g as the other pronunciation
sounds like a popular brand of peanut butter, but this sticky issue will probably never
be settled.

W
EB

A
N

D
H

TM
L

B
A

S
IC

S

C h a p t e r 5 : H T M L a n d I m a g e s 185

Figure 5-6. Example of animated GIF frames and optimization

Optimized animation
(26K)

Unoptimized animation
(65K)

JPEG Images
The other common Web image format is JPEG, which usually is indicated by a filename
ending with .jpg or .jpeg. JPEG, which stands for the Joint Photographic Experts
Group—the name of the committee that wrote the standard—is a lossy image format
designed for compressing photographic images that may contain thousands, or even
millions, of colors or shades of gray. Because JPEG is a lossy image format, there is
some trade-off between image quality and file size. However, the JPEG format stores
high-quality, 24-bit color images in a significantly smaller amount of space than GIF,
thus saving precious disk space or download time on the Web.

While the JPEG format may compress photographic images well, it is not well
suited to line drawings or text. The degree of compression in JPEG images, which
shows how the format favors photographs, is shown in Figure 5-7. Note that when
illustrations are saved in JPEG format, they may acquire extraneous information, often
in the form of unwanted dots or other residue. Because JPEG is so well suited to

186 H T M L : T h e C o m p l e t e R e f e r e n c e

Figure 5-7. Comparison between GIF and JPEG formats

JPEG 80% - 6,934 bytesGIF 6 bit - 4,299 bytes

GIF 6 bit - 19,211 bytes JPEG 60% - 7,477 bytes

photographs and GIF to illustrations, it's no wonder that both are used on the Web.
JPEG images do not support animation, nor do they support any form of transparency.
Web designers needing such effects must turn to another image format, such as GIF.
JPEG images do support a form of interlacing in a format called progressive JPEG.
Progressive JPEGs fade in from a low resolution to a high resolution, going from fuzzy
to clear. Like interlaced GIFs, progressive JPEG images are slightly larger than their
nonprogressive counterparts. One minor problem with progressive JPEGs is that very
old browsers, particularly those before Netscape 2, do not support them.

PNG Images
The Portable Network Graphics (PNG) format has all of the features of GIF89a in
addition to several other features. Notable features include greater color depth support,
color and gamma correction, and 8-bit transparency. In addition, the compression
algorithm for PNG is nonproprietary, making PNG a likely successor to GIF. Internet
Explorer 4 supports inline PNG images in a limited way. Some versions of Netscape
Communicator require a plug-in, while later versions provide limited support. No
4.x-generation browser supports PNG well enough to rely on the format, so Web
designers are warned to avoid the format unless browser sensing is used to guarantee
images will render properly.

Other Useful Image Formats
There are many image formats beyond GIF, JPEG, and PNG that may be used on the
Web. These include vector formats like Illustrator and Flash (with the file extension
.swf); compressed Freehand files; AutoCAD files (often used for architecture sites); and
images that require heavy compression, such as fractals. Most of the less common
image formats may require a helper application or plug-in to the browser to allow the
image to be displayed. Unless you have a specific need, you should probably avoid
special image types requiring browser add-ons; users may become frustrated by the
work involved in obtaining the extra software.

Image Downloading Issues
One major criticism of using images on a Web page is the time they take to download
and the frustration this may cause the user. The speed of the Web has prompted some
to dub it the World Wide Wait. Inevitably, it takes time to transmit data across the
Internet. The amount of data that can be transmitted across a link in a certain period of
time is termed bandwidth and is often measured in bits per second (bps), kilobits per
second (Kbps), or megabits per second (Mbps). The higher the bandwidth, the more
data can be transmitted quickly. Unfortunately, users accessing the Internet via a
modem often have very limited bandwidth available. Some common speeds and the
approximate time it takes to transmit 1MB of data are shown in Table 5-2. As you can

W
EB

A
N

D
H

TM
L

B
A

S
IC

S

C h a p t e r 5 : H T M L a n d I m a g e s 187

see, the faster the data connection, the faster the Web will appear to load. Currently,
cable modems provide the fastest connections for most home users. However, several
reports indicate that the average modem speed today is still between 28.8Kbps and
56Kbps, primarily due to the very large number of users still using older modems.
Designers who create for wide audiences might want to keep this in mind.

The time for all connections will vary dramatically in real life. The numbers in Table 5-2
are theoretical; conditions such as provider congestion and line conditions may
significantly taint download times. Furthermore, the speed of cable modems varies
dramatically due to the use of proxy servers and the fact that bandwidth may be shared
at the neighborhood level.

Given that users have only so much bandwidth available, one way to reduce wait
time is to reduce the amount of data that must be sent. In a typical Web page, the
majority of the data transmitted tends to be binary, particularly in the form of images.
Given this observation, one approach to improving Web page accessibility is to reduce
the file size of the images in your Web page.

The size of a graphic file is determined first by its physical pixel size and then by
the color information. The larger the physical image, the larger it tends to be bytewise.
Also, the more bits used to represent color information for a particular image, the
larger the file size. One approach to decreasing file size would be to reduce the
physical size of an image file, possibly by creating thumbnail images that could be
clicked to download the full-sized image. Another approach to decreasing file size is to
reduce the number of colors in the image. Oftentimes, particularly with GIF images,
there are far more bits used to represent color information than there are actual colors
in the image. For example, reducing the bit depth from 8 bits (256 colors) to 5 bits (32
colors) can result in significant byte savings without greatly compromising the image.

Another approach to reducing the byte count in an image is through compression.
As discussed previously, image compression is handled by the image file format, so

188 H T M L : T h e C o m p l e t e R e f e r e n c e

Connection Speed Download Time

14.4Kbps 10 minutes

28.8Kbps 5 minutes

56Kbps 2.5 minutes

ISDN Approximately 1 minute

Cable modem Varies from 5–30 seconds

T1 5 seconds

Table 5-2. Bandwidth and Comparison for 1MB of Data

choosing the correct format for a particular image is integral to reducing byte count. A
basic rule of thumb is to use GIF images for illustrations and JPEGs for photographs.
Also, by setting the degree of compression when using a JPEG image, you can reduce
file size, at a small sacrifice in image quality. Because the human eye can't often
perceive the difference between an image of high quality and one of medium quality,
at least on the Web, tuning the image can often result in significant file size savings
without penalty.

While image size is certainly important to improving the loading time of Web
pages, designers shouldn’t get carried away with optimizing images without
consideration for the rest of the Web process. For example, while a designer may
compress images to their minimum size, the user may still perceive the Web page to
be slow. This occurs because there are many aspects to the delivery of a Web page,
including the Web server, the links traveled on the Internet, the traffic on the Internet,
the protocols, the software being used, and even the processing speed of the computer
at the other end. All of these factors affect the user’s experience. There is little reason to
optimize images for a Web site that will be hosted on a slow or poorly connected
server. No matter what, always consider stopwatch time over file size or any other
measurement for download rate. What the user experiences is what counts, not the
bytes transferred or the number of connections made.

Obtaining Images
One of the first problems many novice Web designers face is where to get images
for their Web pages. This shouldn’t be any more difficult than getting images for a
different type of project. One way to obtain images is simply to make them. There are a
variety of vector drawing programs, such as Adobe Illustrator, and bitmap editing or
paint programs, such as Adobe Photoshop. With such tools, you can create images
directly in the computer and then save them to the appropriate Web image format,
such as GIF or JPEG. Images do not have to be made within the computer, however.
You could scan drawings with a flatbed scanner, or take pictures with a traditional
camera and scan them with a flatbed scanner, slide scanner, or even a drum scanner.
Digital cameras are also very useful for capturing imagery and avoiding the scanning
process altogether.

Another approach to obtaining images to use on the Web is to buy them. You may
be aware of the many clip art CD-ROMs available for sale. High-quality images also
can be licensed from traditional stock photography companies, such as Comstock
(http://www.comstock.com). Some page authors who believe that clip art is not of
high enough quality prefer to piece together images. Outlets such as Eyewire
(http://www.eyewire.com) license professional-grade imagery. CD-ROMs with 100,000
images for $100 aren't always the best deal considering the quality of the imagery
and the fact that you might only need one image. You truly get what you pay for
with image clip art.

W
EB

A
N

D
H

TM
L

B
A

S
IC

S

C h a p t e r 5 : H T M L a n d I m a g e s 189

Not all stock photography houses understand the Web. A few still charge exorbitant
prices for imagery if it will be used online. Given the popularity of the Web, this
situation will probably change as they lose business to their more open-minded
competitors.

The expense of licensing images and the ease with which images can be copied
have convinced many people that they can simply appropriate whatever images they
need. Unfortunately, this is stealing the work of others. While there are stiff penalties
for copyright infringement, it can be difficult to enforce these laws. Also, some page
designers tend to bend the rules thanks to the legal concept called fair use, which allows
the use of someone else’s copyrighted work under certain circumstances.

There are four basic questions used to define the fair-use concept. First, is the work
in question being appropriated for a nonprofit or profit use? The fair use defense is less
likely to stand up if the “borrowed” work has been used to make money for someone
other than its copyright holder.

Second, is the work creative (for example, a speculative essay on the impact of a
recent congressional debate) or factual (a straightforward description of the debate
without commentary)? Fair use would cover use of the factual work more than use of
the creative one.

Third, how much of the copyrighted work has been used? It is possible to use
someone else’s image if it is changed substantially from the original. The problem is
determining what constitutes enough change in the image to make it a new work.
Simply using a photo-editing tool to flip an image or change its colors is not enough.
There is a fine line between using portions of another person’s work and outright
stealing. Even if you don’t plan on using uncleared images, be careful of using images
from free Internet clip art libraries. These so-called free images may have been
submitted with the belief that they are free, but some of them may have been
appropriated from a commercial clip art library somewhere down the line. Be
particularly careful with high-quality images of famous individuals and commercial
products. While such groups may often appreciate people using their images, the
usage is generally limited to noncommercial purposes.

The third fair use question leads to the fourth. What impact does the image have on
the economic value of the work? While unauthorized use of a single Star Trek–related
image might not substantially affect the money earned by Paramount Pictures in a
given fiscal year, Paramount’s lawyers take a dim view of such use. In fact, some
entertainment organizations have taken steps to make it very difficult for Web page
designers to use such images.

One could, perhaps, add a fifth question to the list: who owns the original work,
and how vigorously will the owner defend it? This whole discussion begs many legal
questions that are far beyond the scope of this book. Suffice it to say that in the long
run, it’s always safer to create original work, license images, or use material in the
public domain. Just because many Web designers skirt the law doesn’t mean
you should.

190 H T M L : T h e C o m p l e t e R e f e r e n c e

W
EB

A
N

D
H

TM
L

B
A

S
IC

S
HTML Image Basics
To insert an image into a Web page, use the element and set the SRC attribute
of the element equal to the URL of the image. As discussed in Chapter 4, the form of
the URL may be either an absolute URL or a relative URL. Most likely, the image
element will use a relative URL to an image found locally. To insert a GIF image called
logo.gif residing in the same directory as the current document, use

Of course, an absolute URL could also be used to reference an image on another
server, for example

Using an external URL is not advised since images may move and cause the page to
load at an uneven pace.

The SRC attribute must be included. Otherwise, browsers that support images may
display a placeholder or broken image icon.

To set up a simple example, first create a directory to hold your images. It is usually
a good idea to store all your image media in a directory named images. This will help
you keep your site contents organized as you build the Web site. Now place a GIF
format image named photo.gif in that directory. To retrieve an image off the Internet,
you can simply right-click with your mouse on an image and save the file to your
directory. Macintosh users will have to hold the mouse button down on an image to
access the menu for saving the image. Once you have a GIF image, you should be able
to use a short piece of HTML markup to experiment with the use of , as
shown here:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>

<HEAD>
<TITLE> Image Example </TITLE>

</HEAD>

<BODY>
<H2 ALIGN="CENTER"> Image Example </H2>

</BODY>

</HTML>

C h a p t e r 5 : H T M L a n d I m a g e s 191

A possible rendering of the image example is shown in Figure 5-8.
Under the original HTML 2.0 specification, besides SRC, there were only three other

attributes to the element: ISMAP, ALIGN, and ALT. Later on, Netscape and
Microsoft added numerous attributes, many of which have been incorporated into the
HTML 4.0 specification that is currently in progress. The next few sections cover the basic
attributes. A more complete rundown of the image options available will follow.

ALT Attribute
The ALT attribute was set to provide alternative text for user agents that do not display
images, or for graphical browsers when the user has turned image rendering off. The
ALT attribute’s value may display in place of the image, or be used as a tool tip or
placeholder for information in image-based browsers. The ALT attribute's value is
typically enclosed in double quotes and may include spaces and other characters.

192 H T M L : T h e C o m p l e t e R e f e r e n c e

Figure 5-8. Possible rendering of a simple example

However, any HTML markup found in the ALT element will be rendered as plain text.
If the option to display images is turned off, the browser will display the alternative
text, as shown in Figure 5-9.

Many modern graphical browsers will also display the ALT text as the tool tip for
the image once the pointer is positioned over the image for a period of time, as shown
in Figure 5-10. A browser may also show the ALT text as images load, giving the user
something to read as the page renders.

While some sources suggest that ALT text be limited to 1,024 characters, there is no
limit to the text that may theoretically be used. However, anything more than a few
hundred characters may become unwieldy. Furthermore, some browsers, including
some versions of Netscape 4, do not handle long tool tips properly and may not wrap
the descriptive text.

W
EB

A
N

D
H

TM
L

B
A

S
IC

S

C h a p t e r 5 : H T M L a n d I m a g e s 193

Figure 5-9. Alternative text rendering

The Importance of ALT
It is easy to forget that many different types of browsers can be used to access the Web.
While much of the world may access a page via Netscape or Microsoft products, what
about everyone else out there? There are many people who have access to the Web
from a text-only environment. Figure 5-11 shows the same page two ways: under
Netscape with the image turned on and as rendered under Lynx.

In addition to those who choose to access the Web via a text-only environment,
some visually impaired people may require a different type of browser. Blind people
might access the Web using a text mode browser fed into a speaking machine or using

194 H T M L : T h e C o m p l e t e R e f e r e n c e

Figure 5-10. Tool tip rendering for ALT text

a browser such as pwWebSpeak (http://www.prodworks.com), which can integrate
with a voice synthesizer. Other users may access the Web via a telephone or other
automated system just for ease of use or quick information. Already, systems like the
Web-on-Call Voice Browser (http://www.netphonic.com) can be used to provide
automated phone access to Web sites. Imagine a situation in which an automated

W
EB

A
N

D
H

TM
L

B
A

S
IC

S

C h a p t e r 5 : H T M L a n d I m a g e s 195

Figure 5-11. Graphical browser versus text-only browser

telephone system to access the Web read, “Press 1 for corporate information, press 2 for
product information.” Finally, what about robots that come through and index a Web
site for relevant information? The contents of images provide no information to index.
In all of these cases—the text mode browser, the automated Web access system, and
the site indexing robots—images don't mean much. In these cases, the ALT attribute
can be very valuable.

Setting the ALT attribute to provide alternative information for an image can solve
many accessibility problems, but simply setting alternative text is not adequate. The
biggest problem with alternative text is that it often does not really provide any benefit.
Imagine a company logo on a page for a company called Big Company. Should the
ALT text be set to something like "Logo of Big Company, Inc."? Imagine a person
hearing this read out loud. Doesn‘t just "Big Company, Inc." make more sense?

ALT text for pictures of things may prove even more cryptic. A picture of the
corporate office with ALT text set to read "Picture of Corporate Office" is not terribly
explanatory. A more detailed description such as "A picture of the exterior of the Big
Company Corporate office—a three-story building with beach-flavored architecture
surrounded by large trees" is much more useful. In this case, there is some added value
even for the sighted user. A general rule is that if an image conveys information, the
ALT text should convey the same information; and, if an image is simply decoration,
you can set the ALT text to nothing: ALT=" ".

Last is the famous case of the bullet item. Many users add small red or blue circles
or bullets to their pages. In many cases, the ALT text for these objects is set to be
"bullet". Now think about the aggravation of seeing the word bullet over and over
again on a page, not to mention hearing it read aloud. Maybe putting an asterisk would
be more appropriate for ALT text in this instance.

While a lot of people might argue that the Web wasn’t popular until graphics were
integrated or that the Web is inherently a visual medium, the value of textual content
on the Web is indisputable. Consequently, it should be made as accessible as possible.
There is no arguing that a picture may be worth a thousand words; but if that is the
case, why not provide a few words in exchange?

Image Alignment
Probably the first thing a user wants to do after he or she is able to put an image in a
Web page is to figure out how to position it on the page. Under the HTML 2.0
standard, there was very little that allowed the user to format image layout on a page.
Initially, the ALIGN attribute could be set to a value of TOP, BOTTOM, or MIDDLE.
When an image was included within a block structure of text, the next line of text
would be aligned at the top, middle, or bottom of the image, depending on the value
of the ALIGN attribute. If the attribute wasn't set, it would default to the bottom. The
example that follows illustrates basic image alignment as first defined in HTML 2. The
rendering of the image alignment example is shown in Figure 5-12.

196 H T M L : T h e C o m p l e t e R e f e r e n c e

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>
<HEAD>

<TITLE> Basic Image Alignment </TITLE>
</HEAD>

<BODY>

<P>

This text should be aligned at the top of the image. </P>

<P>

This text should be aligned at the middle of the image. </P>

<P>

This text should be aligned at the bottom of the image. </P>
</BODY>

</HTML>

W
EB

A
N

D
H

TM
L

B
A

S
IC

S

C h a p t e r 5 : H T M L a n d I m a g e s 197

Figure 5-12. Image alignment rendering

One of the problems with initial image alignment in early HTML was that the text
really didn’t flow around the image. In fact, only one line of text was aligned next to
the image, which meant the inline images had to be very small or the layout looked
somewhat strange, as shown in Figure 5-13.

Netscape introduced the LEFT and RIGHT values for ALIGN, which allowed text
to flow around the image. When setting an image element like <IMG SRC="logo.gif"
ALIGN="LEFT">, the image is aligned to the left and the text flows around to the
right. Correspondingly, when you are using markup like <IMG SRC="logo.gif"
ALIGN="RIGHT">, the image is aligned to the right and the text flows around to the
left. It is even possible to flow the text between two objects if things are done carefully.

198 H T M L : T h e C o m p l e t e R e f e r e n c e

Figure 5-13. Poor text flow under HTML

W
EB

A
N

D
H

TM
L

B
A

S
IC

S
The HTML presented here shows how the ALIGN attribute would be used to flow text
around images. The rendering of this example is shown in Figure 5-14.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>
<HEAD>

<TITLE> Improved Text Flow </TITLE>
</HEAD>

<BODY>

The top image has its ALIGN attribute set to "left," so the text
flows around it to the right. The top image has its ALIGN attribute

set to "left," so the text flows around it to the right. The top
image has its ALIGN attribute set to "left," so the text flows

around it to the right.

<BR CLEAR="LEFT">

The top image has its ALIGN attribute set to "right," so the text

flows around it to the left. The top image has its ALIGN attribute
set to "right," so the text flows around it to the left. The top
image has its ALIGN attribute set to "right," so the text flows

around it to the left.
</BODY>

</HTML>

Notice in this example that there is a special attribute of the
 element. This is
necessary to force the text to flow properly and will be discussed shortly. However,
there are still some aspects of the ALIGN attribute that should be discussed. There is
some confusion regarding the use of the value CENTER with the ALIGN attribute for
the element. Typically, this attribute value acts the same as the MIDDLE value
and should be avoided. To actually center an image in the middle of the screen requires
enclosing the image within <P ALIGN="CENTER">, <DIV ALIGN="CENTER">, or a
plain <CENTER> element.

Netscape and Microsoft also support four other values for ALIGN: TEXTOP,
BASELINE, ABSMIDDLE, and ABSBOTTOM. All these attributes should be avoided
in most cases, since they may not be supported identically across browsers and are not

C h a p t e r 5 : H T M L a n d I m a g e s 199

yet part of any standards. Positioning is handled more precisely by technologies like
style sheets, which are discussed in Chapter 10. The basic meaning of these attribute
values is discussed here.

Setting the ALIGN attribute to TEXTTOP aligns the top of an image with the top of
the tallest character in the current line; this attribute works erratically under various
browsers. The BASELINE value aligns the bottom of an image with the baseline of the
text in the current line. (The baseline is the unseen line that all the characters sit on.)
ABSMIDDLE aligns the middle of an image with the middle of the text in the current
line, which means in the actual middle of the characters themselves. The value
ABSBOTTOM aligns the bottom of an image with the bottom of the lowest item in the
current line of text, including descender characters, such as lowercase y and g, that go
below the baseline. Unlike ABSBOTTOM, BASELINE does not include the descenders
in a character. For example, in a lowercase g, the lower half of the letter will sit below
the baseline.

HSPACE and VSPACE
Just floating an image and allowing text to wrap around it may not be adequate. There
is also the issue of how to position the image more precisely with the text and make

200 H T M L : T h e C o m p l e t e R e f e r e n c e

Figure 5-14. Rendering of improved text flow example

W
EB

A
N

D
H

TM
L

B
A

S
IC

S
sure that text breaks where it ought to. Initially introduced by Netscape and made
official in HTML 3.2, the HSPACE and VSPACE attributes can be used to introduce
“runaround” or buffer space around an inland image. The HSPACE attribute is used to
insert a buffer of horizontal space on the left and right of an image, while the VSPACE
attribute is used to insert a buffer of vertical space in between the top and bottom of the
image and other objects. The value of both attributes should be a positive number of
pixels. While under some browsers it may be possible to set the attribute values to
percentage values, this is inadvisable, because very high values may produce strange
results. However, the most problematic aspect of the HSPACE and VSPACE attributes
is the amount of buffer space that occurs on both sides of the image. Take a look at the
HTML markup shown here to see how HSPACE and VSPACE work. Figure 5-15
displays a possible browser rendering of the example code.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>
<HEAD>
<TITLE> HSPACE and VSPACE Example </TITLE>

</HEAD>

<BODY>
<P>The image below has its <TT><HSPACE> </TT> and
<TT><VSPACE> </TT> attributes set to 50 pixels, so the

text will flow around it at a distance of 50 pixels. The rest of
this text is dummy text. If it said anything interesting you would

certainly be the first to know.

This is dummy text. If it said anything interesting you would certainly

be the first to know. There's really no point in reading the rest of it.
This is dummy text. If it said anything interesting you would certainly
be the first to know. There's really no point in reading the rest of it.

This is dummy text. If it said anything interesting you would certainly
be the first to know. There's really no point in reading the rest of it.

This is dummy text. If it said anything interesting you would certainly

be the first to know. There's really no point in reading the rest of it.
This is dummy text. If it said anything interesting you would certainly

be the first to know. There's really no point in reading the rest of it.
This is dummy text. If it said anything interesting you would certainly
be the first to know. There's really no point in reading the rest of it. </P>

</BODY>

</HTML>

C h a p t e r 5 : H T M L a n d I m a g e s 201

202 H T M L : T h e C o m p l e t e R e f e r e n c e

It turns out that in the future, by using style sheets (discussed in Chapter 10), it
may be possible to avoid these somewhat imprecise layout features altogether. The
HSPACE and VSPACE attributes have been very useful, albeit occasionally abused by
Web designers. How these attributes can be used in conjunction with the so-called
invisible pixel gif to force layouts will be discussed in Chapter 6.

Extensions to

In flowing text around an image, there may be a situation in which the designer wants
to clear the text flow around the image. For example, creating an image with a caption
like the one shown in Figure 5-16 might be problematic because the text may reflow.

To deal with such problems, a new attribute called CLEAR was added to the

element; this extension is now part of the HTML standard. The CLEAR attribute can
be set to LEFT, RIGHT, ALL, or NONE and will clear the gutter around an inline
object like an image. For example, imagine the fragment <IMG SRC="photo. gif"

Figure 5-15. Rendering of HSPACE and VSPACE example

C h a p t e r 5 : H T M L a n d I m a g e s 203

W
EB

A
N

D
H

TM
L

B
A

S
IC

S

ALIGN="LEFT"> with text wrapping around it. If <BR CLEAR="LEFT"> is included
in the text and the wrapped text is still wrapping around the image, the text will be
cleared to pass the image. The CLEAR="RIGHT" attribute to
 works for text
flowing around right-aligned images. Of course, setting the attribute to NONE makes
the element act as it normally would and is implied when using the
 by itself. An
example of the use of this attribute is shown here; a rendering appears in Figure 5-17.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>

<HEAD>

<TITLE> <BR CLEAR> Example </TITLE>
</HEAD>

Figure 5-16. Image with misaligned caption

<BODY>

<IMG SRC="images/building.jpg" WIDTH="234" HEIGHT="150" BORDER="2"
ALT="Outside of the Big Company corporate headquarters"

ALIGN="LEFT" HSPACE="20" VSPACE="10">

Photo: Big Company, Inc. Corporate Headquarters

Description: This building is a fine example of the <I> Miami

Vice </I> influence on mid-80s southern California architecture.

The next paragraph should appear under the photo, not next to it,

thanks to the <TT><BR CLEAR=LEFT> </TT> .

<BR CLEAR="LEFT">

<I> Photo copyright © 1999 by Big Company, Inc. </I>
</BODY>

</HTML>

204 H T M L : T h e C o m p l e t e R e f e r e n c e

Figure 5-17. Rendering of <BR CLEAR> example

C h a p t e r 5 : H T M L a n d I m a g e s 205

W
EB

A
N

D
H

TM
L

B
A

S
IC

S
HEIGHT and WIDTH

The HEIGHT and WIDTH attributes of the element, introduced in HTML 3.2,
are used to set the dimensions of an image. The value for these attributes is either a
positive pixel value or a percentage value from 1 to 100 percent. While an image can
be stretched or shrunk with this attribute, the main purpose is actually to reserve space
for images that are being downloaded. As pages are requested by a browser, each
individual image is requested separately. However, the browser can't lay out parts of
the page, including text, until the space that the image takes up is determined. This
may mean waiting for the image to download completely. By telling the browser the
height and width of the image, the browser can go ahead and reserve space with a
bounding box into which the image will load. Setting the height and width thus allows
a browser to download and lay out text quickly while the images are still loading.
For an image called test.gif that has a height of 10 and width of 150, use . The improvement in usability with
the HEIGHT and WIDTH attributes for images is significant, and they should always
be included.

Many people wonder what the measurements of a particular image are. Using Netscape,
it is possible to view the dimensions quite easily. First, load the image into the browser
by itself without any accompanying HTML. Now look at the title bar of the browser,
which should display the dimensions. Also, using the option to view document
information for the image within the browser should reveal the dimensions.

Beyond the prelayout advantages, the HEIGHT and WIDTH attributes can also
be used to size images. This is rarely a good idea, as the image may end up being
distorted. One way to avoid distortion is to shrink images in a proportional manner.
However, if the image is to be made smaller, it is a better idea to size the image
appropriately in a graphics program. Shrinking the image with the HEIGHT and
WIDTH attributes does not affect the file size, while resizing the image beforehand
will shrink the file and hence reduce the download time. Another use of HEIGHT
and WIDTH sizing might be to increase the size of a simple image. For example,
imagine an image of a single green pixel, and set the height and width alike: . The resulting image is a large
green box with very little download penalty. A few sites even use the HEIGHT and
WIDTH attributes with percentage values like 100 percent to create interesting effects
such as full-screen images or vertical or horizontal color bars.

One other interesting use of the HEIGHT and WIDTH attributes would be to help
preload images. With the desire for fast-loading pages, preloading can be used to
create the illusion of a quick download. Imagine that during the idle time on a page,
the images on the next page are being downloaded so that they are precached when
the user goes to the next page. A significant perceived performance improvement is
achieved. One way to perform this prefetching is by putting an image that will appear
later on the current page with HEIGHT and WIDTH both set to 1. In this case, the

image won't really be visible but will be fully loaded into the browser’s cache. Once
the user visits the next page, the image can be fetched off the local disk and
displayed quickly.

One potential problem with this approach is that the browser doesn’t load images
at the same rate or in the same order. Because of this, some logic should be added to
the page so that the image to preload only loads after the page has finished. Another
issue occurs if the user chooses a page that doesn’t use the prefetched image. Because
of these potential problems, a linear order of pages is probably the only structure that
can benefit from this trick.

LOWSRC
Another potential speed improvement introduced by Netscape and still not part of the
HTML 4.0 standard is the LOWSRC attribute. The LOWSRC attribute should be set to
the URL of an image to load in first, before the so-called high source image indicated
by the SRC attribute. In this sense, the attribute can be set to the address of a
low-resolution or black-and-white file, which can be downloaded first and then
followed by a high-resolution file. For example,

<IMG SRC="hi-res-photo.gif" LOWSRC="bw-photo.gif" HEIGHT="100"

WIDTH="100" ALT="Outside of building photograph">

The LOWSRC attribute can provide significant usability improvement when large
full-screen images must be used.

One interesting aspect of the LOWSRC attribute is that the browser tends to use the
image dimensions of the LOWSRC file to reserve space within the Web page if the
HEIGHT and WIDTH attributes are not set. Because of this, some strange distortion
could happen if the high-resolution image is not the same size as the low-resolution
image. This problem actually occurs under versions of Netscape.

Another interesting aspect of the LOWSRC attribute is the possibility for simple
animation. For example, the LOWSRC attribute could be set to a picture of a closed
book and the regular SRC attribute set to a picture of an open book. When loaded,
it appears as a small two-frame animation. However, this method of animation is
very simplistic and lacks timing; so while it might look good on a relatively slow
connection, the effect may be lost over a T1 connection where the images load rapidly.
For animation, an animated GIF should be used, as discussed earlier in the chapter.
Animated GIFs require no special syntax and may be used for either SRC or LOWSRC.
If more complex animation is required, using an <EMBED> or <OBJECT> element to
reference a Flash file might be called for, as discussed in Chapter 9.

These are only the most basic attributes for the element. A more
complete listing of element attributes can be found in the element reference
in Appendix A.

206 H T M L : T h e C o m p l e t e R e f e r e n c e

Images as Buttons
One of the most important aspects of images, as discussed in Chapter 4, is how they
can be combined with the <A> element to create buttons. To make an image
“pressable,” simply enclose it within an anchor.

When the page is rendered in the browser, clicking on the image will take the user
to the anchor destination specified. Generally, to indicate that an image is pressable,
the browser will put a border around the image and provide some feedback to the user
when the cursor or pointing device is over the hot area, such as turning the pointer to a
finger or highlighting the text. For some basic feedback types, note the example in
Figure 5-18, which shows a border, finger pointer, and URL destination, all indicating
that the image is pressable.

C h a p t e r 5 : H T M L a n d I m a g e s 207

W
EB

A
N

D
H

TM
L

B
A

S
IC

S

Figure 5-18. Image as link feedback

One issue that may be troublesome for page designers is the border that appears
around the image when it is made pressable. It is possible to turn this border off by
setting the BORDER attribute of the image equal to 0. For example,

<IMG SRC="logo.gif"

BORDER="0">

Of course, without the border it might be difficult to determine which images on a
page are links and which are not. This can cause users to play a little game of finding
the active click region by running the mouse all over the screen. One way to avoid such
usability problems is to provide visual cues in images that are made pressable. These
might include embossing, beveling, or drop shadows. Examples of such buttons are
shown in Figure 5-19.

While from a design perspective some of the effects, particularly drop shadows, are
a little overused, there are tangible benefits to adding feedback information to button
graphics. Another approach to providing feedback about what images are clickable is
to animate the buttons. Using a very simple piece of JavaScript, it is possible to animate
a button so that when a mouse passes over an image it comes alive. A brief discussion
about how HTML pages can be made more dynamic using a scripting language like
JavaScript can be found in Chapters 13 and 14.

208 H T M L : T h e C o m p l e t e R e f e r e n c e

Figure 5-19. Sample button styles for usability improvement

C h a p t e r 5 : H T M L a n d I m a g e s 209

W
EB

A
N

D
H

TM
L

B
A

S
IC

S
One non-button-oriented use of the BORDER attribute is to put a simple stroke

around an image. Many times people will use a graphics tool to create a frame on an
image, but the BORDER attribute is a bandwidth-cheap way to get much of the same
effect. Try setting the BORDER attribute equal to a positive value on a nonclickable
image—for example, . This little change
provides an easy way to frame an image and might even lend itself to interesting
design ideas.

Image Maps
Another form of clickable images, discussed previously in Chapter 4, is the idea of an
image map. An image map is a large image that contains numerous hot spots that can
be selected, sending the user to a different anchor destination. There are two basic
forms of image maps: server side and client side. In the server-side image map, the user
clicks on an image but the server must decode where the user clicked before the
destination page (if any) is loaded. With client-side image maps, all of the map
information—which regions map to which URLs—can be specified in the same HTML
file that contains the image. Including the map data with the image and letting the
browser decode it has several advantages, including

1. There is no need to visit a server to determine the destination, so links are
resolved faster.

2. Destination URLs can be shown in the status box as the user’s pointer moves
over the image.

3. Image maps can be created and tested locally, without requiring a server or
system administration support.

4. Client-side image maps can be created so that they present an alternative
text menu to users of text-only browsers.

While this discussion makes it obvious that client-side image maps are far superior
to their server-side cousins, very old browsers may not support this feature. This does
not have to be a problem, since it is possible to include support for both types of image
maps at once.

Server-Side Image Maps
To specify a server-side image map, the <A> element is used to enclose a specially
marked element. The <A> element’s HREF attribute should be set to the URL
of the program or map file to decode the image map. The element must
contain the attribute ISMAP so the browser can decode the image appropriately. As
with all linked images, it may be desirable to turn the image borders off by setting
the element’s BORDER attribute equal to 0. As mentioned in Chapter 4,

server-side image maps do not provide adequate feedback to the user because they
show coordinates and may incur performance penalties. HTML authors are
encouraged to use client-side image maps.

Client-Side Image Maps
The key to using a client-side map is to add the USEMAP attribute to the
element and have it reference a <MAP> element that defines the image map's active
areas. An example of the element syntax is <IMG SRC="controlbar.gif"
USEMAP="#controlmap">. Note that, like server-side image maps, the image will be
indicated as a link regardless of the lack of the <A> element surrounding the .
The BORDER attribute should be set to 0 if necessary.

The <MAP> element generally occurs within the same document, though support
for it outside of the current document is sparse at best. This is similar, in a sense, to
the way server-side maps work. The <MAP> element may occur anywhere within
the body of an HTML document, though it is usually found at the end of an HTML
document.

The <MAP> element has one attribute, NAME, which is used to specify the
identifier associated with the map. The map name is then referenced within the
 element using the USEMAP attribute and the associated fragment identifier.
The <MAP> element must have a closing </MAP> element. Within the <MAP> and
</MAP> tags are defined “shapes” that are mapped onto an image and define the hot
spots for the image map. Shapes are defined by the <AREA> element, which is found
only within the <MAP> element. The format of the mapping tags is discussed in
Chapter 4. However, memorizing or creating client- or server-side image maps by
hand is not advised. Page designers should be able to find tools to automate the
creation of image hot spots. A popular tool for doing this is MapEdit, which can be
retrieved from http://www.boutell.com/mapedit.

It is possible to combine support for both server-side and client-side image maps
into one file. The browser will typically override the server-side support with the
improved client-side style. This approach will guarantee backward compatibility
with older browsers. To support both, use the ISMAP and USEMAP attributes in
conjunction with an embedded map and a remote map, as shown in the following
code fragment:

<IMG SRC="shapes.gif" USEMAP="#shapes" BORDER="0" ISMAP WIDTH="400"

HEIGHT="200">

Client-side image maps have a variety of attributes that can be used with the
<AREA> element. Server-side image maps really have no attributes other than those
normally associated with the element, such as BORDER. The important

210 H T M L : T h e C o m p l e t e R e f e r e n c e

attributes supported in HTML 3.2 and 4 are discussed in Chapter 4, as well as in the
element reference in Appendix A.

Advanced Image Considerations: Scripting,
Style, and <OBJECT>

While most of the basic uses of images have been discussed, there are some issues that
should be mentioned for later discussion. First, because an image may be referenced by
a style sheet or by a scripting environment, it may be very important to provide a name
or identifier for it. The CLASS, ID, and NAME attributes can be used to provide names
for images so they can be referenced and manipulated by scripting or style information
that is usually found in the head of the document. Names should be unique and in the
proper HTML form. The TITLE attribute may also be set to provide advisory text
about what the image is. While with other elements a browser may render the TITLE
information as a tool tip, most browsers appear to use the ALT attribute instead, as
shown earlier in this chapter.

It is possible to include inline scripting or style information directly with an image.
For example, setting the STYLE attribute allows an inline style to bind to the particular
 element. Style sheets are discussed in Chapter 10. Furthermore, it is possible to
have images bound to a particular event using an event attribute such as onmouseover
and tying it to a script. A very simple but motivating use of tying an event with an
image is to have the image change state depending on the user’s action. The most basic
use would be to create animated buttons or buttons that make a sound when clicked,
but the possibilities are endless. A more detailed discussion and examples of how to
bind JavaScript to create animated buttons is presented in Chapter 13.

The last advanced comment to make about the element is that under
HTML 4 it is supposed to be possible to include images using the <OBJECT> element.
For example,

<OBJECT DATA="images/logo.gif"> Picture of the Big Company

building </OBJECT>

Similar to the tag, the DATA attribute is set to the URL of the included
image while the alternative rendering is placed within the <OBJECT> element.
Although this new syntax may create some interesting possibilities, the reality is that
browsers currently don’t support this form of image inclusion. This generic <OBJECT>
tag for image support makes sense given that an image is no different than any other
included binary object, but the fact is that until browser vendors implement it properly,
it should be avoided. A more complete discussion of included media objects can be
found in Chapter 9, as well as in Appendix A, which provides the full syntax of the
<OBJECT> element.

C h a p t e r 5 : H T M L a n d I m a g e s 211

W
EB

A
N

D
H

TM
L

B
A

S
IC

S

Summary
Like them or not, inline images are what helped popularize the Web. However, just
because images can be used to improve the look and feel of a Web page doesn’t mean
that they should be the primary content. While presentation is important to the Web, it
is still fundamentally about the communication of information, some of which does
well in image form and some of which does not. Adding images to a Web page is
accomplished using the element, which has numerous attributes. Many of
the attributes of the element—including ALT, HEIGHT, WIDTH, and
LOWSRC—are useful in improving the accessibility and usability of Web pages.

As always, the eternal struggle between nice-looking pages and download time
continues, and knowledge of HTML features is helpful to combat excessive wait time.
Many of the other attributes for the element were developed with layout in
mind, particularly ALIGN. Images can be used in conjunction with colors to create
motivating layouts, including tiled backgrounds. This will be discussed in the next
chapter. In the future, style sheets and the <OBJECT> element may take over many of
the duties of the element and its attributes; but for the moment, the use of the
latter is very important.

212 H T M L : T h e C o m p l e t e R e f e r e n c e

Part II
Presentation and Layout

213

Copyright 1999 The McGraw-Hill Companies. Click Here for Terms of Use.

This page intentionally left blank.

Chapter 6
Introduction to Layout:
Backgrounds, Colors,
and Text

Copyright 1999 The McGraw-Hill Companies. Click Here for Terms of Use.

Web page designers strive to create attractive Web pages; but, until recently, it
hasn’t been easy. HTML was not created with design features in mind. Even
a simple layout technique like centering text has only been possible for a few

years. Browser vendors have added many HTML attributes and elements in order to
provide page developers with more control over the look and feel of their pages.
Standardized elements such as were pressed into service as structuring and
layout tools. New font facilities have also provided more design capabilities in HTML.
Despite all these advances, tricks and workarounds are still occasionally required to
create visually appealing pages. While it’s best to avoid these nonstandard techniques,
they often are a reality of page design—at least until technologies such as style sheets
become more widely deployed and understood.

Design Requirements
In the best of all possible Web worlds, what would the designer want? The Web was
created for a cross-platform environment with little support for screen presentation,
but today’s Web requires better positioning control. The ability to design for every
platform is the ideal situation, but the reality of designing for a particular audience
is becoming more accepted. By understanding a user’s environment, the designer
has more control over presentation. Designers also want more control over font use.
Initially, there was no way to specify what font to use in a document, whether or not
the user actually had the font. Other complex layout features common to electronic
composition, such as more complex color control and layers, might also be desirable.
At the very least, pixel-level control and font selection are necessary to bring the Web
closer to a level equal with print design.

Simply providing features to allow pixel-level placement of objects and text on the
screen doesn’t make Web design a straightforward process, any more than font selection
does. It is still difficult to understand exactly what kind of display environment the end
user has. Web displays range from small liquid crystal screens on cellular phones and
pocket organizers to 20-inch monitors, or larger. Each display may have different types
of color support, ranging from four shades of gray on a typical hand-held machine to
millions of colors on a high-end graphic designer’s system. There may not even be a
screen at all, as in the case of voice-based browsers. If a guess is made about what screen
configuration the user might have, or some programming facilities are provided to
determine the same, a better layout could be provided.

The challenges of designing for the Web are significant. In the past, they have
only been exacerbated by the lack of technology and tools, not to mention problems
associated with bandwidth or usability.

216 H T M L : T h e C o m p l e t e R e f e r e n c e

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

HTML Approach to Web Design
While HTML was not designed with layout in mind, it has been abused and extended
to support layout as best it can. Today, there are many elements, both standard and
nonstandard, that can provide layout control. These include the various ALIGN values
for elements, browser-specific proprietary elements like <SPACER> and <MULTICOL>,
and tables. This section covers some of the basic HTML elements used to control text
and screen layout.

Text Alignment with Traditional HTML Elements
The first thing to consider in the HTML approach to layout is all the elements and
attributes used to position text and objects on a page. Web page designers have long
tended to abuse elements like to move text around the page, as shown in the
following example.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>

<HEAD>

<TITLE> Unordered List Layout </TITLE>
</HEAD>

<BODY>

This is indented text.

This text is indented more.

This is indented heavily, but may not produce
the effect you expect.

</BODY>

</HTML>

C h a p t e r 6 : I n t r o d u c t i o n t o L a y o u t : B a c k g r o u n d s , C o l o r s , a n d T e x t 217

Many HTML page development tools still use this approach to move things around
the screen. A rendering of formatting using the unordered list element is shown in
Figure 6-1.

Another approach to control text layout is the use of the <PRE> tag. As discussed
in Chapter 3, any text enclosed by <PRE> preserves returns, tabs, and spaces. Using
<PRE>, it is possible to force text to lay out the way the page author requires, even
forcing the browser to scroll to the right to read text. Generally speaking, the browser
changes the typeface of any preformatted text to a fixed-width font such as Courier.
This font change may not be desired. How can spaces be inserted to improve text
layout without a font change? Using the character entity or &160; should insert
a nonbreaking space that will not be collapsed by the browser. To enter three spaces
between words, use . This leads many people to force text
layout like so:

Now we are ten spaces from the left!

While use of this nonbreaking space is somewhat a crutch, it is interesting to note
how many of these character entities will be entered into a document when using a
WYSIWYG page editor.

218 H T M L : T h e C o m p l e t e R e f e r e n c e

Figure 6-1. Text indentation using the element

C h a p t e r 6 : I n t r o d u c t i o n t o L a y o u t : B a c k g r o u n d s , C o l o r s , a n d T e x t 219

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

The <CENTER> Element
In the early days of the Web it was difficult, if not impossible, to control screen layout.
Netscape eventually introduced a few elements and attribute changes useful for
positioning, including the <CENTER> element.

The <CENTER> element can enclose any form of content, which is then centered in
the browser window. In early HTML, text could be centered using the following code:

<CENTER>Welcome to Big Company </CENTER>

<CENTER> can be used around an arbitrary amount of content in many different
forms, including images and text. Use of the <CENTER> element is common on the
Web, and it has been included in the HTML 4 standard. However, the element is
shorthand for <DIV ALIGN="CENTER">. Later, the ALIGN attribute (discussed in
the next few paragraphs) was added to many elements.

Alignment Attributes
Beyond <CENTER>, there are many elements under HTML 3.2 and 4 that support the
ALIGN attribute. The <DIV> element, which is used to create a division in a document,
may have the ALIGN attribute set to LEFT; CENTER; RIGHT; or, under 4, JUSTIFY.
If the ALIGN attribute is not set, text generally is aligned to the left when language
direction is set to LTR (left to right) and to the right when the language direction is set
to RTL (right to left). Until recently, the JUSTIFY attribute did not work in most
browsers; now it is supported by the latest versions of the two major browsers. The <P>
paragraph element, the <TABLE> element, and the headings <H1>, <H2>, <H3>,
<H4>, <H5>, and <H6> also support the ALIGN attribute, with the same basic values
and meaning. Note that, as discussed in Chapter 5, the ALIGN attribute on the
element serves a different purpose.

Word Hinting with <NOBR> and <WBR>
Under many current browsers, it is possible to control text layout beyond simple
alignment. Because font size and browser widths may be different, word wrapping may
occur in strange ways. Microsoft and Netscape, as well as many other browsers, support
the <NOBR> and <WBR> elements as a way to provide browser hints for text layout.

The <NOBR> element makes sure that a line of text does not wrap to the next line,
regardless of browser width. This element is useful for words or phrases that must be
kept together on one line. If the line of text is long, it may extend beyond the browser
window, obliging the user to scroll in order to view the unbroken text. A simple
example of using the <NOBR> element is shown here:

<NOBR>This is a very important long line of text, so it should not be

allowed to break across two lines. </NOBR>

It is possible to use the <NOBR> element in conjunction with images, but the
browser window may need to be scrolled for all the images to be seen.

In some cases, the browser may attempt to rescale the images in order to fit them
all on one line. In the case of WebTV, the browser will scale down to 80 percent of the
image’s original size before moving the image to the next line. <NOBR> acts differently
under WebTV because WebTV does not allow for any horizontal scrolling.

In contrast to the <NOBR> element, which is quite firm in its word wrapping, the
<WBR> element allows the page designer to suggest a soft break within text enclosed by
the <NOBR> element. (<WBR> is not part of the HTML standard, but many browsers
support it.) In essence, the <WBR> element marks a spot where a line break can take
place. The element is an advisory one, unlike
 and <NOBR>, which force layout.
Depending on the situation, the browser may choose to ignore the <WBR> element
because there is no need for it. <WBR> is an empty element that does not require a
closing tag. Here’s a simple example showing how it works:

<NOBR>This is a very important long line of text that should not

break across two lines. If the line must be split, it should happen

here <WBR>and nowhere else. </NOBR>

The <WBR> element should only exist within a <NOBR> element, although it may
work outside of it. This element does not have any major attributes, though CLASS,
ID, STYLE, and TITLE are typically specified as being allowed with the element. It is
unlikely that any attribute but ID would be used; applying a style to a <WBR> element
would have no effect, since it encloses no text. The ID attribute could be used to
manipulate the element, perhaps to remove it using a scripting language. The basic
point, and a very useful one, of this element, is simply to suggest a line break point.

Alignment with Images
As discussed in Chapter 5, under HTML 2 the element specified the ALIGN
attribute with allowed values of TOP, BOTTOM, or MIDDLE. When an image was
included within a block structure of text, the next line of text would be aligned at the
top, middle, or bottom of the image, depending on the value of the ALIGN attribute. If
the attribute were not set, it would default to the bottom.

One problem with image alignment in early HTML was that the text didn’t flow
around the image. Only one line of text was aligned next to the image. Netscape introduced
the LEFT and RIGHT values for ALIGN, which allowed text to flow around the image.
When setting an image element like , the image
is aligned to the left and the text flows around to the right. Correspondingly, when using
code such as , the image is aligned at the right
and the text flows around to the left.

Netscape and Microsoft also support four other values for ALIGN: TEXTTOP,
BASELINE, ABSMIDDLE, and ABSBOTTOM. Avoid these attributes in most cases,

220 H T M L : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 6 : I n t r o d u c t i o n t o L a y o u t : B a c k g r o u n d s , C o l o r s , a n d T e x t 221

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

since they may not be supported identically across browsers and are not yet part of
any standards. For more information on these attributes, see Chapter 5, as well as the
element reference (Appendix A).

Because text may flow in undesirable ways around images, extensions to the

element were developed. The
 element now takes a CLEAR attribute, which can be
set to LEFT, RIGHT, ALL, or NONE. By default, the CLEAR attribute is set to NONE,
which makes the element produce a carriage return. When an image is aligned at the LEFT,
it may be useful to return past the image to start a new section of text. Placing another object
using <BR CLEAR="LEFT"> causes the browser to go clear down a column until the left
side of the window is clear. <BR CLEAR="RIGHT"> does the same thing in regard to
right-aligned images. When trying to pass multiple images that may be aligned both on
the LEFT and RIGHT, use <BR CLEAR="ALL">.

While the ALIGN attribute and the extensions to
 provide some degree of
page layout control (discussed in Chapter 10), technologies such as style sheets handle
positioning with greater precision. Until style sheets become more common, there are
certain instances in which the element and its attributes (including HSPACE,
VSPACE, and ALIGN) can be used to create interesting page layouts.

Invisible Images and Layout
Another way to push text around in a layout is by using an image. This approach is
well known to users of the desktop publishing program QuarkXPress. With this program,
users can create invisible regions and run text around them to achieve specific layout
effects. This can be done under HTML by using an invisible image in combination with
the ALIGN, HSPACE, and VSPACE attributes. Given a transparent 1-pixel image, the
designer can perform a variety of interesting tricks. For example, take a clear pixel and
set the HSPACE value to 5. Now put this at the front of a paragraph, as shown here:

<P> This is the start of a paragraph. </P>

Given this fragment, the first line of the paragraph is indented 11 pixels (5 pixels on
either side of the 1-pixel image). Imagine doing the same thing between lines using the
VSPACE attribute. By setting the VSPACE attribute and using hard carriage returns,
the designer could achieve arbitrary line spacing.

Imagine creating a much larger region with an invisible pixel by setting the
HEIGHT and WIDTH attributes of the element and using ALIGN to flow text
around the invisible region. For example, <IMG SRC="pixel.gif" HEIGHT="100"
WIDTH="50" ALIGN="LEFT"> could create a large invisible block to run text around.

The pixel trick can be a useful workaround; but, in certain situations, it has its
drawbacks. One potential use for it is to force line space between lines. For example,
the code could allow the designer to create
line spacing. Similarly, a designer might decide to use an invisible pixel to create a

paragraph indent using something like . But
what happens when the page is viewed with the images turned off or the stop button is
pressed early? The resulting page might look like the one in Figure 6-2.

Despite their problems, image layout tricks are still very common on the Web. They
are considered so useful that Netscape introduced a special element called <SPACER>
that mimics much of the functionality of invisible images.

The <SPACER> Element
The proprietary <SPACER> element, introduced with Netscape 3, allows users to
create invisible regions to push text and other objects around the browser screen. In
many ways, this element is a response to the invisible single-pixel GIF trick discussed
in the previous section. While <SPACER> does an adequate job of reproducing this
hack for screen design, its lack of cross-platform support suggests that using the
single-pixel image or a style sheet is more appropriate.

<SPACER> is an empty element and is used to insert an invisible region to force
layout. Its main attribute is TYPE, which specifies the form of the invisible region as
HORIZONTAL, VERTICAL, or BLOCK. The other attributes are used to set the size

222 H T M L : T h e C o m p l e t e R e f e r e n c e

Figure 6-2. Pixel trick problem

of the spacer. Example code to create a horizontal space of 75 pixels between words in
a sentence is shown here:

This is the start of the sentence <SPACER ALIGN="LEFT"

TYPE="HORIZONTAL" SIZE="75"> and this is the end.

As with invisible pixels, it is possible to push lines apart. In the next example, the
<SPACER> element is set to create a vertical region of 24 pixels to give the appearance
of double spacing. Notice how the vertical spacer induces line breaks.

This is line one.

<SPACER ALIGN="LEFT" TYPE="VERTICAL" SIZE="24">

This is line two.

The <SPACER> element can only be one type at a time. It is not possible to have a
vertical and horizontal spacer. If such functionality is required, use the BLOCK type.
The <SPACER> element can also be used to flow text around invisible blocks. The
following HTML code creates an invisible runaround region 150 pixels high and 100
pixels across.

...text...

<SPACER TYPE="BLOCK" HEIGHT="150" WIDTH="100" ALIGN =" LEFT">

...text...

Notice how the ALIGN attribute is used just as it would be with an image, with a
default alignment value of BOTTOM, and so on. The element could also be combined
with <BR CLEAR="LEFT"> to avoid the spacing element affecting text that may follow.

Be careful not to make layouts rely on <SPACER>, as it is a somewhat all-or-nothing
element that is completely unsupported beyond Netscape browsers. If it is just hinting,
or providing browser tips, page layout such as line spacing can be used and will safely
be ignored by other browsers. Invisible images, on the other hand, may show up under
text-only browsers if you do not set the ALT text to no value. When using block forms
to create runaround space, the invisible-pixel trick may still provide a better workaround
than <SPACER>, because it will be picked up by most graphical browsers.

Some WYSIWYG editors seem to like to use <SPACER> in conjunction with
table-based layouts. As the tag will probably be deprecated over time, designers
should avoid its use.

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

C h a p t e r 6 : I n t r o d u c t i o n t o L a y o u t : B a c k g r o u n d s , C o l o r s , a n d T e x t 223

224 H T M L : T h e C o m p l e t e R e f e r e n c e

The <MULTICOL> Element
Like <SPACER>, the <MULTICOL> element is unique to Netscape browsers starting
with Navigator 3. This element allows page designers to specify text in multiple columns,
which are rendered with equal width. The element is not supported in previous versions
of Netscape or Internet Explorer; it will not degrade gracefully if layout depends on it.

The most important attribute of the <MULTICOL> element is COLS, which is set
to the number of text columns to display. The browser should attempt to flow the text
evenly across columns and make the columns the same height, except for the last
column, which may be shorter depending on the amount of text in the columns. The
element also supports the attribute GUTTER, which is used to specify the gutter space
between columns in pixels. By default, the gutter width (if unspecified) is 10 pixels.
The last attribute supported by <MULTICOL> is WIDTH, which specifies the width
of each column in pixels. All columns are the same width; there is no way to directly
adjust a particular column’s width. If the WIDTH attribute is not set, its value is
determined by subtracting from the display width the number of pixels that constitute
the gutter and then dividing by the number of columns set in the COLS attribute. The
syntax is summarized here:

<MULTICOL

COLS="number of columns"

GUTTER="gutter width in pixels or percentage"

WIDTH="column width in pixels or percentage">

Text to put in column form

</MULTICOL>

An example showing how <MULTICOL> can be used is shown here; renderings
of the example are shown in Figure 6-3. Notice how the layout is not preserved in
Internet Explorer.

<HTML>

<HEAD>
<TITLE> MULTICOL Example </TITLE>
</HEAD>

<BODY>
<MULTICOL COLS="2" GUTTER="50" WIDTH="80%">

The rain in Spain falls mainly on the plain. Now is the time for all good

men to come to the aid of the country. There's no business like show
business. The rain in Spain falls mainly on the plain. Now is the time

for all good men to come to the aid of the country. There's no business

like show business. The rain in Spain falls mainly on the plain. Now is

the time for all good men to come to the aid of the country. There's no
business like show business. The rain in Spain falls mainly on the plain.

Now is the time for all good men to come to the aid of the country.
There's no business like show business. The rain in Spain falls mainly
on the plain. The rain in Spain falls mainly on the plain.

</MULTICOL>

</BODY>
</HTML>

When including other objects within the <MULTICOL> element, particularly
tables and images with alignment information, the element will be unpredictable, as
shown in Figure 6-4.

Because browsers are generally unable to set hyphenation, page authors may need
to manually insert <WBR> elements between words that may overrun column size. A
further problem with <MULTICOL> is that it will degrade when too many columns
are set, so try to keep the value for COLS around six or less. An example showing the
problem of too many columns is shown in Figure 6-5.

Use the <MULTICOL> element only in an all-Netscape environment. This element
is only a somewhat more flexible shorthand notation for what can be accomplished with
tables, except for text reflow. In reality, except for an occasional use of invisible pixels or
nonbreaking spaces, most modern HTML-based page layouts are accomplished using the
<TABLE> element, which is discussed in Chapter 7.

C h a p t e r 6 : I n t r o d u c t i o n t o L a y o u t : B a c k g r o u n d s , C o l o r s , a n d T e x t 225

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

Figure 6-3. <MULTICOL> under Navigator and Explorer

226 H T M L : T h e C o m p l e t e R e f e r e n c e

Figure 6-4. Problem with <MULTICOL> and images

Figure 6-5. Too many columns for <MULTICOL>

Fonts
Besides better support for layout, Web page designers have long desired to be able to
specify fonts in their documents. HTML 2 only supported two fonts, a proportional
font and a fixed-width font. Under browsers such as Netscape and Internet Explorer,
the proportional font was usually Times or Times New Roman, while the fixed-width
font was Courier. To set text to Courier, page authors would use an element like <TT>.
Otherwise, all text on the page was generally in the proportional font unless it was
preformatted with the <PRE> element. There was also little control over the size of the
font, even in relative terms. The font size of the browser was generally 12 point for the
variable-width font and 10 point for the fixed-width font, but end users were free to
change font size as they pleased.

There wasn’t much control over typography in early browsers. In fact, the only way
to use a new font or control the precise layout of text was to make it a graphic. To this
day, many page designers still embed a great deal of text as graphics in order to precisely
control spacing and to use fonts that the user may not have. Because of download and
accessibility issues, this should not be the de facto approach to dealing with fonts.

With Netscape Navigator 1.1, it became possible to control fonts a little more. Netscape
introduced the element, which was used to specify the size and, starting with
Navigator 2, color of text using the SIZE and COLOR attributes. Microsoft later added
an attribute called FACE to indicate which font type should be used. Both SIZE and
COLOR were introduced to the standard in HTML 3.2. Today, all of these attributes
are considered part of the HTML 4 transitional standard. However, like many layout
facilities, the use of the element should be phased out in the future in favor
of style sheets.

Under HTML 4, it is possible to make a certain portion of text a particular color by
enclosing it within the element and setting the COLOR attribute equal to a
valid color name such as red or an equivalent value such as #FF0000. RGB hexadecimal
equivalent codes are discussed later in this chapter and are also presented in Appendix
E. So the code

 This is important.

sets the text This is important. in red. The element can contain a great deal of
text or very little, so it is possible to control the colors of individual letters, though such
resulting rainbow effects might be hard on the eyes.

It is also possible to set the relative size of type by setting the SIZE attribute of the
 element. In a Web page, there are seven relative sizes for text numbered from
1 to 7, where 1 is the smallest text in a document and 7 is the largest. To set some text
into the largest size, use This is big. By default, the typical
size of text is 3; this can be overridden with the <BASEFONT> element, discussed
later in this chapter in the section “Document-Wide Font Settings.” If the font size is
not known but the text should just be made one size bigger, the author can use an

C h a p t e r 6 : I n t r o d u c t i o n t o L a y o u t : B a c k g r o u n d s , C o l o r s , a n d T e x t 227

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

alternative sizing value such as instead of specifying the size
directly. The + and – nomenclature makes it possible to bring the font size up or down
a specified number of settings. The values for this form of the SIZE attribute should
range from +1 to +6 and –1 to –6. It is not possible to specify
because there are only seven sizes. If the increase or decrease goes beyond acceptable
sizes, the font generally defaults at the largest or smallest size, respectively.

Microsoft introduced the FACE attribute to the element that has come to
be supported by nearly all browsers, as well as the HTML 4.0 specification. The FACE
attribute can be set to the name of the font to render the text. So a page designer who
wants to render a particular phrase in Britannic Bold could use the following code:

 This is important.

The browser would then read this HTML fragment and render the text in the different
font—but only for users who have the font installed on their systems. This raises an
interesting problem: what happens if a user doesn’t have the font specified? Using the
FACE attribute, it is possible to specify a comma-delimited list of fonts to try one by
one before defaulting to the normal proportional or fixed-width font. The fragment
shown here would try first Arial, then Helvetica, and finally a generic sans-serif font
before giving up and using whatever the current browser font is.

 This should be in a different

font.

While it is impossible to know what fonts users may have on their systems, the
previous example shows how a little guesswork can be applied to take advantage of the
FACE attribute. Most Macintosh, Windows, and UNIX users have a standard set of fonts.
If equivalent fonts are specified, it may be possible to provide similar page renderings
across platforms. Table 6-1 shows some of the fonts that can be found on Macintosh,
Windows, and UNIX systems. The table does not attempt to cross-reference the fonts.
In fact, while Windows does not always have Helvetica, Arial is fairly similar.

Most users may have many other fonts beyond the ones shown in the table. Users
of Microsoft’s Office will probably also have access to fonts like Algerian, Book
Antiqua, Bookman Old Style, Britannic Bold, Desdemona, Garamond, Century Gothic,
Haettenschweiller, and many others. The various browsers are also trying to make new
fonts available. Under Internet Explorer 4, Microsoft has introduced a new font called
WebDings, which provides many common icons for use on the page. Some of these
icons would be useful for navigation, like arrows, while others look like audio or video
symbols that could provide indication of link contents before selection. Just using

228 H T M L : T h e C o m p l e t e R e f e r e n c e

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

C h a p t e r 6 : I n t r o d u c t i o n t o L a y o u t : B a c k g r o u n d s , C o l o r s , a n d T e x t 229

font sizing, colors, and simple layout, it is possible to make interesting layouts with
WebDings as shown in Figure 6-6.

A common set of icons for the Web is actually not a new idea. The W3C has a working
draft covering a predefined set of icon-like symbols. The Microsoft font actually includes
many of these symbols, but does not use the same naming convention. It may eventually
be possible to include &audio; to add an audio icon to a Web page; but, for now, setting
the WebDings value or inserting a GIF is the best choice.

Document-Wide Font Settings
In some cases, it may be appropriate to change the font size, color, or face, document-wide.
To do this, use the <BASEFONT> element in the <HEAD> of the document. The
<BASEFONT> should only occur once in the document and has major attributes
COLOR, FACE, and SIZE. Like the element, COLOR should be set to an
RGB hexadecimal equivalent value or color name. FACE should be set to a font name
or comma-delimited list of fonts. SIZE should be set to a size value between 1 and 7.
Relative sizing for the SIZE attribute does not generally make any sense. To set the font

Windows Macintosh UNIX*

Arial Chicago Charter

Comic Sans MS Courier Clean

Courier New Geneva Courier

Impact Helvetica Fixed

Times New Roman Monaco Helvetica

Symbol New York Lucida

Verdana Palatino Sans Serif

Wingding Symbol Serif

Times Symbol

Times

Utopia

*UNIX fonts vary; this is just meant to show most of the common fonts under
a standard X Window environment.

Table 6-1. Sample System Fonts by Platform Type

of the document in red Arial or Helvetica with a relative size of 6, use <BASEFONT
COLOR="RED" FACE="Arial, Helvetica" SIZE="6"> within the <HEAD> element of
the document.

Downloadable Fonts
While one Microsoft solution to type on the Web attempts to promote a common set
of faces, it isn’t a very flexible approach outside the Windows world. Though many
Windows, Macintosh, and UNIX systems have similar fonts, what about when the page
author wants to use a customized font? In this case, the page author is forced to create
a static image of the font. This could take a great deal of time to download and gives up
the ability to easily index the text, let alone copy and paste it.

The best solution for fonts on the Web would be to come up with some cross-
platform form of font that could be downloaded to the browser on-the-fly. While
this sounds easy enough, the problem with downloadable fonts is that they must be
highly compact. Page viewers must not be able to steal the font from the page and
install it on their own machines. Both of the major browser vendors have been working
on downloadable fonts. Microsoft’s solution for Web type is called OpenType
(http://www.microsoft.com/typography). Netscape’s solution, called Dynamic Fonts,
is based on TrueDoc (http://www.truedoc.com). Currently, only Netscape 4 and Internet

230 H T M L : T h e C o m p l e t e R e f e r e n c e

Figure 6-6. Example page using Microsoft’s WebDings font

Explorer 4 and above support downloadable fonts, so be careful not to rely too heavily
on the font being available or your page layout may fall apart.

Netscape’s Dynamic Fonts
To use a dynamic font under Netscape, the page author simply uses the FACE attribute
of the element or a style sheet attribute, as discussed in Chapter 10, to set the
font face. If the user does not have the font installed on the system, a downloadable font
linked to the page can be fetched and used to render the page. To include a link to a
Netscape font definition file in Portable Font Resource (PFR) format, use the <LINK>
element by setting the REL attribute to fontdef and the SRC attribute equal to the URL
in which the font definition file resides. The <LINK> element must be found within
the <HEAD> of the document. An example of how this element would be used is
shown here:

<HTML>

<HEAD>
<TITLE> Netscape Font Demo </TITLE>

<LINK REL="fontdef" SRC="http://www.bigcompany.com/fonts/customfonts.pfr">
</HEAD>

<BODY>

Content rendered in the font "newfont," which is part of the .pfr file

</BODY>

</HTML>

Note that there may be many fonts in the same font definition file. There is no limit
to how many fonts can be used on a page. Once the font is accessed, it is used just as if
it were installed on a user’s system. Two attributes available under Netscape 4 are
useful when dealing with dynamic fonts. The first extension to the element
is POINT-SIZE, which can be set to the point size of the font. The other extension to
 is the WEIGHT attribute, which can be set to a value between 100 and 900
in increments of 100. The value of the WEIGHT attribute determines the weight or
boldness of the font. A value of 100 is the lightest weight, while 900 indicates to make
the font as bold as it can be. If the element is used, the WEIGHT attribute is
equivalent to 900. If dynamic fonts are to be used, it is more likely that style sheets will
be the preferred way to interact with them, rather than these proprietary extensions.
The only obstacle to using dynamic fonts is that the .pfr file describing the font must be
created. Otherwise, they are no more troublesome than attempting to guess the font on
the end user’s system or rasterizing the font into a GIF image.

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

C h a p t e r 6 : I n t r o d u c t i o n t o L a y o u t : B a c k g r o u n d s , C o l o r s , a n d T e x t 231

232 H T M L : T h e C o m p l e t e R e f e r e n c e

One drawback to the Netscape approach to dynamic fonts is that it may cause screen
flashing in many versions of Netscape. This can be disorienting for the user and has
somewhat limited the use of this technology.

Microsoft’s Dynamic Fonts
Microsoft also provides a way to embed fonts in a Web page. To include a font, you
must first build the page using the element or style sheet rules that set fonts,
as discussed in Chapter 10. When creating your page, don’t worry about whether or
not the end user has the font installed; it will be downloaded. Next, use Microsoft’s Web
Embedding Fonts Tool or a similar facility to analyze the font usage on the page. The
program should create an .eot file that contains the embedded fonts. The font use
information will then be added to the page in the form of CSS (Cascading Style Sheets)
style rules, as shown here:

<HTML>

<HEAD>
<TITLE> Microsoft Font Test </TITLE>

<STYLE TYPE="text/css">
<!-–

@font-face {
font-family: Ransom;
font-style: normal;

font-weight: normal;

src: url(fonts/ransom.eot);
}

-–>

</STYLE>
</HEAD>

<BODY>

 Example Ransom Note Font
</BODY>

</HTML>

A possible rendering of font embedding is shown in Figure 6-7.
Like the Netscape approach, you must first create a font file and reference it from

the file that uses the font. It may be useful to define a fonts directory within your Web
site to store font files, similar to storing image files for site use.

The use of the @font-face acts as a pseudoelement that allows you to bring any
number of fonts into a page. The form of the font embedding supported by Microsoft
conforms to the initial W3C specification for font embedding. For more information on

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

C h a p t e r 6 : I n t r o d u c t i o n t o L a y o u t : B a c k g r o u n d s , C o l o r s , a n d T e x t 233

embedded fonts under Internet Explorer and links to font file creation tools like WEFR,
see the Microsoft Typography site (http://www.microsoft.com/typography).

It is possible to provide both links to both Microsoft and Netscape font technology in the
same page. This really adds only one line or a few style rules as the rest of the document
would continue to use the same statements. TrueDoc technology
also supports an ActiveX control to allow Internet Explorer users to view their style of
embedded fonts. Given the extra download involved, the double font statement approach
is preferred.

Colors in HTML
HTML 4 supports color settings both for text and for the background of the document,
or even individual table cells. With style sheets we will see it is also possible to set both
foreground and background color at any time. There are 16 widely known color names
defined in HTML 4. These names and their associated HEX RGB values are shown in
Table 6-2.

To set a particular section of text yellow, simply surround the content with and . Similarly, you can also use the HEX value #FFFF00
for the COLOR attribute.

Figure 6-7. Embedded fonts increase design choices

234 H T M L : T h e C o m p l e t e R e f e r e n c e

Most browsers should recognize the common color values such as white, red, and
black and render accordingly. Determining the HTML hexadecimal value for a
particular color isn’t difficult when following the basic formula of #RRGGBB, where
RR equals the hex value for red, GG equals the hex value for green, and BB equals the
hex value for blue. If the hex value for all off, or zero, is 00, and the hex value for all on
is FF, then the color #FF0000 is red. All the red in the image is turned on in this case. A
value of #000000 would be black, #0000FF would be blue, and so on. Of course there
are many colors and hex values, some of which seem to have been invented by the
browser vendors; these are listed in Appendix E. The problem with using browser

Color Name Hexadecimal RGB Value

Aqua #00FFFF

Black #000000

Blue #0000FF

Fuchsia #FF00FF

Gray #808080

Green #008000

Lime #00FF00

Maroon #800000

Navy #000080

Olive #808000

Purple #800080

Red #FF0000

Silver #C0C0C0

Teal #008080

White #FFFFFF

Yellow #FFFF00

Table 6-2. Common HTML 4 Color Names and HEX Values

C h a p t e r 6 : I n t r o d u c t i o n t o L a y o u t : B a c k g r o u n d s , C o l o r s , a n d T e x t 235

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

vendor–defined colors is that they don’t always do what they are supposed to do.
Under Netscape 4, the color aliceblue doesn’t look very close to the Internet Explorer
color. Even worse, you can invent your own colors. Try setting the following and
viewing it under Netscape and Microsoft Internet Explorer:

<BODY BGCOLOR="HTML COLOR NAMES ARE TROUBLESOME">

This color name is totally invalid, but it still results in a shade of green that is very
distinct in each browser. It is possible to make up colors like chilidog brown or stale
beer yellow, but this is no more recommended than using the Netscape-defined color
Dodgerblue. The hex color values are the preferred way of setting colors, since many
nonstandard color names may not be supported correctly across browsers.

Document-Wide Color Attributes for <BODY>
The <BODY> element has numerous attributes that can be used to affect the display of
content in the body of the document, including setting the background color, the color of
text, and the color of links. One of the most commonly used <BODY> element attributes,
BGCOLOR defines the document’s background color. This was a distinct improvement
over the default gray (or white under Macintosh) of Mosaic, although it and the other
<BODY> attributes have led to a multitude of design sins. Employed wisely, they can
enhance a page’s appearance; misused, they have been known to induce migraines.
Hexadecimal RGB values and color names can be used with BGCOLOR and the four
attributes to follow. To create a white background, the attribute could be set to <BODY
BGCOLOR="#FFFFFF"> (hexadecimal) or simply <BODY BGCOLOR="white">.

The TEXT attribute of the <BODY> element defines the color of text in the entire
document. The attribute takes a color in the form of either a hex code or color name. So
<BODY BGCOLOR="white" TEXT="green"> would create a white page with green text.

Note that the text color can be overridden in the text by applying the
element to selected text with its COLOR attribute, as discussed earlier in the chapter in
the section “Fonts.”

Besides the body text, it is also possible to define the colors of links by setting the
<BODY> element attributes: LINK, ALINK, and VLINK.

LINK defines the color of unvisited links in a document. For example, if you’ve set
your background color to black, it might be more useful to use a light link color instead
of the standard blue. ALINK defines the color of the link as it is being clicked. This is often
too quick to be noticed, but can create a flash effect, if desired. For a more subdued Web
experience, it might be better to set the ALINK attribute to match either the LINK attribute
or the next one, VLINK. VLINK defines the color of a link after it has been visited, which is

purple under many user agents. Many authors wish to set the value of the VLINK attribute
to red, which makes sense given standard color interpretation. So, using the last attributes,
creating a white page with green text, red links, and fuchsia-colored visited links could be
accomplished using the code presented here:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>
<HEAD>

<TITLE> Colors </TITLE>
</HEAD>

<BODY BGCOLOR="#FFFFFF" TEXT="#008000" LINK="#FF0000"

VLINK="#FF00FF" ALINK="#FF0000">

...Content to color...
</BODY>

</HTML>

Users should be forewarned not to choose link colors that might confuse their viewers.
For example, reversing link colors so that visited links are blue and nonvisited links are
red could confuse a user. While it is unlikely that a page author would do such a thing,
it has been seen more than once—particularly in situations in which the look and feel is
the driving force of the site. Other common problems with link color changes include
the idea of setting all link values to blue with the belief that users will revisit sections
thinking they haven’t been there before. While this may make sense from a marketing
standpoint, the frustration factor due to the lost navigation cues may override any
potential benefit from extra visits. As the last example showed, setting all the link colors
to red could have a similar effect of encouraging users to think they have seen the site
already.

Page authors must also be extremely careful when setting text and background
colors so that readability is preserved. Page designers are often tempted to use light
colors on light backgrounds or dark colors on dark backgrounds. For example, a gray
text on a black background might look cool, but will it look cool on every person’s
monitor? If the gamma value of some other person’s monitor is much different than on
yours, it may be unreadable. White and black always make a good pairing and red is
certainly useful. The best combination, in terms of contrast, is actually yellow and black;
but imagine the headache from reading a page that looks like a road sign. Despite the
high contrast, designers should be careful of white text on a black background when
font sizes are very small, particularly on poor-resolution monitors.

Gamma is a term used to describe the relationship between the input and output for a
particular image device. Different monitors have inherently different gamma settings.
As a result, the same image on two different monitors may appear significantly different.
While the gamma of a monitor cannot be changed by the user, monitor settings such as
contrast, brightness, and color can be adjusted.

236 H T M L : T h e C o m p l e t e R e f e r e n c e

Background Images
Besides setting background colors, you can also change the appearance of a Web page
by setting a background image using the BACKGROUND attribute of the <BODY>
element. The value of BACKGROUND should be the URL for a GIF or JPEG file,
usually one in the image directory of the Web site in question (for example, <BODY
BACKGROUND="images/tile.gif">). The value could just as easily include a complete
URL to access an image at another site, but this would be a rather unwieldy approach
to the task at hand. Images accessed in this fashion repeat, or tile, in the background
of a Web page. This can make or break a Web page design. Imagine someone who
used the BACKGROUND attribute to place a 200 × 300 pixel JPEG of a favorite dog on
his or her home page. The dog’s image would repeat, both vertically and horizontally,
in the background of the page. This would make the dog’s owner very happy—and
make the page very difficult to read. Figure 6-8 shows an example of a bothersome
repeating background.

In general, complex background images tend to be a poor design decision. Taking
the subtle approach can backfire as well. Some users attempt to create a light background
like a texture or watermark thinking that, like paper, it will create a classy effect. The
problem with this is that under many monitors, the image may be difficult to make out
at all, or the texture may even blur the text on top of it slightly. As with setting background
colors, the most important consideration is the degree of contrast. Always attempt to

C h a p t e r 6 : I n t r o d u c t i o n t o L a y o u t : B a c k g r o u n d s , C o l o r s , a n d T e x t 237

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

Figure 6-8. Repeating background image

keep the foreground and background at a high level of contrast so that users can read
the information. What good is an impressive layout if nobody can read it?

If a background is desired, image-manipulation programs such as Photoshop can
be used to create seamless background tiles that are more pleasing to the eye and show
no seam. Figure 6-9 demonstrates the idea of a repeating background tile.

Background images, or tiles, can also be used to create other effects. A single GIF, 5
pixels high and 1,200 pixels wide, could be used to create a useful page layout. The first
200 horizontal pixels of the GIF could be black, while the rest could be white. Assuming
1,200 pixels as the maximum width of a browser, this tile would only repeat vertically,
thus creating the illusion of a two-tone background. This has become a very common
concept on the Web. Many sites use the left-hand color for navigation buttons, while
the remaining area is used for text, as shown in Figure 6-10. However, to guarantee
that content appears on top of the appropriate section of the background image, you
may be forced to use tables. Make sure to read Chapter 7 thoroughly before trying this
style of page design.

238 H T M L : T h e C o m p l e t e R e f e r e n c e

Figure 6-9. Background tiles without visible seam

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

Be very careful when segmenting the screen using a background tile. For example,
many people are tempted to create page layout with vertical sectioning, as shown in
Figure 6-11. However, there is a problem with this layout. Won’t the black bar repeat?
Quite possibly, because the length of the content is hard to determine. Viewers may
find the black bar repeating over and over with content being lost on top. A solution
might be to make the background tile very tall. However, this not only increases file
size, but begs a question of how tall is enough? Because content may vary from page
to page and increase or decrease over time, determining the width is next to impossible.
It would appear that the same problem would occur with sidebar style tiles. This is
generally not the case, given that pages usually do not scroll left to right, and monitor
sizes tend to not exceed 1,200 pixels. In either case, the problem of background tile
repeats is solved with style sheets as they provide a way to set the direction and
frequency of a tile’s repeat pattern. This is discussed further in Chapter 10. There are a
few HTML-specific solutions to these and other background layout problems that are
touched on briefly here.

C h a p t e r 6 : I n t r o d u c t i o n t o L a y o u t : B a c k g r o u n d s , C o l o r s , a n d T e x t 239

Figure 6-10. Advanced layout using background tile (horizontal GIF)

Another problem with background tiles is that some designers try to minimize file size
and download time. For example, a designer may make the background images a single
pixel tall, which may cause screen painting problems because the background will have
to be tiled as many times as the screen is high in pixels. With a slow video card, this may
produce an annoying sweeping effect. To avoid the background painting problem,
consider balancing physical file size and download size. A background image can be
5 pixels or taller, depending on how many colors are used. If colors are kept to a
minimum, there is no harm in making the image 20 or 30 pixels high.

Internet Explorer Background Attributes
Internet Explorer supports a few special attributes for the <BODY> element that may
solve background image and layout problems without resorting to style sheets. The
BGPROPERTIES attribute offers a solution to the problem of scrolling background
images. At present, however, it is only supported by Internet Explorer 3 and above.
The <BODY> element’s attribute and value BGPROPERTIES="fixed" will, under
Internet Explorer, allow text and images to scroll while the background image accessed
with the BACKGROUND attribute remains in place. The only value for this attribute
is fixed.

240 H T M L : T h e C o m p l e t e R e f e r e n c e

Figure 6-11. Layout using background tile (vertical GIF)

The <BODY> element also allows the setting of margins; but, so far, this is only
realized under Internet Explorer. There are two <BODY> attributes that affect margins:
LEFTMARGIN and TOPMARGIN. Each is set with a number value. For example,
LEFTMARGIN="25" will create a margin of 25 pixels between the left edge of the
browser window and its content; TOPMARGIN="15" will create a 15-pixel margin
between the top of the browser window and its content, as well as at the bottom if the
content extends that far.

While many of the body properties discussed in the last few sections are useful to
set the color and image attributes of a page, many of them are browser-specific or are
deprecated under HTML 4. It is too soon to tell if users will embrace image layout via
style sheets or continue to use the elements previously discussed. For backward-
compatibility, it may be necessary to use both layout forms for another year or two.

Summary
While HTML does not provide a great deal of support for layout, it really wasn’t meant
to. While it is easy to say that people shouldn’t use HTML to lay out pages, the fact is
that they wanted and needed to. Designers desperately want pixel-level layout control
of Web pages and support for fonts. The need for improved page design gave rise to
the occasional abuse of HTML elements, “cheats” like the invisible-pixel GIF trick, and
to proprietary elements such as <SPACER>. Despite the improvement in layout
capabilities, fonts are still an open issue in HTML; but, with some assumptions regarding
the use of downloadable font technology, font use is becoming a reality on the Web.
Chapter 7 presents tables that make it possible to create fairly precise layouts using
HTML. However, later chapters reveal that many of the problems raised in this chapter
and Chapter 7 will cease once style sheets become more prevalent. Then the elements
discussed in this chapter may be eliminated or may return to their original purpose.

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

C h a p t e r 6 : I n t r o d u c t i o n t o L a y o u t : B a c k g r o u n d s , C o l o r s , a n d T e x t 241

This page intentionally left blank.

Chapter 7
Layout with Tables

243

Copyright 1999 The McGraw-Hill Companies. Click Here for Terms of Use.

244 H T M L : T h e C o m p l e t e R e f e r e n c e

The <TABLE> element and its associated elements have become one of the most
commonly used means of creating Web page layouts. While positioning through
style sheets (Chapter 10) should provide more precise layout capacities, browser

support is inconsistent, and the issue of backward-compatibility remains a concern. For
better or worse, this leaves the table approach to page layout as the only one likely to
work across multiple browsers. Tables are not limited to layout, however, as the later
portions of this chapter will discuss.

Introduction to Tables
A table represents information in a tabular way, like a spreadsheet: distributed across a
grid of rows and columns. In printed documents, tables commonly serve a subordinate
function, illustrating some point described by an accompanying text. Tables still perform
this illustrative function in HTML documents. Because HTML does not offer the same
layout capacities available to print designers, Web-based tables have also become a
common way to create document layout and design. But unlike printed tables, HTML
tables can contain information that is dynamic, or interactive, such as the results of a
database query. To address this use, the databinding feature allows an HTML table
template to be directly connected with a database source. A table is dynamically generated
using the template and the results of a particular database query. Taken together, these
capabilities make tables one of HTML’s most useful and sophisticated resources.

Simple Tables
In its simplest form, a table places information inside the cells formed by dividing a
rectangle into rows and columns. Most cells contain data. Some cells, usually on the
table’s top or side, contain headings. HTML represents a basic table using four elements.
In HTML, a table, <TABLE> … </TABLE>, contains one or more rows, <TR> … </TR>.
Each row contains cells holding a heading, <TH> … </TH>, or data, <TD> … </TD>.
The following code example illustrates a basic table. Note that the only attribute used
in this example is BORDER, which is used to specify a 1-pixel border so it is clear what
the table looks like. The rendering for the simple table under various browsers is shown
in Figure 7-1.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>

<HEAD>
<TITLE> Simple Table Example </TITLE>

</HEAD>

<BODY>
<TABLE BORDER="1">

<CAPTION>Basic Fruit Comparison Chart </CAPTION>

<TR>
<TH>Fruit </TH>

<TH>Color </TH>
</TR>

<TR>

<TD>Apple </TD>

<TD>Red</TD>
</TR>

<TR>
<TD>Avocado </TD>

<TD>Green </TD>
</TR>

<TR>

<TD>Watermelon </TD>

<TD>Pink </TD>
</TR>
</TABLE>

</BODY>

</HTML>

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

C h a p t e r 7 : L a y o u t w i t h T a b l e s 245

Figure 7-1. Browser renderings of a simple example

246 H T M L : T h e C o m p l e t e R e f e r e n c e

This simple table example shows the use of the most basic table elements: headings,
rows, and data cells.

Again, a table is made up of rows enclosed within <TR> . . . </TR>. The number
of rows in the table is determined by the number of occurrences of the <TR> element.
What about columns? Generally, the number of columns in a table is determined by the
maximum number of data cells indicated by <TD> . . . </TD>, or headings indicated
by <TH> . . . </TH> within the table. It may be useful to hint to the browser at the
number of columns in the table by setting the COLS attribute, introduced in HTML 4,
for the <TABLE> element equal to the number of columns in the table (for example,
<TABLE BORDER="1" COLS="2">, as in the last example).

The headings for the table are set using the <TH> element. Generally, the browser
renders the style of headings differently, possibly centering the contents of the heading
and placing the text in bold type. The actual cells of the table are indicated by the <TD>
element. Both the <TD> and <TH> elements may enclose an arbitrary amount of data of
just about any type. In the previous example, a full paragraph of text could be enclosed
in a table cell along with an image, lists, and links. Last, the table may have a caption
enclosed within <CAPTION> . . . </CAPTION>, whose contents are generally rendered
above or below the table indicating what the table contains.

The closing tags for the <TR>, <TH>, and <TD> tags are optional under the HTML
specification. While this may make for cleaner-looking code in your HTML documents,
HTML writers are still encouraged to use the closing tags, as well as indentation. This
will assure that table cells and rows are clearly defined, particularly for nested tables,
and avoid problems with Netscape, which often “breaks” tables that don’t use closing
tags for these elements.

ROWSPAN and COLSPAN
While the previous example shows that it is possible to create a simple table with a
simple structure, what about when the table cells need to be larger or smaller? The
HTML code that follows creates tables that are somewhat more complicated. By adding
the ROWSPAN and COLSPAN attributes to the table elements, it is possible to create
data cells that span a given number of rows or columns. The rendering of this code
appears in Figure 7-2.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>

<HEAD>

<TITLE> ROWSPAN and COLSPAN Example</TITLE>
</HEAD>

<BODY>
<TABLE BORDER="1">
<CAPTION>ROWSPAN Example</CAPTION>

<TR>

<TD ROWSPAN="2">Element 1 </TD>
<TD>Element 2 </TD>

</TR>

<TR>

<TD>Element 3 </TD>
</TR>

</TABLE>

<TABLE BORDER="1">

<CAPTION>COLSPAN Example</CAPTION>

<TR>
<TD COLSPAN="3"> Element 1 </TD>

</TR>

<TR>

<TD>Element 2 </TD>
<TD>Element 3 </TD>
<TD>Element 4 </TD>

</TR>

</TABLE>
</BODY>

</HTML>

C h a p t e r 7 : L a y o u t w i t h T a b l e s 247

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

Figure 7-2. Rendering of ROWSPAN and COLSPAN

248 H T M L : T h e C o m p l e t e R e f e r e n c e

The basic idea of the ROWSPAN and COLSPAN attributes for <TD> and <TH> is
to extend the size of the cells across two or more rows or columns, respectively. To set
a cell to span three rows, use <TD ROWSPAN="3">; to set a heading to span two
columns, use <TH COLSPAN="2">. Setting the value of ROWSPAN to more than the
number of rows in the table does not extend the size of the table. Browsers should not
add rows or columns when attributes suggest that there are more.

Besides being able to span rows and columns, the <TABLE> element, as well as its
enclosed elements <TD>, <TH>, and <CAPTION>, supports a variety of attributes for
alignment, sizing, and layout. The following example shows a more complex kind of table.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>
<HEAD>

<TITLE> Complex Table Example </TITLE>
</HEAD>

<BODY>

<P>Notice how the text of a paragraph

<TABLE ALIGN="left" BORDER="1" WIDTH="300">
<CAPTION ALIGN="bottom"> The Super Widget
<TR>

<TD ROWSPAN="2"><IMG SRC="widget.gif" ALT="Super Widget"
WIDTH="100" HEIGHT="120"></TD>

<TH BGCOLOR="lightgreen"> Specifications </TH>

</TR>

<TR>

<TD>

 Diameter: 10 cm

 Composition: Kryptonite
 Color: Green

</TD>
</TR>

</TABLE>
can flow around a table just as it would any other embedded
object form. Notice how the text of a paragraph can flow

around a table just as it would any other embedded object

form. Notice how the text of a paragraph can flow around
a table just as it would any other embedded object form. </P>

</BODY>
</HTML>

C h a p t e r 7 : L a y o u t w i t h T a b l e s 249

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

The preceding example shows that it is possible to place any form of content in a
cell, as well as control the individual size of the cells and the table itself. The logical
step is to control page layout by creating a grid with the <TABLE> element.

Tables for Layout
In themselves, tables do not seem that interesting to many people. They are, however,
a very important tool for HTML page layout. The foundation of graphic design is the
ability to spatially arrange visual elements in relation to each other. Tables can be used
to define a layout grid for just this purpose. Prior to the advent of style sheets supporting
positioning, tables were the only reliable way to accomplish this. They remain the most
commonly used technique.

The key to using a table in order to create a precise page grid is the use of the
WIDTH attribute. The WIDTH attribute for the <TABLE> element specifies the width
of a table in pixels, or as percentage value, such as 80%. It is also possible to set the
individual pixel widths of each cell within the table, using a WIDTH attribute for the
<TD> or <TH> elements. Imagine trying to create a 400-pixel column of text down the
page with a buffer of 50 pixels on the left and 100 pixels on the right. With older
HTML, this would be literally impossible without making the text a giant image. With
a table, it is easy, as shown by the markup code here:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>

<HEAD>

<TITLE> Table Layout </TITLE>
</HEAD>

<BODY>

<TABLE BORDER="0">
<TR>

<TD WIDTH="50">
</TD>

<TD WIDTH="400">
<H1 ALIGN="center"> Layout is here! </H1>

<HR>
<P>This is a very simple layout that would have
been nearly impossible to do without tables. </P>

</TD>

<TD WIDTH="100"> </TD>

</TR>

</TABLE>
</BODY>

</HTML>

In the preceding code, the BORDER value is set to zero. This attribute isn’t necessary;
if the browser does not see a BORDER attribute in the <TABLE> element, it won’t
draw a border. It may be convenient to keep the attribute in but set to zero, so the
border can be turned on and off to check to see what is going on with a particular
layout. When creating empty table cells, it is a good idea to put a line break

or a nonbreaking space () into the cell so it doesn’t collapse vertically.

Tables might also be used to provide more precise layout in relation to a background.
One popular design concept employs a vertical strip of colored background on the left of
the page that contains navigation controls; the rest of the document contains the main
text. Without tables, it is difficult to keep body content from going on top of the
background image. An example of the HTML markup code to create a two-column
design that works on top of a 100-pixel-wide color background is shown here:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>
<HEAD>
<TITLE> Table Layout with Background </TITLE>

</HEAD>

<BODY BACKGROUND="yellowtile.gif">
<TABLE WIDTH="550">
<TR>

<TD WIDTH="100">
 About

 Products

 Staff

 Contact

</TD>

<TD WIDTH="450">
<H1 ALIGN="center"> Welcome to Big Company, Inc. </H1>

<HR>
<P>This text is positioned over a white background;

the navigation links are over a colored background.

This layout combines a table with a background image.
</P>

</TD>
</TR>
</TABLE>

</BODY>

</HTML>

250 H T M L : T h e C o m p l e t e R e f e r e n c e

The rendering of this layout appears in Figure 7-3. Note how the foreground content
(the <BODY> content) is aligned over the BACKGROUND image. Another way to
achieve such effects is to set the BGCOLOR attribute for the table cells. BGCOLOR was
introduced in Netscape Navigator 3 and is also supported in Internet Explorer. Background
shading can also be controlled via style sheets, as discussed in Chapter 10. While such
techniques would appear to help get rid of the headaches of aligning foreground and
background elements, there is an issue of backward-compatibility.

In HTML documents, tables have many nontraditional uses for graphic design and
layout. These extend beyond creating grids; even single-cell tables can be put to many
uses. As a simple example, consider using a table to define a pastel-colored “sticky”
note. These can be inserted throughout HTML documents to draw attention to important
ideas. An example HTML fragment to insert a single-cell, colored table is shown here:

<TABLE ALIGN="left" BGCOLOR="#FFFFCC" CELLPADDING="20" HSPACE="15 "

VSPACE="15">

<TR><TD>This is an important point! </TD></TR>

</TABLE>

Notice that this example contains only a single data item—certainly unusual
for a conventional table. It also demonstrates two more <TABLE> attributes. The
BGCOLOR attribute sets the background color for a table using either a standard
color name or hexadecimal RGB value. The given value indicates a light pastel yellow.

C h a p t e r 7 : L a y o u t w i t h T a b l e s 251

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

Figure 7-3. Rendering of foreground/background layout

252 H T M L : T h e C o m p l e t e R e f e r e n c e

The CELLPADDING attribute sets the distance in pixels between a table cell’s outer
border and the point at which content begins. Besides “sticky” notes and other forms
of colored tables to draw out information, there are various uses for single-cell tables.
When combined with width, this might just be a good way to constrain the text within
a page.

Advanced Layout Using Tables
Creating more sophisticated layouts with tables can be relatively simple. The following
code example shows how a table can be used to create a two-column layout with text
and an image. Text in the code example has been truncated to preserve space. The
COLSPAN attribute is used to create table cells (<TD>) that contain headlines and
subheaders that run across the width of the entire table. The CELLPADDING attribute
for <TABLE> is set to 10 to prevent the text in the columns from running too close
together. The rendering of this code is shown in Figure 7-4.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>
<HEAD>
<TITLE> 2-Column Document Layout with Table </TITLE>

</HEAD>

<BODY>
<TABLE CELLSPACING="0" CELLPADDING="10" BORDER="1" WIDTH="550">
<TR>

<TD COLSPAN="2" ALIGN="center">

FEZ: IMPERIAL JEWEL OF MOROCCO</TD>

</TR>

<TR>

<TD WIDTH="50%" VALIGN="middle">

Beyond the Bou Jeloud Gate... </TD>

<TD WIDTH="50%" ALIGN="center">

</TD>

</TR>

<TR>

<TD COLSPAN="2" ALIGN="center">

<I> Luckily, a major UNESCO restoration project

is now underway... </I></TD>

</TR>

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

<TR>

<TD WIDTH="50%" VALIGN="top"> Part of the problem... </TD>
<TD WIDTH="50%" VALIGN="top"> Major landmarks... </TD>

</TR>
</TABLE>
</BODY>

</HTML>

It is also possible to apply tables to layout in a more complicated fashion. Layouts
combining text and images can be created using large graphics that incorporate text,
but this approach produces pages that are slow to download. The code example that
follows shows a more complicated layout that breaks up an image and reassembles it
like a jigsaw puzzle, using a table as an invisible “frame” to hold it in place. Note that
links have not been applied to the graphic links in this code (for example, widgets.gif)
in order to simplify the code example.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>

<HEAD>

<TITLE> Big Company, Inc. Home Page </TITLE>
</HEAD>

C h a p t e r 7 : L a y o u t w i t h T a b l e s 253

Figure 7-4. Rendering of a two-column document layout

<BODY>

<TABLE BORDER="0" CELLPADDING="0" CELLSPACING="0" WIDTH="570">
<TR>

<TD>

</TD>

<TD COLSPAN="4">

</TD>

</TR>

<TR>

<TD VALIGN="top" ROWSPAN="7" WIDTH="124">

</TD>

<TD ROWSPAN="7" VALIGN="top" WIDTH="185">

And now, thanks to our merger with Massive Industries, we are
now the world's largest manufacturer of Gadgets™ and

other useless products.

To learn more about our products or our growing monopoly,

click on any of the links to the right.
</TD>

<TD ROWSPAN="3" WIDTH="68" VALIGN="top">

</TD>

<TD COLSPAN="2" WIDTH="193" VALIGN="top">

</TD>

</TR>

<TR>

<TD COLSPAN="2" WIDTH="193" VALIGN="top">

</TD>

</TR>

<TR>
<TD COLSPAN="2" WIDTH="193" VALIGN="top">

</TD>

</TR>

254 H T M L : T h e C o m p l e t e R e f e r e n c e

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

C h a p t e r 7 : L a y o u t w i t h T a b l e s 255

<TR>

<TD COLSPAN="2" ROWSPAN="4" WIDTH="136" VALIGN="top">

</TD>

<TD VALIGN="top" WIDTH="125">

</TD>

</TR>

<TR>

<TD VALIGN="top" WIDTH="125">

</TD>
</TR>

<TR>

<TD VALIGN="top" WIDTH="125">

</TD>

</TR>

<TR>
<TD VALIGN="top" WIDTH="125">

</TD>
</TR>

<TR>
<TD COLSPAN="2" WIDTH="309"> </TD>
<TD WIDTH="68"> </TD>

<TD WIDTH="68"> </TD>
<TD VALIGN="top" WIDTH="125">

</TD>
</TR>

</TABLE>
</BODY>

</HTML>

When creating a layout like this, it is very important to set the CELLPADDING
and CELLSPACING attributes to 0. Table cell widths should correspond to the width

of the image inside the cell, and the width of the table should be the sum of the cells in
a table row. It is also important to include the HEIGHT and WIDTH attributes of the
images used. Figure 7-5 shows a browser rendering of this layout, with an overlay to
show where the image is broken up.

Note that the image consists of GIFs and JPEGs. “Photographic” areas of the image
have been saved as JPEGs, while areas with limited color, such as simple text, have
been saved as GIFs. By saving each area in the appropriate format, it is possible to
reduce the overall file size and optimize performance. (This is discussed in more detail
in Chapter 5.)

Tables in HTML 4
So far, the discussion of tables has mentioned five elements: <TABLE>, <CAPTION>,
<TR>, <TH>, and <TD>. These are the most commonly used elements. HTML 4
introduces several new elements that provide increased control over table formatting:
<COL>, <COLGROUP>, <THEAD>, <TFOOT>, and <TBODY>. An HTML table as
defined by the HTML 4.0 specification has the following structure:

■ An opening <TABLE> element.

■ An optional caption specified by <CAPTION> . . . </CAPTION>.

■ One or more groups of rows. These may consist of a header section specified by
<THEAD>, a footer section specified by <TFOOT>, and a body section specified

256 H T M L : T h e C o m p l e t e R e f e r e n c e

Figure 7-5. Rendering of layout with “jigsaw” image

C h a p t e r 7 : L a y o u t w i t h T a b l e s 257

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

by <TBODY>. While all these elements are optional, the table must at least
contain a series of rows specified by <TR>. The rows themselves must contain
at least one header or data cell, specified by <TH> and <TD>, respectively.

■ One or more groups of columns specified by <COLGROUP> with individual
columns within the group indicated by <COL>.

■ A closing </TABLE> element.

The main difference between HTML 4 tables and the more basic table form is that
rows and columns may be grouped together. The advantage to grouping is that it
conveys structural information about the table that may be useful for rendering the
table more quickly, or keeping it together when displaying on the screen. For example,
specifying the <THEAD> or <TFOOT> may allow a consistent header or footer to be
used across larger tables when they span many screens (or sheets of paper when printed).
The use of these elements is mandatory when working with dynamically populated
tables that incorporate databinding as introduced by Microsoft and discussed later in
this chapter. The following example explains the use of the new HTML 4 table
elements.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>

<HEAD>
<TITLE> HTML 4 Tables </TITLE>

</HEAD>

<BODY>
<TABLE BORDER="1" FRAME="BOX" RULES="GROUPS">

<CAPTION>Fun with Food </CAPTION>
<COLGROUP>

<COL>

</COLGROUP>

<COLGROUP>

<COL ALIGN="CENTER">

<COL ALIGN="CHAR" CHAR=".">
</COLGROUP>

<THEAD>
<TR>

<TH BGCOLOR="yellow"> Fruit </TH>

<TH BGCOLOR="yellow"> Color </TH>

<TH BGCOLOR="yellow"> Cost per pound </TH>
</TR>

</THEAD>

<TBODY>

<TR>
<TD>Grapes </TD>

<TD>Purple </TD>
<TD>$1.45 </TD>

</TR>

<TR>

<TD>Cherries </TD>
<TD>Red</TD>

<TD>$1.99 </TD>
</TR>

<TR>
<TD>Kiwi </TD>
<TD>Brown </TD>

<TD>$11.50 </TD>

</TR>
</TBODY>

<TFOOT>

<TR>
<TH COLSPAN="3">This has been another fine table example. </TH>

</TR>

</TFOOT>
</TABLE>

</BODY>
</HTML>

The first thing to notice in this code is the use of the FRAME and RULES attributes
for the <TABLE> element. The FRAME attribute specifies which sides of the frame that
surrounds the table will be visible. In this example, the value is set to BOX, which means
that the frame around the outside of the table is on. Other values for this attribute include
ABOVE, BELOW, HSIDES, VSIDES, LHS, RHS, VOID, and BORDER. The meaning
of all these values is discussed in the table syntax sections that follow.

Do not confuse the idea of the FRAME attribute with that of RULES. The RULES
attribute defines the rules that may appear between the actual cells in the table. In the
example, the value of RULES is set to GROUPS; this displays lines between the row or
column groupings of the table. The RULES attribute also takes a value of NONE,
GROUPS, ROWS, COLS, and ALL.

The other major difference in the HTML code for the table shown above is the
inclusion of the <THEAD> and <TBODY> elements. <THEAD> contains the rows
(<TR>), headings (<TH>), and cells (<TD>) that make up the head of the table. Beyond

258 H T M L : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 7 : L a y o u t w i t h T a b l e s 259

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

organization and the application of styles, the advantage of grouping these items is that it
may be possible to repeat the elements over multiple pages (under certain browsers).
Imagine printing out a large table and having the headers for the rows appear on every
page of the printout. This is what <THEAD> may be able to provide. Similarly, the
<TFOOT> element creates a footer to use in the table, which may also run over
multiple pages. Last, <TBODY> indicates the body of the table, which contains the
rows and columns that make up the inner part of a table. While there should be only
one occurrence of <THEAD> and <TFOOT>, there may be multiple occurrences of
<TBODY>. Multiple bodies in a document may seem confusing, but these elements are
more for grouping purposes than anything else. When a table is specified without
<THEAD>, <TFOOT>, or <TBODY>, it is assumed to have one body by default.

While tables are becoming more difficult to code, you can take heart from the
variety of tools that can be used to create them. Most HTML editing tools can easily
add the elements needed to make tables. This is good, since the combination of
HTML 4’s new table elements with various proprietary extensions introduced by
Microsoft, Netscape, and WebTV results in a dizzying array of elements, and attributes
for the individual table elements. The next few sections specify a complete syntax for
the various table elements.

<TABLE> Elements
Every table is defined by the <TABLE> element, which must have a corresponding
</TABLE> element. These elements indicate that the contained content is organized
into a table with rows and columns as specified by the <TR>, <TD>, and <TH>
elements. It is also possible to use the <CAPTION>, <COL>, <COLGROUP>,
<THEAD>, <TBODY>, <TFOOT>, and <THEAD> elements to organize a table
and apply attributes to numerous columns, rows, and data cells at once. Appendix A
lists the complete syntax for all of these elements.

Databinding: Tables Generated
from a Data Source
Tables often contain row after row of identically formatted data that originates in a
database. There are two basic methods to create these data-dependent tables. Neither
one is ideal:

■ If the table data is relatively static, it is common to build a long table by hand or
with a tool, individually coding each data cell.

■ If the table data is dynamic, it is common to generate the entire page containing
the table using a server-side CGI (Common Gateway Interface) technology.

The first approach is difficult for an HTML author. The second, which does not really
qualify as HTML authoring, usually requires programming. Databinding is a technology
recently introduced by Microsoft to dynamically bind HTML elements to data coming

260 H T M L : T h e C o m p l e t e R e f e r e n c e

from an external source. While not technically restricted to HTML tables, it does represent
a simpler, more powerful approach for generating large data-dependent tables.

In HTML databinding, a data source that provides information is associated with a
data consumer that presents it. The data source is a control with some means to access
external information that is embedded in an HTML document using the <OBJECT>
element. This element, briefly introduced in Chapter 9, is further explained in Chapter 15.
For now, it will be useful to understand that <OBJECT> adds a small program to the
page that can be used to access an external data source. The document also contains a
data consumer, an HTML element that uses special attributes to ask the ActiveX control
for data that the element subsequently displays. Data consumers come in two sorts:
those that present single data values, and those that present tabular data. Tables fall
into the latter category.

Creating an HTML table using databinding is a very simple process. It is only
necessary to define one table row. The rest are generated automatically according
to the template defined by the first row. Think of each row in a tabular data set as
corresponding to a database record, and each column as corresponding to a database
field. A template table row is defined in HTML that associates <TD> or <TH> elements
with field names in the data set. A table will subsequently be generated with one row
for each record in the data set, and with cell values filled in from the appropriate record
fields. The data source control may support processing capabilities such as sorting or
filtering the data set. If so, the table can be dynamically regenerated on the client side
in response to update information from the data source.

For example, a data source may contain a tabular data set for product price
information. One field may contain the name of the product, another its price. By
default, a table could present this information sorted alphabetically by product name.
In response to a button on an HTML page, the data source could sort the data set by
price. The table that displays the information would be dynamically regenerated. The
following is a simple databinding example.

An external data file contains two or more columns of comma-delimited data. The
first line contains the names of the data set fields corresponding to the columns. The
following lines contain the actual data for the appropriate fields. A sample file called
alphabet.txt is shown here:

Letter, Thing

A, Apple
B, Boy
C, Cat

D, Dog

E, Elephant
F, Fox

G, Girl
H, Hat

To access the data, an HTML document references an object for a data source
control and a related table definition. An example of how this would be accomplished
is shown here:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>
<HEAD>

<TITLE> Data Binding Example </TITLE>
</HEAD>

<BODY>

<OBJECT ID="alphabet"

CLASSID="clsid:333C7BC4-460F-11D0-BC04-0080C7055A83">
<PARAM NAME="DataURL" VALUE="alphabet.txt">

<PARAM NAME="UseHeader" VALUE="True">
</OBJECT>

<TABLE DATASRC="#alphabet" BORDER="1">
<THEAD>

<TR BGCOLOR="yellow">

<TH>Letter </TH>

<TH>Reminder </TH>
</TR>

</THEAD>

<TBODY>
<TR ALIGN="center">

<TD> </TD>

<TD></TD>
</TR>

</TBODY>
</TABLE>
</BODY>

</HTML>

This HTML code generates a table from the file alphabet.txt in which each table row
contains a letter of the alphabet and the name of a thing that can remind the reader of that
letter. The rendering of this example under Internet Explorer 4 is shown in Figure 7-6.

Examine a little more closely the pieces needed to make this databinding example
work. First, the data source. This example uses the Tabular Data Control (TDC) object:
an ActiveX control provided by Microsoft and identified by the lengthy class identifier.
This particular control locates and manipulates text data files in a tabular format. Other
controls supporting databinding could have been used instead. These might support

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

C h a p t e r 7 : L a y o u t w i t h T a b l e s 261

262 H T M L : T h e C o m p l e t e R e f e r e n c e

different data access capabilities such as access to remote relational databases. The
Microsoft ActiveX Data Objects control (ADO), however, is a representative example.
The TDC supports several parameters of which two are used in this example. The
"DataURL" parameter tells the TDC the name and location of the data file it is to use.
In this case, since only a filename is provided, the TDC looks in the same directory
containing the Web page. By default, the TDC treats every line in a data file as data.
The "UseHeader" parameter tells the TDC that the first line in the data file does not
contain data but rather the names of data fields.

As a data consumer, the <TABLE> element uses its DATASRC attribute to connect
to a data source. Note in the example how this attribute is set to the name of the
<OBJECT> tag invoking the data source control. The name must be preceded by the #
symbol. The <OBJECT> element must declare a name using the ID attribute in order
to be accessed by a data consumer. In summary, the DATASRC attribute identifies a
data source to be used in generating a table.

The next step is to associate cells in the template table row with particular fields in
the data set. This is done using the DATAFLD attribute of appropriate elements. It
contains the name of the field in the data set that its element is to be bound to. If data
set–specific names are not defined, fields can be identified using default positional

Figure 7-6. Databinding example under Internet Explorer 4

names such as Column1, Column2, and so on. The <TD> tag, commonly used for cell
data, does not support the DATAFLD attribute. To bind a field to a table cell, the <TD>
tag needs to contain one of the elements that do support DATAFLD. The elements that
make the most sense in the context of a table are , <DIV>, <OBJECT>, and
. The latter two tags illustrate that databinding is not confined to textual data.
For example, a column of images can be created by using a tag declaration such as
 inside a table cell. Note that the usual SRC attribute is
not required. Instead, the DATAFLD attribute identifies a field inside the data set that
contains a valid image filename, such as mypict.gif, and binds the image to that value.

If a table does not explicitly declare header or footer section elements, then implicitly
all table content is in the body section. In static tables, this does not usually have visual
consequences, but it does in tables generated by databinding. All body rows are included
in the template for table row generation, not just the rows containing databound fields.
To prevent header or footer information from being repeated for every row in the table,
it is necessary to enclose it with the <THEAD> or <TFOOT> element. The <TBODY>
element can then be used to signal the beginning of the template to be databound.

Such a brief example scratches the surface of databinding and merely shows the
importance of tables in relation to dynamic data. For more information on databinding,
visit Microsoft Sitebuilder, at http://www.microsoft.com/sitebuilder, and the Remote
Data Service site, at http://www.microsoft.com/data/ado/rds/.

Summary
The development of tables was the first step toward effective layout of HTML pages.
Tables provide a useful structure in which to place text and images, but they will likely
be superceded by positioning with style sheets (discussed in Chapter 10); however, that
will have to wait until style sheets are more widely supported by browsers. At that
time, tables will continue to be important for use with dynamic data, as discussed in
the preceding section. Chapter 8 addresses two more options for page layout—frames
and layers—and weighs the pros and cons of both.

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

C h a p t e r 7 : L a y o u t w i t h T a b l e s 263

This page intentionally left blank.

Chapter 8
Advanced Layout:
Frames and Layers

265

Copyright 1999 The McGraw-Hill Companies. Click Here for Terms of Use.

Tables and the other HTML techniques introduced in Chapters 6 and 7 provide a
significant improvement in Web page layout. Many designers want even more
design facilities, including multiple windows and layers. Such expectations aren’t

unreasonable, because these features are common in design programs and computer
interfaces. Such power comes at a price, however. Frames and layers may provide
significant layout flexibility, but when misused, these structures can confuse users—or
even lock them out of your site completely.

Frames
A framed document divides a browser window into multiple panes, or smaller window
frames. Each frame may contain a different document. The benefits of this approach are
obvious. Users can view information in one frame while keeping another frame open for
reference, instead of moving back and forth between pages. The contents of one frame can
be manipulated, or linked, to the contents of another. This enables designers to build
sophisticated interfaces. For example, one frame can contain links that produce a result in
another frame. An example of such an interface is shown in Figure 8-1.

266 H T M L : T h e C o m p l e t e R e f e r e n c e

Figure 8-1. Example frame interface

C h a p t e r 8 : A d v a n c e d L a y o u t : F r a m e s a n d L a y e r s 267

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

Frames offer many possibilities. They can contain tables of contents, site indexes,
and lists of links. Frames offer fixed-screen navigation—whereby certain information is
always at the forefront—and other options not found in the single-window approach.
However, framed documents can be difficult to deal with. When Netscape 2
introduced the concept of frames, many users were very confused by framed Web sites.
Frames couldn’t be printed, sites were hard to bookmark, and the Back button of
browsers didn’t work as expected. Regardless, many site designers, excited by a new
approach, rushed to develop framed pages. Then, they removed them just as quickly,
due to navigation problems and user complaints.

Today, many of the problems associated with frames have been fixed at the
browser level, and users have become more comfortable understanding and working
with frames. Used properly in the right situation, as discussed in this chapter, frames
are an important tool in the Web designer’s toolbox. No longer considered proprietary
browser extensions, frames are included in the HTML 4.0 standard.

Overview of Frames
A frame is an independent scrolling region, or window, of a Web page. Every Web
page may be divided into many individual frames, which can even be nested within
other frames. Fixed screen sizes limit how many frames can realistically be used
simultaneously. Each frame in a window may be separated from the others with a
border; in this way, a framed document may resemble a table. However, frames aren’t a
fancy form of tables. Each separate frame may contain a different document, indicated by
a unique URL. Because the documents included in a framed region may be much larger
than the room available onscreen, each frame may provide a scroll bar or other controls
to manipulate the size of the frame. Individual frames usually are named, so that they
may be referenced through links or scripting, allowing the contents of one frame to affect
the contents of another. This referencing capability is a major difference between tables
and frames. Frames provide layout facilities and, potentially, navigation. Figure 8-2
provides a visual overview of the components of a framed document.

Simple Frame Example
The first point to remember is that a framed document is composed of several
documents. To illustrate, a page with two frames actually involves three files:

■ The framing document that defines the framing relationship

■ The file that contains the contents of frame one

■ The file that contains the contents of frame two

Consider the simple two-frame document shown in Figure 8-3. The first frame, on
the left, covers about 20 percent of the screen and contains a table of contents. The
larger column on the right, which takes up the other 80 percent of the screen, displays
the actual contents. For the purposes of this example, the left frame is named Controls,
and the right frame is named Display.

268 H T M L : T h e C o m p l e t e R e f e r e n c e

To specify the framing document, you need to create a file that uses the
<FRAMESET> element instead of the <BODY> element. The <FRAMESET> element
defines the set of frames that makes up the document. The major attributes for this
element are the ROWS or COLS attributes. In this case, two columns take up set
percentages of the total screen, so the code reads <FRAMESET COLS="20%, 80%">.
Setting up something like <FRAMESET ROWS="10%, 80%, 10%"> would be just as
easy, which sets up three rows across the screen.

The ROWS and COLS attributes can also be set to pixel values, so that
<FRAMESET COLS="200, 400"> defines a column 200 pixels wide, followed by a
column 400 pixels wide. Because determining the exact size of the screen is difficult,
setting these attributes to exact values might be dangerous. If absolute pixels are used
and the screen is larger than the area specified, an empty space appears in the browser
window. If the screen is smaller than the specified frame values, scrolling may be
required. Because of this, use absolute pixel values only when they make sense.

Figure 8-2. Frame road map

Frame 1

Frame 2

Frame border Scroll bar

Links control the content
of frame 2

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

C h a p t e r 8 : A d v a n c e d L a y o u t : F r a m e s a n d L a y e r s 269

If you know that the Controls frame contains a graphic that is 150 pixels across,
consider setting the size of the first frame to 175 pixels, to fit the graphic plus some
white space. If the frame were any smaller than this size, the graphic would be clipped,
so using an absolute pixel value makes sense when you know the size of the contents.
But what should the size of the other frame be? To simply take up the rest of the screen
with whatever is left over after 175 pixels, use the wildcard character (*) to specify use
of the rest of the screen. The code for such a frame set is <FRAMESET COLS="175,*">.

In summary, the ROWS and COLS attributes may be set to pixels, percentages, or a
wildcard value. You may use multiple occurrences of wildcards, and you may mix and
match values. However, you should stick with all percentages or all pixels, and use
wildcards only where needed.

After you specify the frame layout with the <FRAMESET> element, the contents
of each frame must be specified by using the <FRAME> element in the order that the
frames are defined in the ROW or COL attribute. In the case of <FRAMESET
COLS="175, 100, *">, the contents of the first <FRAME> element encountered are
loaded in the 175-pixel column, the contents of the second <FRAME> element are

Figure 8-3. Visual idea of frame example

270 H T M L : T h e C o m p l e t e R e f e r e n c e

loaded in the 100-pixel column, and so on. The primary attribute of the <FRAME>
element is SRC, which is set to the URL of the document to load into the frame. The
NAME attribute should be set to indicate the name of the frame. Naming of frames is
important, because it allows each frame to be targeted by links and manipulated by
scripting languages. A very simple example of a framing document follows:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Frameset//EN">
<HTML>

<HEAD>

<TITLE> Simple Frame Example </TITLE>
</HEAD>

<FRAMESET COLS="250,*">

<FRAME SRC="fileone.htm" NAME="Controls">

<FRAME SRC="filetwo.htm" NAME="Display">

<NOFRAMES><P>This document uses frames. Please follow this link
to a noframes version.

</NOFRAMES>

</FRAMESET>
</HTML>

The preceding example uses the <NOFRAMES> … </NOFRAMES> element within
the frame set. This element provides information to be displayed in browsers that don’t
support frames. Although this approach seems like a good idea, you may need to
maintain both a frame and a no-frame version of a site, to accommodate different
browsers. You also need to define the individual documents, in this case fileone.htm
and filetwo.htm, which are loaded into the frames. Fileone.htm is shown here:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>
<HEAD>

<TITLE> File One </TITLE>
</HEAD>

<BODY>

<H2>File 1 </H2>
</BODY>

</HTML>

This is the code for filetwo.htm:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>
<HEAD>

<TITLE> File Two </TITLE>
</HEAD>

<BODY>

<H2>File 2 </H2>

</BODY>
</HTML>

Putting all three files in the same directory and loading the framed example into a
browser should produce a rendering similar to the one shown in Figure 8-4.

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

C h a p t e r 8 : A d v a n c e d L a y o u t : F r a m e s a n d L a y e r s 271

Figure 8-4. Rendering of simple frame example

272 H T M L : T h e C o m p l e t e R e f e r e n c e

To summarize, the <FRAMESET> and <FRAME> elements constitute the HTML
needed for frames. The <FRAMESET> element:

■ Encloses the <FRAME> element and defines the structure of the framed document.

■ Must have a </FRAMESET> close tag.

■ May be nested within other <FRAMESET> elements, to create a nested frame
structure.

■ Should be used in place of the <BODY> element in the document that defines
the frame relationships. However, you can provide a <BODY> element after
the <FRAMESET> in place of the <NOFRAMES> element as an alternative
way to provide information for browsers that do not support frames.

The <FRAME> element, which must occur within the <FRAMESET> element, has
the following attributes:

■ The primary attributes are the SRC attribute, which indicates the URL of the
frame content, and the NAME attribute, which sets a name for the frame for
linking and scripting purposes.

■ The HTML 4 specification defines the FRAMEBORDER, MARGINWIDTH,
MARGINHEIGHT, NORESIZE, and SCROLLING attributes, which control
the basic presentation of the specified frame.

■ Browser vendors have specified numerous additions to the <FRAME> element to
control its presentation and provide hooks to style sheets and scripting languages.

The complete syntax for the <FRAME> and <FRAMESET> elements, as well as a
discussion of their attributes, is presented in Appendix A.

Frame Targeting
When using frames, you often may find that making the links in one frame target
another frame is beneficial. This way, when a user clicks a button or activates a link in
one framed document, the requested page loads in another frame. In the simple frame
example in the preceding section, you might want to have the frame named Controls
target the frame named Display. Link targeting has two steps:

1. Ensure frame naming by setting the NAME attribute in the <FRAME> element
to a unique name.

2. Use the TARGET attribute in the <A> element to set the target for the anchor. For
example, a link such as
loads the site specified by the HREF into the window called Display, if such a
frame exists. If the target specified by the name doesn’t exist, the link loads over
the window it is in.

Some particular values for the TARGET attribute have special meaning, which are
summarized in Table 8-1.

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

C h a p t e r 8 : A d v a n c e d L a y o u t : F r a m e s a n d L a y e r s 273

The _top value for the TARGET attribute may be useful for “frame busting.” Many
page authors don’t want their sites to be viewed under a framed environment. Setting
the TARGET attribute of the links within a site to _top ensures that any frames being
used are removed after a link is followed.

The _blank value for TARGET is also useful, because it opens another window in
which to display the link. The only problem with this action is that the window may
tile directly on top of the previous browser window, and the user may not know that
multiple windows are open.

The _parent value isn’t encountered often, because it is useful only when frames
are nested to a great degree. The _parent value enables you to overwrite the parent
frame that contains the nested frame, without destroying any frames that the parent
may be nested within.

The _self value for TARGET, which loads a page over its current frame, duplicates
the typical default action for most browsers. It may be useful, however, to accommodate
browsers whose default actions are set differently.

According to the HTML 4 specification, frame names beginning with an underscore are
discouraged, because they may be reserved for values such as _top.

The following is an example for the file named fileone.htm. This HTML document
uses frame targeting with the names defined in the previous simple frame example:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>

<HEAD>

<TITLE> Framed Document One </TITLE>
</HEAD>

<BODY>
<H1>Framed Document One </H1>

<HR>

Value Meaning

_blank Load the page into a new, generally unnamed, window.

_self Load the page over the current frame.

_parent Load the link over the parent frame.

_top Load the link over all the frames in the window.

Table 8-1. Reserved TARGET Values

<H2 ALIGN="center"> Test Links </H2>

Yahoo in frame named display

HotBot in new window

Infoseek in this frame

Excite over whole window

</BODY>
</HTML>

When using this example, you should consider naming it fileone.htm and using it
within a frameset that defines a frame named Display. Otherwise, you may find that the
browser simply creates a new window or overwrites the current window when the link
that targets the undefined frame is selected.

The Use of <NOFRAMES>
The <NOFRAMES> element is used to enclose the HTML and text that should be
displayed when a browser that doesn’t support frames accesses the Web page. The
<NOFRAMES> element should be found only within the <FRAMESET> element.
Nevertheless, <NOFRAMES> is often found directly outside the <FRAMESET>
element. Because of the permissive nature of browsers, this tends to be interpreted
correctly.

The contents of the <NOFRAMES> element should be correct HTML, potentially
including the <BODY> element, which can be used as an alternative form for browsers
that don’t support frames. The following example provides the links that occur in the
Controls frame for browsers that don’t support frames:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Frameset//EN">

<HTML>
<HEAD>

<TITLE> Simple Frame Example </TITLE>
</HEAD>

274 H T M L : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 8 : A d v a n c e d L a y o u t : F r a m e s a n d L a y e r s 275

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

<FRAMESET COLS="250,*">

<FRAME SRC="fileone.htm" NAME="Controls">
<FRAME SRC="filetwo.htm" NAME="Display">

<NOFRAMES>
No Frame Navigation

 Yahoo

 Microsoft

 Netscape

</NOFRAMES>

</FRAMESET>

</HTML>

Notice that the approach of putting a second copy of site content within <NOFRAMES>
makes the site usable across browsers, but results in having to update two copies of the same
content. Because of this difficulty, many people simply put a statement in the <NOFRAMES>
element that indicates the site requires a frame-supporting browser for viewing. This doesn’t
make the site very accessible, but does cut down on content duplication.

Floating Frames
Up to this point, all the frames shown have been attached to the sides of the browser
(left, right, top, or bottom). Another form of frame, called a floating frame (introduced
by Microsoft), has been incorporated into the HTML 4 standard. The idea of the
floating frame is to create an inline framed region, or window, that acts similarly to
any other embedded object, insofar as text can be flowed around it. An inline frame is
defined by the <IFRAME> element and may occur anywhere within the <BODY>
element of an HTML document. Compare this to the <FRAME> element, which should
occur only within the <FRAMESET> element; remember that the <FRAMESET>
element should preclude the <BODY> element.

The major attributes to set for the <IFRAME> element include SRC, HEIGHT, and
WIDTH. The SRC is set to the URL of the file to load, while the HEIGHT and WIDTH
are set to either the pixel or percentage value of the screen that the floating-frame
region should consume. Like an element, floating frames should support
ALIGN, HSPACE, and VSPACE attributes for basic positioning within the flow of
text. Note that, unlike the <FRAME> element, the <IFRAME> element comes with a
close tag. <IFRAME> and </IFRAME> should contain any HTML markup code and

text that is supposed to be displayed in browsers that don’t support floating frames. A
simple example of floating frames is shown here:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Frameset//EN">

<HTML>
<HEAD>

<TITLE> Floating Frame Example </TITLE>
</HEAD>

<BODY>

<H1 ALIGN="center"> Floating Frame Example </H1>

<IFRAME NAME="float1" SRC="fileone.htm" WIDTH="350" HEIGHT="200"
ALIGN="LEFT">

There would be a floating frame here if your browser supported it.
</IFRAME>

<P>This is a simple example of how floating frames are used. Notice
that in many ways the floating frame acts very similar to an inline
image. Floating frames act like embedded objects in many ways. </P>

</BODY>

</HTML>

The rendering of this example code is shown in Figure 8-5. Note how the Netscape
browser does not support the <IFRAME> element, but renders the enclosed text instead.

The complete syntax for <IFRAME> is strikingly similar to the element, as
well as to other elements, such as <OBJECT>, that are used to insert other forms of
content inline. The <IFRAME> element, defined under HTML 4, includes many of the
attributes that are expected. The most important attributes are SRC, which defines the
content of the floating frame, and NAME, which is used for link targeting. Because the
floating frame is an inlined object, it also supports the ALIGN, HEIGHT, and WIDTH
attributes, which can be useful for content layout. The complete syntax of the
<IFRAME> element is provided in Appendix A.

Using Frames
One of the biggest problems with frames is that they initially were used simply
because they existed. Framed documents can provide considerable benefit, but at a
price. A potential benefit of frames is that they allow content to be fixed onscreen. As
demonstrated in previous examples, one frame may contain a table of contents, while

276 H T M L : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 8 : A d v a n c e d L a y o u t : F r a m e s a n d L a y e r s 277

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

the other frame contains the actual information. Keeping the table of contents onscreen
provides a convenient way to navigate the body of information. Furthermore, if one
frame has fixed navigation, the user may perceive the Web interface to be more
responsive, because only part of the screen needs to update between selections. The
primary benefit of frames is to present two or more things simultaneously, but this
extra window of information has its costs, as explained in the next section.

Frame Problems
Many usability experts, such as Jakob Nielsen (http://www.useit.com), are extremely
critical of frames. Given the current implementation of frames, and designers who
don’t understand the potential drawbacks of framed documents, the statement that
“frames can give designers more rope to hang themselves with” has some truth to it.

Figure 8-5. Rendering of <IFRAME> example

However, browser vendors are addressing many of the problems of frames. With luck,
designers will learn to use frames only when they provide added benefit.

The problems with frames are numerous, including design issues, navigation
confusion, bookmarking problems, loss of URL context, and printing issues. Designers
may not like frames because they often have borders, which can look strange in a
design. However, modern frame implementations allow the designer to turn off frame
borders, so this really isn’t an issue anymore. The only potential design issue is the
possibility that a framed document may sacrifice valuable screen real estate because of
scroll bars, which could pose trouble for people with lower-resolution monitors. The
only way to get around this problem is to limit the number of frames used on a page.

Navigation confusion is still a big issue with frames. Under Netscape 2, the first
browser to implement frames, the browser Back button didn’t go back in the frame
history, but instead went back in the page history. Because Netscape 2 and subsequent
versions of the browser do things differently, some lingering confusion may exist about
what “Back” means in a framed environment. Another problem involves the sense of
what happens when a link is clicked. Unless the framing is kept very simple,
determining which frames will change when a link is clicked may not be obvious to
users. In some sites, numerous frames are updated simultaneously, which may cause
users to lose their sense of navigation. Even worse, if users want to bookmark the
current page, they actually have to bookmark the top-level entry frame rather than the
deeper level to which they have progressed. If users bookmark the actual frame
content, they may lose any navigation needed to navigate the site upon return.

Additional navigational problems include loss of context, because the URL of the
document tends not to change, which accounts for why bookmarking doesn’t work as
expected. Many people use URLs as a way to orient themselves at a site; frames give up
this clue to location.

Before the release of Internet Explorer 4, printing frames was difficult. Although the
contents of individual frames could be printed, printing an entire document consisting
of many frames generally was impossible. The newer versions of the Microsoft browser
allow complete frame printing, but page authors should understand that content may
be clipped. While none of the problems with frames are insurmountable, designers
should approach the technology with caution, and not just use it to show off their
technical prowess.

Layers
Netscape introduced the <LAYER> element starting with the Communicator
(Netscape 4) release of its browser. The layer function enables the page designer to
define precisely positioned, overlapping layers of transparent or opaque content in a
page. Besides being able to stack layers on top of each other to create complex layouts,
authors can bind the layers to code that can move them around or change the order of
overlap. Scripting combined with absolute positioning can truly make pages more

278 H T M L : T h e C o m p l e t e R e f e r e n c e

dynamic. Although the <LAYER> element does sound very useful, page authors
should use positioning with style sheets (discussed in Chapter 10) as the primary way
to control page layout absolutely. The <LAYER> element is still relevant to this
discussion, however, because some users prefer using <LAYER> in Netscape 4 to
implement positioned pages, due to bugs with CSS implementation in that iteration of
the browser. Layers are too Netscape-specific at this point to recommend their use. The
W3C doesn’t include layers in the HTML 4 specification, and isn’t considering layers
for inclusion in future versions. The use of layers (as defined with this proprietary
HTML element) should be approached with extreme caution. However, you may find
it helpful to know more about layering, so this section provides that information.

The basic idea of a layer is similar to the idea of a frame, except that layers may
overlap. They generally are defined in the same document, unlike frames, which
require multiple documents. A layer defines a region or portion of the browser
window that can be manipulated, and may overlap other layers. Layers come in two
basic forms:

■ Positioned layers Defined by the <LAYER> element

■ Inflow layers Defined by the <ILAYER> element

This discussion focuses first on positioned layers, which are slightly easier to
understand.

Positioned Layers
To define a section of a document as a layer to position, enclose it within <LAYER>
and </LAYER>. The layer should be named, just as a frame is named, so that it can be
manipulated later. To name a layer, set the ID attribute of the element to a unique
identifier. For a positioned layer, specify the upper corner of the layer by setting the
TOP and LEFT attributes to the pixel coordinates of the upper-left corner of the layer,
relative to the browser window. You may also want to set the WIDTH and HEIGHT
attributes of the layer. These take pixel values, so the actual size of the layer can be
controlled, regardless of its content. A simple example showing how absolutely
positioned layers work is presented here:

<HTML>
<HEAD>

<TITLE> Layer Example </TITLE>

</HEAD>

<BODY>

<H1 ALIGN="center"> Simple Layer Example </H1>

C h a p t e r 8 : A d v a n c e d L a y o u t : F r a m e s a n d L a y e r s 279

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

280 H T M L : T h e C o m p l e t e R e f e r e n c e

<LAYER ID="Layer1" TOP="100" LEFT="50" BGCOLOR="lightgreen">

<H2>This is a layer. </H2>

 This layer is positioned at 100,150.

</LAYER>

<LAYER ID="Layer2" TOP="180" LEFT="250" BGCOLOR="orange">

<H2>This is another layer. </H2>

 This layer is positioned at 180,250.

</LAYER>
</BODY>

</HTML>

Note that the BGCOLOR attribute is used with the layers to show how the layers
clip each other. The rendering of the layer example is shown in Figure 8-6. To see how
this code looks on a browser that does not support layers, see Figure 8-7.

Because the position of layers is defined absolutely, you don’t need to define how
they fall on a page; but it makes sense to define layers in a logical order, based on a
left-to-right, top-to-bottom flow of the page.

For browsers that don’t support layers, the <NOLAYER> element may be useful.
Content placed between <NOLAYER> and </NOLAYER> tags is ignored by a browser
such as Netscape 4, which understands layers, but renders normally on all other
browsers that don’t comprehend layers. The <NOLAYER> element enables you to add
extra information to the page, for nonlayering browsers that view your site. Because
browsers that don’t understand the <LAYER> element will attempt to display the
contents of the <LAYER> element, as shown in Figure 8-7, you should use the SRC
attribute to include the contents of the layer from another file, as shown here:

<LAYER ID="Layer1" SRC="layercontents.htm" TOP="100" LEFT="100">
</LAYER>

<NOLAYER>
. . .standard HTML. . .

</NOLAYER>

C h a p t e r 8 : A d v a n c e d L a y o u t : F r a m e s a n d L a y e r s 281

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

With this technique, you can use layers without ruining the layout for other
browsers. As with frames, this may require keeping two separate forms of the site,
which may be unreasonable.

Inflow Layers
Inflow layers are different than positioned layers, because inflow layers fall naturally
within the flow of a document, much as an inlined object is positioned, such as an
image. To indicate that content is part of an inflow layer, enclose it within <ILAYER>
and </ILAYER> tags. Unlike positioned layers, where the inflow layer is defined

Figure 8-6. Rendering of layers under Netscape 4

282 H T M L : T h e C o m p l e t e R e f e r e n c e

matters, and it affects where the content ends up on the page. Similar to the <LAYER>
element, a name is probably required for the layer and should be set by using the ID
attribute. You also can set the LEFT and TOP values for the layer, but this positions the
layer relative to the content that the layer is within, not within the upper-left corner of
the browser window or enclosing layer. This positioning may be useful to move
content around by a certain number of pixels, relative to text in the document. A
simple example of inflow layers is shown here:

<HTML>

<HEAD>

<TITLE> Inflow Layer Example </TITLE>

Figure 8-7. Attempted rendering of layers under Internet Explorer

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

C h a p t e r 8 : A d v a n c e d L a y o u t : F r a m e s a n d L a y e r s 283

</HEAD>

<BODY>
<P>An inflow layer can be found

<ILAYER ID="Layer1" BGCOLOR="yellow">
within the flow </ILAYER> of text. </P>

<P>This <ILAYER ID="Layer2" BGCOLOR="yellow" LEFT="25">

is positioned 25 pixels from the left </ILAYER> of the current

flow of the content. </P>

<P>This <ILAYER ID="Layer3" BGCOLOR="yellow" TOP="15">

is positioned 15 pixels below </ILAYER> the current flow of
content. </P>

</BODY>
</HTML>

The BGCOLOR attribute is used again, so that when the example is rendered, the
location of the layers can be determined. The rendering of this example is shown in
Figure 8-8. Note how the second inflow layer clips the text that follows it. Page authors
must be very careful with layers, because layers will clip other objects onscreen. This is
their nature, by design.

Interesting Uses of Layers
Although they are very proprietary, layers can be used to create a variety of interesting
effects. The next chapter shows how to create similar effects by using style sheets,
which is the preferred way of doing things. One major aspect of layers is that, by
default, they are transparent, unless the content in the layer covers the layer entirely,
as might happen with a layer’s background image. Because layers are normally
transparent, you can overlay text on top of images. Before layers evolved, this was
difficult to do. (While background images and table cells offered some degree of

control, it was very limited; the positioning of text on top of the image was far from
precise.) The following example shows how text may be positioned over an image:

<HTML>

<HEAD>
<TITLE> Text Over Image </TITLE>

</HEAD>

<BODY>
<LAYER TOP="100" LEFT="100">

</LAYER>

284 H T M L : T h e C o m p l e t e R e f e r e n c e

Figure 8-8. Rendering of inflow layer

<LAYER TOP="200" LEFT="40">

<H2>Big Company, Inc. </H2>

</LAYER>
</BODY>

</HTML>

In case you are skeptical of this newfound ability, a rendering of the example under
Netscape 4 is shown in Figure 8-9.

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

C h a p t e r 8 : A d v a n c e d L a y o u t : F r a m e s a n d L a y e r s 285

Figure 8-9. Rendering of text-over-image example

Programming Layers
Layers become very interesting when they are combined with JavaScript. The clipping
region of a layer can be changed incrementally so that, at first, none of the layer shows,
only to gradually appear in a matter of seconds. This effect is known as a wipe. This
simple transition effect is an example of Dynamic HTML (DHTML), discussed in
Chapter 14. The original direction of Netscape’s DHTML focused heavily on layers,
but now the preferred method is to use style sheets, discussed in Chapter 10. For
old-time’s sake, a layer example that creates a simple wipe is shown here:

<HTML>

<HEAD>
<TITLE> Curtain Layers </TITLE>

<SCRIPT LANGUAGE="JavaScript">
function wipe(alayer,xinc,inctime,stopwidth)

{
alayer.clip.left += -(xinc/2)
alayer.clip.right += (xinc/2)

if (alayer.clip.width < 0) {lyr.clip.width = 0}

if (((xinc < 0) && (alayer.clip.width > stopwidth)) || ((xinc > 0) &&
(alayer.clip.width < stopwidth)))

{

setTimeout('wipe(document.layers["'+alayer.name+'"],
'+xinc+','+inctime+','+stopwidth+')',inctime)

}

}
</SCRIPT>

</HEAD>

<BODY BGCOLOR="WHITE"
onLoad="wipe(document.layers['lasthurrah'],-2,10,0)">

<LAYER NAME="lasthurrah" TOP="100" LEFT="100" BGCOLOR="YELLOW">
<H1>Goodbye, cruel world. I am the last layer! </H1>

</LAYER>

</BODY>
</HTML>

Be careful with this example. It only works in Netscape 4 and above. The line that
begins with setTimeout belongs on one line, regardless of any wrapping in the print.

286 H T M L : T h e C o m p l e t e R e f e r e n c e

Summary
Web page layout using HTML tags is not appropriate but, until recently, that was the
only available layout option. Frames are often used as a layout tool, and while the
<FRAME> element can afford great power in making sophisticated layouts, it comes
with a great price. Navigation confusion, printing mishaps, and design problems may
all result from misuse of frames. However, when frames are used properly (for
example, to provide a fixed table of contents or navigation aid), they are a valuable
addition to the page designer’s arsenal. Because of their power and popularity, frames
are finally included in the HTML specification (in version 4), so you shouldn’t have to
worry about their future use. However, more advanced page layout tags that are
highly proprietary to Netscape browsers, such as the <LAYER> and <ILAYER>
elements, should be approached with caution. Although these elements can be used
to create impressive and dynamic layouts, similar effects can be created by using
standardized technology—particularly style sheets, which are discussed in Chapter 10.

C h a p t e r 8 : A d v a n c e d L a y o u t : F r a m e s a n d L a y e r s 287

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

This page intentionally left blank.

Chapter 9
HTML and Other
Media Types

289

Copyright 1999 The McGraw-Hill Companies. Click Here for Terms of Use.

290 H T M L : T h e C o m p l e t e R e f e r e n c e

Adding images to a Web page is just the tip of the iceberg. Web pages can
support a variety of media forms, including animation, sound, video, virtual
reality, and other binary forms. Browser vendors have introduced special

extensions to handle these new media types, but the long-term solution is to handle all
media types in a similar fashion, as plain binary objects. When programming elements
and true interactivity are mixed, things can become even more complicated. This chapter
ties up some loose ends regarding binary object support and miscellaneous vendor-
specific elements. It also previews many of the issues that arise during the discussion
of interactivity on the Web.

HTML and Binary Objects
As discussed in Chapter 5, images are not directly part of HTML. Images are binary
objects that are included, or pulled into, a Web page. Other objects, such as videos,
animations, sound files, and programs, also can be pulled into Web pages. Initially,
because no way existed to insert inline into a Web page an object such as a video, the
only option was to link to it. By creating a link to a movie file,
View Movie Trailer for example, the viewer could click the link and launch a
helper application to view the movie. Combining linked data with helper applications
is certainly an easy approach, similar to the way images were supported on the Web
before Mosaic introduced support for inline images.

So, how can objects be inserted and supported inline? Three basic approaches exist:

■ Use a plug-in and reference the data by using the <EMBED> tag.
This is primarily a Netscape approach.

■ Use an ActiveX control and reference it with the <OBJECT> tag.
This is Microsoft’s approach for adding media elements to a page.

■ Use the <APPLET> tag to add multimedia with Java.

Combining all three approaches may enable you to create a page that works under
all conditions. Each approach is briefly considered next, respectively, before discussing
specific methods of inserting audio, video, and other media forms.

Plug-Ins and <EMBED>
First-generation browsers displayed static HTML pages and offered the ability to launch
helper applications to view different media and file types. Helper applications still run
in separate windows from the browser, providing a nonintegrated experience. In contrast,
plug-ins enable users to experience content such as Shockwave files or QuickTime movies
directly within a Web page. The plug-in HTML syntax developed by Netscape is also
supported by Internet Explorer.

C h a p t e r 9 : H T M L a n d O t h e r M e d i a T y p e s 291

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

The plug-in approach of extending a browser’s features does have drawbacks.
Users must locate and download plug-ins, install them, and restart their browsers.
Many users find this rather complicated. Netscape 4 may offer some installation
relief with its self-installing plug-ins and other features; but, for now, plug-ins remain
troublesome. Furthermore, plug-ins aren’t available on every machine; a plug-in binary
must be compiled for each particular operating system. Because of this machine-
specific approach, many plug-ins work only on Windows 95 and Windows NT. A
decreasing number of plug-ins work on Windows 3.1, Macintosh, or UNIX operating
systems. Finally, each plug-in installed on a system is a persistent extension to the
browser, which means that it needs to be downloaded only once, but takes up memory
and disk space thereafter. Having more plug-ins on your system equals increased
memory requirements. A Macintosh running ten common plug-ins may need 20MB
of RAM to operate. Plug-ins are a fat-client approach: the more functionality added, the
fatter the client application becomes.

On the upside, Netscape already bundles audio, video, and Flash plug-ins in the
browser. Other widely used plug-ins include Real Audio/Video and Adobe’s Acrobat
format. Adding support for binary objects (sounds, videos, or multimedia files) is a
matter of learning the appropriate syntax for the <EMBED> element. In general, the
<EMBED> element takes an SRC attribute to specify the URL of the included binary
object. HEIGHT and WIDTH attributes often are used to indicate the pixel dimensions
of the included object, if it is visible. To embed a short Audio Video Interleaved (AVI)
format movie called welcome.avi to be viewed by the Netscape LiveVideo plug-in, use
the following HTML fragment:

<EMBED SRC="welcome.avi" HEIGHT="100" WIDTH="100">

Beyond this simple example, things get a little more problematic. Other than
HEIGHT and WIDTH, common attributes include ALIGN, HIDDEN, ID, HSPACE,
PALETTE, PLUGINSPAGE, TITLE, and VSPACE. Some of these attributes, such as
ALIGN, HSPACE, and VSPACE, work just like the same attributes for the
element. These elements may not be supported by all plug-ins. Many other vendor-
defined attributes may also be very important. Plug-in vendors are free to define their
own attributes, which makes dealing with plug-ins difficult from a developer’s point of
view. This chapter discusses built-in Netscape plug-ins and similar Microsoft features.
A more generalized discussion of plug-ins—how they work and how to deal with
them—is presented in Chapter 15.

<NOEMBED>
One important aspect of plug-ins is the <NOEMBED> element. Some browsers do not
understand Netscape’s plug-in architecture or the <EMBED> element. Rather than
lock these browsers out of a Web page, the <NOEMBED> element enables you to

292 H T M L : T h e C o m p l e t e R e f e r e n c e

provide some alternative text or marked up content. In the short example presented
here, an AVI video is embedded in the page. The <NOEMBED> element contains an
image, which in turn has an alternative text reading set with the ALT attribute. Note
how the example degrades from a very sophisticated setting, all the way down to a
text-only environment.

<EMBED SRC="welcome.avi" HEIGHT="100" WIDTH="100">

<NOEMBED>

</NOEMBED>

One big problem with the <NOEMBED> approach occurs when a browser
supports plug-ins but lacks the specific plug-in to deal with the included binary object.
In this case, the user is presented with a broken puzzle-piece or similar icon, and may
be directed to a page from which to download the missing plug-in. This level of user
interaction is inappropriate for novice users who do not understand how to download
plug-ins. A better approach is for the page author to attempt to provide pages that
don’t require setup. (Chapter 15 presents more information on the accessibility aspects
of plug-ins.)

ActiveX Controls and <OBJECT>
Microsoft’s ActiveX technology is another approach to inserting binary objects (such
as movie and audio players) into a Web page. ActiveX controls are small, binary
components that are downloaded to a user’s system and that can be accessed from
within the Web page. Compared to plug-ins, installation is fairly straightforward for
the user. It may even be automatic. However, this technology has some security issues
that can be very problematic. Because of security and design, the ActiveX control is very
different from plug-ins or Java, though the basic way to access Microsoft’s form of
binaries is similar as far as HTML is concerned.

Microsoft uses the <OBJECT> element to insert an ActiveX control in a page. The
<OBJECT> element acts like the <EMBED> element insofar as it has attributes such as
ALIGN, HEIGHT, and WIDTH. Beyond this, the two elements are very different. Using
<OBJECT> with an ActiveX control requires the page author to specify the CLASSID
value that corresponds to the object to insert. This unique code might be something like
CLSID:99B42120-6EC7-11CF-A6C7- 00AA00A47DD2—not exactly easy to remember.
Furthermore, a variety of data items must be passed to the ActiveX control via the
<PARAM> element, which is included numerous times within the <OBJECT> element.
The <PARAM> element usually has an attribute called NAME (used to set the name of

C h a p t e r 9 : H T M L a n d O t h e r M e d i a T y p e s 293

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

the parameter) and a VALUE parameter (which sets the value of the particular argument
to the control). For example, the following code fragment is used to insert a simple
graphical label; notice how the FontName is set to Arial by using the <PARAM> element:

<OBJECT ID="IeLabel1" WIDTH="122" HEIGHT="57"

CLASSID="CLSID:99B42120-6EC7-11CF-A6C7-00AA00A47DD2">
<PARAM NAME="_ExtentX" VALUE="2582">

<PARAM NAME="_ExtentY" VALUE="1207">
<PARAM NAME="Caption" VALUE="Test Label">
<PARAM NAME="Alignment" VALUE="4">

<PARAM NAME="Mode" VALUE="1">

<PARAM NAME="FontName" VALUE="Arial">
<PARAM NAME="FontSize" VALUE="12">

Sorry, you don't have ActiveX support.
</OBJECT>

As this example shows, using the <OBJECT> element is less than straightforward.
Depending on the object being inserted, the parameters may vary widely. Because
of this, Microsoft has provided a variety of tools, such as the ControlPad
(http://www.microsoft.com/workshop/misc/cpad), that can be used to insert
ActiveX controls into a page and set their parameters.

While ActiveX controls were the first binary forms to use the <OBJECT> element,
in the future, all binary objects—including images—will probably use this form. The
W3C is attempting to standardize the method for including binary data by adopting a
generalized approach of using the <OBJECT> element. (This approach is discussed in
depth in Chapter 15.) For the rest of this discussion, simply note that because the syntax
of the <OBJECT> element is so variable when it is used in this manner, using tools to
generate the syntax, even to include Microsoft controls, is the best approach.

Java Applets
New media forms also can be inserted into a Web page by using Sun Microsystems’
Java technology. Java (http://www.javasoft.com) is an attractive, revolutionary
approach to cross-platform, Internet-based development. Java promises a platform-
neutral development language that allows programs to be written once and deployed
on any machine, browser, or operating system that supports the Java virtual machine
(JVM). It uses small Java programs, called applets, that were introduced by Sun’s HotJava
browser. Today, many popular browsers, including Navigator and Internet Explorer,
support Java. When applets are referenced in a Web page by using the <APPLET>
element, they are downloaded and run directly within a browser to provide new
functionality or media forms such as animation or video.

294 H T M L : T h e C o m p l e t e R e f e r e n c e

Applets are written in the Java language and compiled to a machine-independent
byte code that is downloaded automatically to the Java-capable browser and run
within the browser environment. But even with a fast processor, the end system runs
the byte code slowly compared to a natively compiled application, because the JVM
must interpret the byte code. Even with recent Just-In-Time (JIT) compilers in newer
browsers, Java can’t deliver ideal performance. Even if compilation weren’t an issue,
Java applets currently are not persistent; they must be downloaded for each use. Java
browsers act like thin-client applications: they add code only when they need it.

Security in Java has been a serious concern from the outset. Because programs are
downloaded and run automatically, a malicious program could be downloaded and
run without the user being able to stop it. Java applets actually have little access to
resources outside the browser’s environment. Within Web pages, applets can’t write to
local disks or perform other harmful functions. This framework has been referred to as
the “Java Sandbox.” Developers who want to provide Java functions outside the
sandbox must write Java applications, which run as separate applications from
browsers. Other Internet programming technologies (plug-ins, ActiveX, and so on)
provide little or no safety from damaging programs. Oddly, Java developers often
want to add just these types of unsecure features, as well as powerful features such as
persistence and interobject communication. Most of the features are already far along
in development, and should soon become commonplace.

As far as HTML is concerned, a Java applet is yet another object to insert into a Web
page. Rather than using the <EMBED> or <OBJECT> element, a special <APPLET>
element is used to insert a Java applet. Like the <EMBED> element, <APPLET> will
most likely be replaced by the <OBJECT> element. You need to know how <APPLET>
works, in case you need to insert Java media objects, particularly for Netscape support.

The <APPLET> element specifies the Java applet to run by providing a URL to a
class file containing the Java byte code. To set the applet to run, set the CODE attribute
equal to the URL of the Java class. The CODEBASE attribute can also be used to set a
base URL reference for the CODE attribute. Other basic attributes to the <APPLET>
element are similar to those for , such as ALIGN, HEIGHT, WIDTH, HSPACE,
VSPACE, and ALT. Within the <APPLET> and </APPLET> elements, the user can
specify parameters or arguments to the applet by using the <PARAM> element, in a
similar fashion to how data is passed to ActiveX controls. Plain text may also appear
between the <APPLET> and </APPLET> elements. Such text can be used to provide
alternative text in situations in which the element is not understood at all. A small
example of how <APPLET> might be used is shown here:

<APPLET CODE="http://www.bigcompany.com/java/test.class" ALIGN="LEFT"

HEIGHT="100" WIDTH="100" HSPACE="10" VSPACE="10">

<PARAM NAME="caption" value="Hello World">

</APPLET>

C h a p t e r 9 : H T M L a n d O t h e r M e d i a T y p e s 295

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

Depending on the Java applet being accessed, many different parameters may exist
that can be passed to it. A general discussion of Java applets and how they can be used
is presented in Chapter 15, so the discussion here is meant to show only that many
forms of binary formats exist that can be included in Web pages.

The three elements that are useful for inserting nonimage binary objects are
<APPLET>, <EMBED>, and <OBJECT>. In most cases, spelling out all the aspects of
the <APPLET> and <OBJECT> elements is too tedious, because so many variations
exist. A few plug-ins are commonly available within browsers to support media types,
such as audio, video, and VRML. Furthermore, some media forms, such as Acrobat and
Flash, are so common that they deserve a brief discussion regarding how they are
handled within HTML. The rest of the chapter reviews common plug-ins and controls
for dealing with audio, video, multimedia, and Acrobat. First, however, take a closer
look at a media element that defies classification—the <MARQUEE> element.

Media-Like Element: <MARQUEE>
One approach to adding new support for objects is to add new elements and build in
support to the browser for the object. This approach used to be very popular with
browser vendors, and is partially responsible for the proliferation of browser-specific
tags. <MARQUEE> is one example of a media-like tag that is fairly common on the
Web. Although <MARQUEE> isn’t an embedded binary object, it tends to act like one
in its support for HSPACE, VSPACE, HEIGHT, and WIDTH attributes. In the
proprietary HTML extension wars, Microsoft is the culprit for introducing the dreaded
<MARQUEE> element, which is certainly as annoying as <BLINK>. Thanks to
<MARQUEE>, HTML authors now can create messages that scroll and slide across a
viewer’s screen in a variety of different ways. Like Netscape’s <BLINK> element,
<MARQUEE> degrades fairly well and can be used by HTML authors who understand
the ramifications of using such proprietary tags. However, the bottom line is that, in
good conscience, authors shouldn’t recommend more than very occasional use of the
<MARQUEE> element.

Internet Explorer, as well as WebTV, supports the <MARQUEE> element. The
element requires a closing </MARQUEE> tag. The text included between the tags is
transformed into a scrolling ticker tape, similar to the one found at Times Square. A
very simple continuous marquee could be set with the following HTML fragment:

<MARQUEE>

Welcome to Big Company, Inc. -- the biggest fake company in the world!

</MARQUEE>

Under Internet Explorer and other browsers that support the <MARQUEE>
element, the enclosed text scrolls repeatedly from right to left. Under browsers that
don’t support <MARQUEE>, the text is displayed simply as plain text.

The following is a more complex example that illustrates some of the more common
attributes supported by <MARQUEE>; the rendering is shown Figure 9-1:

<HTML>

<HEAD>
<TITLE> Marquee Example </TITLE>

</HEAD>

<BODY>
<DIV ALIGN="CENTER">

<MARQUEE BGCOLOR="YELLOW" BEHAVIOR="ALTERNATE" DIRECTION="RIGHT"

LOOP="6" SCROLLAMOUNT="1" SCROLLDELAY="40"
TITLE="Silly tags aren't just for Netscape anymore."

WIDTH="80%">
Welcome to Big Company, the biggest fake company of them all!

</MARQUEE>
</DIV>
</BODY>

</HTML>

296 H T M L : T h e C o m p l e t e R e f e r e n c e

Figure 9-1. Rendering of the <MARQUEE> example under Internet Explorer

Changing the attributes in this example will adjust the presentation of the marquee.
For example, the BEHAVIOR attribute can be set to ALTERNATE, SCROLL, or SLIDE.
This attribute determines how the scrolling text behaves. By default, a marquee scrolls
text from left to right, unless the DIRECTION is set. The scrolled text, if it is looped,
must first disappear before reappearing on the other side. When the attribute is set to
ALTERNATE, the text bounces across the scroll region. When the attribute is set to
SLIDE, the text slides into position, based on direction, and stays put once onscreen.

The DIRECTION attribute is used to set the direction in which the scrolled text
moves. The allowed values for this attribute are DOWN, LEFT, RIGHT, and UP. Using
Dynamic HTML (DHTML) features, you may be able to create interesting effects with
<MARQUEE> by modifying the DIRECTION attribute.

The LOOP attribute is used to set the number of times that the message loops in the
scroll region. By default, unless the BEHAVIOR is set to SLIDE, a marquee scrolls forever.
The value of the LOOP attribute should be a positive integer.

Setting SCROLLAMOUNT to a particular number of pixels allows the smoothness
of the scroll to be controlled. The value of the SCROLLAMOUNT attribute is set to the
number of pixels between each drawing of the scrolled message in the display area.
The larger the value in pixels, the jerkier the scroll.

SCROLLDELAY is used to set the number of milliseconds between each rendering
of the scrolled message. A higher value for this attribute slows the scrolling. A reasonable
value for this attribute is 50 or greater. Lower values for SCROLLDELAY tend to produce
marquees that are very difficult to read.

Last, because the <MARQUEE> element represents a rectangular region, just like
an image (or, for that matter, any binary included object), it has attributes such as ALIGN,
HSPACE, VSPACE, HEIGHT, and WIDTH.

Appendix A provides a complete discussion of the <MARQUEE> element and its
numerous attributes. Although the <MARQUEE> element is certainly interesting, as a
simple form of animated text, it doesn’t hold a candle to more persuasive media forms
such as sound or video.

Audio Support in Browsers
Few things are as persuasive as sound. Just try watching television with the volume
muted. It’s not terribly interesting. Sound is a vital element of true multimedia Web
pages—but how should sound be used? What Web audio technology is appropriate for
the job? Just adding a MIDI file to a site to provide continuous background sound may
turn your page into the online equivalent of an in-store electronic organ demonstration.
The latest audio technologies on the Internet cover a lot of ground, from traditional
download-and-play systems in a variety of formats to streaming audio, which plays
close to real time. Surprisingly, the most advanced technologies, and the most popular,
may not be the best solution.

C h a p t e r 9 : H T M L a n d O t h e r M e d i a T y p e s 297

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

Digital Sound Basics
This section provides a very brief overview of digital sound. Digital sound is measured
by the frequency of sampling, or how many times the sound is digitized during a specific
time period. Sampling frequencies are specified in Kilohertz (KHz), which indicate the
sound sampling rate per second. CD-quality sound is approximately 44.1KHz, or 44,100
samples every second. For stereo, two channels are required, each at 8 bits; at 16 bits
per sample, that yields 705,600 bits of data for each second of CD-quality sound. In
theory, the bits of data on a CD could be delivered over the Internet, creating high-
quality music at the end user’s demand. In reality, transmitting this amount of data
would take nearly half a T1 network’s bandwidth. Obviously, this type of bandwidth
is not available to the average Web user. Another approach must be taken.

One approach is to lower the sampling rate when creating digital sound for Web
delivery. A sampling rate of 8KHz in mono might produce acceptable playback results
for simple applications, such as speech, particularly considering that playback hardware
often consists of a combination of a simple sound card and a small speaker. Low-quality
audio requires a mere 64,000 bits of data per second, but the end user still has to wait to
download the sound. For modem users, even in the best of conditions, each second of low-
quality sound takes a few seconds to be delivered, making continuous sound unrealistic.

Audio File Formats and Compression
Like graphics files, audio files can be compressed to reduce the amount of data being
sent. The software on the serving side compresses the data, which is decompressed and
played back on the receiving end. The compression/decompression software is known
together as a codec. Just like image formats, audio compression methods are either lossy
or lossless. Lossy data compression doesn’t perfectly represent what was compressed,
but is close enough, given the size savings. Because lossless compression techniques
guarantee that what goes in one end comes out the other, most techniques can’t compress
files to any significant degree. Compression always involves a tradeoff between sound
quality and file size; larger file sizes mean longer download times.

When dealing with sounds, you don’t really select different forms of compression.
You select file formats. Many standard file formats are available, as shown in Table 9-1.

Downloading and Playing Audio
Early approaches to delivering sound via the Internet followed the “download and
play” model. In this scenario, users must download sounds completely before they can
play them. This takes up valuable hard drive space, even if a user wants to hear only
the first few seconds of a file. Sounds must be degraded significantly in this situation,
which may not be acceptable for content that requires flawless playback. Even at very
low sampling rates, these sounds must be fairly short to spare impatient users the
agony of prolonged download times. Download time can be reduced by creating
smaller audio files, which only accentuates the drawbacks of this method.

298 H T M L : T h e C o m p l e t e R e f e r e n c e

Using HTML, the simplest way to support the download-and-play approach is by
linking to a sound file and letting another application deal with it, such as a helper or
plug-in. If no helper or plug-in is configured, the user is prompted to deal with the
sound. For example, to link to an audio file in WAV format, insert a link such as this:

 Star Spangled Banner (6 second WAV - 900K)

A good idea with the download-and-play approach is to put the decision to
download the file in the hands of users. Warn them about the file format and size, so
that the user has some indication of how long download will take. Another helpful bit
of information might be how long the sound is going to be.

For download-and-play delivery, WAV and AU are the safest formats for low-quality
music or speech. MPEG—particularly MPEG level 3 (MP3)—is really the only choice
for high-quality playback. Download-and-play–based audio delivery is recommended
when a quick bit of sound, such as an entrance gong, is required. AU and WAV files
are supported via helper applications and plug-ins. They are even supported natively

C h a p t e r 9 : H T M L a n d O t h e r M e d i a T y p e s 299

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

File Format Description

WAV Waveform (or simply wave) files are the most common sound
format on Windows platforms. WAVs can also be played on
Macs and other systems with player software.

AU Sparc-audio, or u-law format, is one of the oldest Internet
sound formats. A player for nearly every platform is available.

AIFF Audio Interchange File Format is very common on Macs. Widely
used in multimedia applications, it is not very common on the
Web.

MIDI Musical Instrument Digital Interface format is not a digitized
audio format. It represents notes and other information so that
music can be synthesized. MIDI is well supported and files are
very small, but it is useful for only certain applications due to
its sound quality when reproduced on PC hardware.

MPEG Motion Pictures Experts Group format is a standard format that
has significant compression capabilities. It isn’t as standardized
as many people might think: it lacks widespread playing and
encoding acceptance, despite its quality.

Table 9-1. Standard Internet Sound Formats

300 H T M L : T h e C o m p l e t e R e f e r e n c e

by some recent Web browsers, including Netscape with its LiveAudio plug-in, and
Microsoft Internet Explorer with its proprietary <BGSOUND> tag. Both browsers also
support MIDI sound files. However, MIDI files played back via PC sound cards (such
as SoundBlaster) often sound like cheap, synthesized music, which is more a reflection
of the playback hardware than the protocol itself.

LiveAudio
Starting with Netscape 3, the LiveAudio plug-in was included with the Netscape
browser. The LiveAudio plug-in supports AU, AIFF, WAV, and MIDI sound files in
the download-and-play fashion. Adding support for audio with LiveAudio simply
requires using the appropriate form of the <EMBED> element to access the LiveAudio
plug-in. For example, to set LiveAudio to include a sound called test.wav and a panel
to control the sound, use the following HTML fragment:

<EMBED SRC="test.wav" HEIGHT="60" WIDTH="144">

Including the HEIGHT and WIDTH values is important; otherwise, the browser
may clip the console. The default size for the LiveAudio control is 60 pixels high and
144 pixels across. Other control styles have different default sizes. If you want to create
a background sound for a page, you may find this line more appropriate:

<EMBED SRC="test.wav" HIDDEN="TRUE" AUTOSTART="TRUE">

The LiveAudio plug-in has a variety of features that can be controlled with
ATTRIBUTE settings for the <EMBED> element. The syntax for the LiveAudio
plug-in is shown here:

<EMBED SRC="URL of sound file to play"

ALIGN="top | bottom | center | baseline | left | right |
texttop | middle | absmiddle | absbottom"

AUTOSTART="true | false"
CONTROLS="console | smallconsole | playbutton | pausebutton |

stopbutton | volumelever"

ENDTIME="minutes:seconds"

HEIGHT="pixels or percentage"
HIDDEN="true | false"
LOOP="true | false | positive integer"

MASTERSOUND
NAME="unique name"

STARTTIME="minutes:seconds"

VOLUME="number from 0 to 100"
WIDTH="pixels or percentage"

>

C h a p t e r 9 : H T M L a n d O t h e r M e d i a T y p e s 301

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

Like the element, the LiveAudio plug-in must have an SRC attribute
setting. The SRC value is a URL to a sound file supported by the plug-in. These
formats include AU, AIFF, WAV, and MIDI. Remember to take the same precautions
for using a complete URL to an outside file, compared to using a locally referenced file
with a relative URL.

The AUTOSTART attributes can take one of two values, true or false. When set to
true, the sound file begins playing as soon as it is downloaded. By default, if unspecified,
AUTOSTART is set to false.

The LOOP attribute can take one of three values, true, false, or a positive integer.
Setting the value to true loops the sound continuously until the Stop button is pressed.
When combined with the AUTOSTART attribute, infinite looping could become very
annoying, particularly if the Stop button is unavailable. By default, the value of LOOP
is set to false. The LOOP attribute can also be set to a positive integer, which plays the
sound a specified number of times or until the Stop button is pressed.

The STARTTIME attribute can be set to a time value within a sound file, to
determine from where to begin playback. For example, to start playback two seconds
into the sound, the attribute can be set to 00:02.

The ENDTIME attribute is similar to the STARTTIME attribute, but instead
determines the time value to end playback, and is written in the same way.

STARTTIME and ENDTIME provide little benefit without using scripting technology,
because the whole sound must be downloaded, regardless. Why a user wouldn’t simply
edit a sound to avoid starting and stopping at a certain time index is curious. If the
controls in the LiveAudio plug-in supported a fast-forward and a reverse feature, these
attributes would be far more useful.

The VOLUME attribute can be set to an integer between 0 and 100, where 0 sets the
sound to be completely off and 100 sets it at maximum volume. Values outside this
range generally default to the extreme, so a value of 200 would set the volume to
maximum. When the VOLUME attribute is combined with the MASTERVOLUME
setting for the NAME attribute, you can set volume for other sounds. The default
volume level is the current system volume or, typically, a value of 50.

The WIDTH attribute sets the width, in pixels, for the audio controls. You should
set this value unless the HIDDEN attribute is used. The width for the default console is
144 pixels and should be set explicitly. When the CONTROLS attribute is set to
SMALLCONSOLE, the WIDTH attribute should also be set to 144 pixels. If the
CONTROLS attribute is set to VOLUMELEVER, the WIDTH attribute should be
set to 74 pixels; and if the CONTROLS attribute is set to any of the buttons, such as
PLAYBUTTON, the WIDTH attribute should be set to 37 pixels. The values for the
WIDTH attribute are summarized in Table 9-2.

The HEIGHT attribute is used to set the height, in pixels, for the audio controls.
As with the WIDTH attribute, you should make sure to set this value, unless the
HIDDEN attribute is used. The height for the default console is 60 pixels, while the
small console is only 15 pixels high. Each button, such as the Play button, is 22 pixels
up and down, and the volume lever has a height of 22 pixels. All the suggested
HEIGHT values are summarized in Table 9-2.

The ALIGN attribute acts just like the ALIGN attribute for the element.
The CONTROLS attribute sets the type of control objects to include for the sound file.
By default, the value of the CONTROLS attribute is set to CONSOLE, which includes
a volume lever, Play button, and Stop button. If space is an issue, the CONTROLS value
can be set to SMALLCONSOLE, which provides the same functionality in much less
space. Each button—including the PLAYBUTTON, PAUSEBUTTON, and
STOPBUTTON—can be set independently, as can the VOLUMELEVEL.

The HIDDEN value can be set to true if the page author wants the audio file to act
as a background sound. The user can’t control the sound if this attribute is set to true.
When HIDDEN is set, HEIGHT and WIDTH attributes are unnecessary. By default,
the HIDDEN attribute is set to false.

The NAME attribute is used to group together a set of individual controls that
control one sound. The attribute value must be a unique identifier for all the controls.
For example, the group could be called SoundGroup1. All the <EMBED> elements
that reference the same sound should then have their NAME attribute value set to
SoundGroup1. One particular <EMBED> occurrence must be set to be the “master
sound” by setting an attribute MASTERSOUND, which requires no value. The master
sound must point to a real sound file. However, the other occurrences of the <EMBED>
element within the group need to point only to a dummy sound file, called a stub file in
the Netscape documentation. The stub file is simply a file that is named appropriately
to look like a sound file (for example, stub1.wav). The file itself doesn’t need to contain

302 H T M L : T h e C o m p l e t e R e f e r e n c e

CONTROLS Setting Suggested WIDTH Value Suggested HEIGHT Value

CONSOLE (default) 144 60

SMALLCONSOLE 144 15

VOLUMELEVER 74 20

PLAYBUTTON 37 22

PAUSEBUTTON 37 22

STOPBUTTON 37 22

Table 9-2. Suggested HEIGHT and WIDTH values for LiveAudio

any information, and can be a blank text file, as long as it has the appropriate name.
This is somewhat of a hack but is required for the LiveAudio plug-in to work, because
it must see a value for the SRC attribute. While it isn’t obvious what use the NAME and
MASTERSOUND attributes might have, the following HTML example shows how a
small page could be built that uses three buttons separately to control the same sound:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>

<HEAD>

<TITLE> LiveAudio Control Group Example </TITLE>
</HEAD>

<BODY>
<H1 ALIGN="CENTER"> LiveAudio </H1>

<HR>

<EMBED SRC="sound1.wav" CONTROLS="PLAYBUTTON" HEIGHT="22"
WIDTH="37" NAME="SoundGroup1" MASTERSOUND

ALIGN="MIDDLE">

 -- Press this button to play the sound.

<EMBED SRC="stub1.wav" CONTROLS="STOPBUTTON" HEIGHT="22"
WIDTH="37" NAME="SoundGroup1" ALIGN="MIDDLE">

 -- Press this button to stop the sound.

<EMBED SRC="stub2.wav"

CONTROLS="PAUSEBUTTON" HEIGHT="22" WIDTH="37"

NAME="SoundGroup1" ALIGN="MIDDLE">

 -- Press this button to pause the sound.

</BODY>
</HTML>

Importantly, you should not point all the SRC attributes for the stub files to the
same dummy file. The stubs must be unique filenames and must all exist, though they
may have a zero length. You can simply create blank text files and rename them
stub1.wav and stub2.wav. A rendering of the last example is shown in Figure 9-2.

Under some versions of Netscape, this example may have rendering problems, even
though the sound and groups will still work.

C h a p t e r 9 : H T M L a n d O t h e r M e d i a T y p e s 303

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

304 H T M L : T h e C o m p l e t e R e f e r e n c e

By dividing up the controls, the page author has more possibilities for integrating
the audio control into the page without resorting to programming. However, the real
power with the NAME attribute comes with the introduction of LiveConnect and other
forms of DHTML. With JavaScript, you can create new buttons to control sound
playing, defer sounds to play later, and play sound when clicked.

Although Netscape’s LiveAudio isn’t an official standard by any means, it is common
enough that it could be used carefully within a Netscape environment. In a most basic
form, it is also possible to support both Netscape and Microsoft browsers with LiveAudio
itself or with Microsoft-specific elements, such as <BGSOUND>, discussed next.

Microsoft’s <BGSOUND>
Microsoft Internet Explorer 2 and later supports WAV and MIDI files with the
<BGSOUND> element, which plays a sound in the background after it is loaded.
The user has no control over the volume or the playback of the sound, which can be
annoying. The element takes an SRC attribute that is set to the URL of the sound file
to play. A LOOP attribute, which can be set to an integer value indicating how many
times the sound should play, is also available. The LOOP attribute can also be set to
the value infinite, to keep playing over and over. A simple example to play a sound
called test.wav two times under Internet Explorer could be written as <BGSOUND
SRC="test.wav" LOOP="2">.

Figure 9-2. Rendering of audio controls under Netscape 3

C h a p t e r 9 : H T M L a n d O t h e r M e d i a T y p e s 305

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

The <BGSOUND> element also supports other attributes, such as TITLE; but,
currently, the support of programming for the <BGSOUND> element under Dynamic
HTML is not well developed. While this element is in fairly heavy use, other approaches
are suggested, particularly with Microsoft taking a more standards-oriented approach.
Microsoft also supports the ActiveMovie format that can be used to insert sound-only
movies. (See the section “Microsoft’s ActiveMovie,” later in this chapter.)

Cross-Browser Background Sounds
You can include both the <BGSOUND> and Netscape LiveAudio syntax in one page,
as follows:

<EMBED SRC="test.wav" HIDDEN="TRUE" AUTOSTART="true">

<BGSOUND SRC="test.wav" LOOP="2">

In this case, Internet Explorer should ignore the first statement, while Netscape should
ignore the second. Note that using JavaScript to control which form is inserted into the
document is preferable. With both forms of sound support enabled, conflicts can occur,
so page authors are advised to test their documents thoroughly.

Proprietary Audio Formats
Many proprietary audio formats exist, including RealAudio, ToolVox, TrueSpeech, and
others. Of these, RealAudio is by far the most popular. But why use RealAudio if audio
is built into the browser? Proprietary audio formats offer one thing that many standard
digital audio formats lack: the possibility of streaming data. As a rule of thumb, a 28.8Kbps
modem user receives approximately 2K of data per second. If one second of sound could
be represented in 2K, and the data could get to the end user at a rate of 2K every second,
then the data would effectively stream, or play in real time. Streaming seems to make a
whole lot of sense. Why wait for an hour-long speech to download before playing when
you care only about the current second of data being listened to? Streamed data doesn’t
take up hard drive space, and it opens up random access to any position in an audio
file. However, streaming audio has a few potential serious drawbacks. First, to
compress audio far enough for streaming, you have to sacrifice a certain degree of
sound quality. Second, the Internet protocols themselves do not readily support the
requirements of streaming.

Why the Internet and Streaming Don’t Mix
As you may know, the Internet is frequently subject to bursts and traffic delays. Here
are a couple of key points to remember. The TCP/IP protocols used on the Internet
were designed for robustness and scalability. The Internet is a packet-switched network
that breaks up data into little chunks and sends them separately, to be reassembled at
the other end. Because these packets may be lost along their journies or arrive out of
order, the Transmission Control Protocol (TCP) guarantees the integrity of the data. This
way, many users can share a fixed circuit that allows for economies of scale. However,

306 H T M L : T h e C o m p l e t e R e f e r e n c e

packet-switched networks have one serious problem—they can’t guarantee delivery
time without special modifications. This makes streamed audio, video, and other “real
time” applications on packet-switched networks very difficult.

Packet-switched networks can be augmented with protocols such as Real Time
Transport Protocol (RTP) and Resource Reservation Setup Protocol (RSVP), which help
guarantee delivery times by making a bandwidth reservation, when needed. These
protocols can improve real-time data delivery, but they are not widely supported yet.
They also raise the question of how to limit reservations, because a user would always
want reservations in order to have maximum bandwidth. Some experts argue that once
these protocols are in place, fee structures based on bandwidth will become commonplace.
For the moment, this is pure speculation, because the various real-time protocols are
still very much in the developmental stages. Another solution to real-time data on the
Internet is necessary.

One potential solution to real-time data on the Internet is really just an assumption—
you hope the end user has the end-to-end bandwidth to receive the file in real time.
(Remember the 2K per second rule for 28.8Kbps modems.) If audio compression can
get one second of data to fit within those ranges, real-time data can be served to 28.8Kbps
users—when the assumption holds. When the assumption doesn’t hold, a glitch called
a drop-out occurs in the audio stream. If too much drop-out occurs, the user turns off
the audio stream.

One way to avoid drop-out is to buffer data. This process gives you a head start by
preloading a certain amount of data into a buffer, so that rough spots can be overcome.
An initial buffering delay of 10 or 15 seconds is acceptable for long audio clips; buffering
short sounds is counterproductive. Many Internet audio solutions use a combination of
intensive compression, buffering, and some level of bandwidth assumption to achieve
streaming. More-complex audio solutions use servers to control the process. Both
approaches to streaming audio have their pros and cons.

RealAudio
The first—and still the most popular—approach to streaming audio was developed
by RealNetworks. RealAudio (http://www.real.com) uses a special server to send
continuous audio data to a browser helper application, Netscape plug-in, Shockwave
Xtra, or ActiveX control. With players available for all major platforms, RealAudio is
the most common streaming audio format on the Internet. Putting data in RealAudio
format is fairly easy if the files exist in WAV or other common audio formats. Simply
use the RealAudio production tools, which can be downloaded from RealNetworks,
and the data is ready to publish. But despite RealAudio’s wide support, it has certain
drawbacks, which mostly revolve around the use of a special server.

Servers can provide a higher degree of control. For example, they can limit or control
the number of audio streams delivered and allow for easy access to specified points in
an audio stream. With simpler “serverless” audio-streaming solutions, the virtual fast
forward button provided by random access is sacrificed. Some sophisticated servers
could potentially upgrade data quality as bandwidth becomes available. Less-complex
systems give the same quality of data, regardless of the end-to-end access speed.

C h a p t e r 9 : H T M L a n d O t h e r M e d i a T y p e s 307

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

Server-based systems are expensive and require computing resources beyond the basic
Web server. RealAudio-based streaming audio servers have a per-stream cost for high-end
sites that keeps some users from adopting this solution. Fortunately, entry-level
RealAudio systems with a few streams are still free or very inexpensive. Already, many
organizations are using the RealAudio platform, which is a testament to the quality of
the system.

One technical problem with RealAudio that bothers many users is that the server sends
audio data by using the User Datagram Protocol (UDP) rather than the more common
and reliable TCP protocol that is used for standard Internet data transmission. UDP is
fast and helps provide data to the end user quickly, but lost packets are much more
common with UDP. To get around lost packets, RealAudio data is delivered in an
interleaved fashion, so that single drop-outs are not noticeable. Although UDP may help
avoid TCP’s link-use problems, when mixed with a firewall, RealAudio’s UDP link
becomes a liability. Most firewalls filter out UDP, so people accessing the Internet
through a firewall may find it difficult, if not impossible, to access a UDP-based service
such as RealAudio.

From an HTML point of view, using RealAudio is really no different from using
LiveAudio or any other plug-in. Similar to LiveAudio, the SRC attribute can be set to a
RealAudio file ending in .ram. The appearance of the player, as well as how the sound
should start, is also configurable using a variety of other attributes. A portion of the
RealAudio syntax is shown here. Note that this syntax changes rapidly. An
<OBJECT>-based syntax is also available for Internet Explorer support.

<EMBED

SRC="URL of RealAudio stream or file"
AUTOSTART="true | false"

CONTROLS="ALL | ControlPanel | InfoVolumePanel | InfoPanel |
StatusBar | PlayButton | StopButton | VolumeSlider |
PositionSlider | PositionField | StatusField"

HEIGHT="pixels or percentage"
NAME="identifier for sound file"

WIDTH="pixels or percentage">

The following lists and describes the key attributes in the preceding RealAudio syntax:

■ SRC Sets the source of the RealAudio clip. The SRC should be set to a URL,
which can be in the form of a full URL using the pnm:, file:, or http: protocol; or
it can be a relative URL to the appropriate file type. This is required.

■ CONTROLS Sets the visible control components of the player in a similar
manner to LiveAudio. The default value is ALL, but the attribute also
individually controls the aspects ControlPanel, InfoVolumePanel, InfoPanel,
StatusBar, PlayButton, StopButton, VolumeSlider, PositionSlider,
PositionField, and StatusField.

308 H T M L : T h e C o m p l e t e R e f e r e n c e

■ NAME Specifies the identifier associated with the RealAudio plug-in and clip.
This value can then be used to reference and control the clip from Java, JavaScript,
or other programming technologies.

■ HEIGHT Sets the height, in pixels, of the control panel used.

■ WIDTH Sets the width, in pixels, of the control panel used.

■ AUTOSTART Sets whether or not the RealAudio plug-in automatically starts
playing once the source data is available. Valid values for this attribute are true
and false.

Provided that the user has access to the appropriate audio stream, using a
proprietary audio technology such as RealAudio is no more difficult than using
LiveAudio. For more specific information about how to use RealAudio technology,
see RealNetworks’ Web site (http://www.real.com).

Sound Conclusions
The future of audio on the Internet ultimately lies in integration. People will resist
downloading dozens of plug-ins for numerous data formats. They prefer single
technologies that integrate into one whole presentation, such as animation or video
with sound, because the uses of background music on the Internet are limited. While
more advanced technologies such as RealAudio allow simple embedding of URLs and
other forms of synchronization, a controlled environment is required. With programming
technologies such as JavaScript and Macromedia’s Shockwave or Flash, which have
streaming audio support, full integration is available.

Adding sound to a Web site shouldn’t be an infuriating experience for Webmasters
or Web users. Using a simple download-and-play sound format built into a browser
might be better than streaming data that requires special encoding or download of a
special plug-in. If streaming is required, RealAudio is probably the best bet (if it’s
affordable). For a complete Web page solution requiring tight integration between
technologies, Shockwave or Flash with streaming audio is the only choice beyond some
custom integration using programming technologies such as JavaScript. Regardless of
how sound is included, don’t expect CD quality for Internet-based audio. And remember:
a little sound can go a long way.

Video Support
The holy grail of Internet multimedia is certainly high-quality, 30-frames-per-second,
real-time video. Many companies are working toward the idea of television on the
Web, but most of their solutions just don’t work well within the bandwidth limitations
faced by the average Internet user. Sooner or later, video will be used extensively on
Web pages—but what Web video technology, if any, is appropriate for the job and how
can video be accessed via HTML? The latest Internet video technologies range from

C h a p t e r 9 : H T M L a n d O t h e r M e d i a T y p e s 309

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

low-quality streaming audio with an occasional picture to traditional download-and-
play systems for a variety of file formats. As with audio, the most popular technologies—
and the most advanced—may not offer the best solutions for simple Web video needs.

Digital Video Basics
Digital video is measured by the number of frames per second of video, and by the size
and resolution of these frames. The total size requirement for video is huge, particularly
if you want NTSC (TV-quality) video. A 640 × 480 image with 24 bits of data representation
for color and a frame rate of 30 frames per second takes up a staggering 27MB per
second—and that’s without sound. Add CD-quality audio (705,600 bits of data for each
second of data) and the file size increases proportionately. In theory, the bits of data
necessary to deliver TV-quality video could be transmitted over the Internet, creating
the long-sought-after interactive TV. In the real world, transmitting this amount of data
generally isn’t feasible, even after compression.

One approach to video on the Internet is breathtakingly simple: just don’t do it.
A simple frame of movement every once in a while or a static picture with continuous
audio can provide the illusion required for simple “talking head” applications. Frame
rates and image size can be reduced enough to make download sizes seem plausible,
but even a simple slide show with audio narration is nearly impossible to do in real
time without compression.

Video File Formats and Compression
Like audio files, video files can be compressed to reduce the amount of data being sent.
Because of the degree of compression required by video, most video codecs use a lossy
approach that involves a trade-off between picture/sound quality and file size, with
larger file sizes obviously resulting in longer download times.

Three standardized video file formats are used on the Web: AVI, QuickTime,
and MPEG, as summarized in Table 9-3. The file format usually determines which
compression technique is used. However, some file formats, such as QuickTime, allow
different codecs to be selected. In some ways, this makes QuickTime the most flexible
video format.

For download-and-play delivery, AVI and QuickTime are the safest formats for
short video clips. Regardless of length, MPEG is typically the only choice for high-
quality playback. AVI and QuickTime files are commonly supported via helper
applications. They’re even supported natively by many modern Web browsers in
a download-and-play style.

Waiting for Video
As with audio, many online video delivery systems follow the download-and-play
model, whereby users must download video clips completely before they can play

them. Some Web video solutions enable the user to see the video as it downloads,
despite the slow speed; this allows users to cancel the download before it ends.
Shortening video clips and reducing frame rates help users from giving up during
download time, but these techniques may not be acceptable for content that requires
flawless playback. Even at very low frame rates with no audio, video clips that are
more than a few seconds long tend to exceed the patience of the average user. With
download-and-play video, you should stick to common formats (such as AVI,
QuickTime, or MPEG), unless the proprietary format has a wide degree of industry
acceptance or provides a really motivating feature, such as compression that is high
enough to allow streaming.

LiveVideo
Netscape’s LiveVideo plug-in, which was introduced with Netscape 3, supports AVI
on Windows. The plug-in is rather simplistic and doesn’t even include controls to
show, pause, or rewind a video, let alone any sort of volume control. The user must

310 H T M L : T h e C o m p l e t e R e f e r e n c e

Video Format Description

AVI Audio Video Interleaved. The Video for Windows file format for
digital video and audio is very common and easy to specify.
A growing number of video files in AVI format are being
used on the Internet, but file size of AVI is significant. Both
Netscape and Internet Explorer are capable of dealing with
AVIs easily.

MOV
(QuickTime)

Movie. MOV is the extension that indicates the use of Apple’s
QuickTime format. Probably the most common digital video
format, it continues its popularity on the Internet. QuickTime
has a strong following in the multimedia development
community. Various codecs and technology enhancements
make QuickTime a strong digital video solution that may
work in conjunction with MPEG.

MPEG Motion Picture Experts Group video format is generally
considered the standard format for digital video. Although
compression and image quality of MPEG files are impressive,
this format can be expensive and difficult to work with.

Table 9-3. Standard Internet Video Formats

click the embedded video to start it, unless the video has an auto-play feature enabled.
The basic syntax for the <EMBED> element as related to LiveVideo is shown here:

<EMBED

SRC="URL of video file"
ALIGN="top | bottom | center | baseline | left | right | texttop

|middle | absmiddle | absbottom"
AUTOSTART="true | false"
HEIGHT="pixels or percentage"

HSPACE="pixels"

LOOP="true | false"
VSPACE="pixels"

WIDTH="pixels or percentage">

The following lists and describes the key attributes in the preceding syntax:

■ SRC Must be set to the URL of a valid AVI file.

■ ALIGN Acts similarly to the same attribute for the element and
accepts the same values.

■ AUTOSTART Can be set to true to begin play immediately after the entire
AVI file downloads. The default is false and thus requires the user to click the
video to begin its play.

■ HEIGHT Specifies the pixel height of the video. This attribute also takes a
percentage value.

■ HSPACE Creates around an image a horizontal buffer region of a specified
number of pixels.

■ LOOP Can be set to true to loop the video continuously (the default is false).
Currently, no way exists to set the plug-in to loop the video a particular number
of times, which seems a likely modification to this attribute.

■ VSPACE Can be set to a pixel value to create a vertical buffer area above and
below the embedded media.

■ WIDTH Is set to either a pixel value or a screen percentage to specify the
width of the embedded AVI file.

The following is a brief example of how LiveVideo is used to include an AVI video
in a page; a rendering of the example is shown in Figure 9-3:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE> LiveVideo Rendering Under Netscape </TITLE>

C h a p t e r 9 : H T M L a n d O t h e r M e d i a T y p e s 311

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

312 H T M L : T h e C o m p l e t e R e f e r e n c e

<BODY>

<EMBED SRC="critter.avi" LOOP="TRUE" AUTOSTART="TRUE" HEIGHT="90"
WIDTH="120" ALIGN="LEFT" HSPACE="15" VSPACE="15">

</BODY>
</HTML>

QuickTime
QuickTime videos offer a lot more benefits than simply tending to be smaller than AVI
files. QuickTime is designed to provide the framework for the synchronization of time-
based data in a variety of formats, including video, sound, MIDI, and even text. An
interesting aspect of QuickTime is that it can work with different video compression
codecs, such as Cinepack, Indeo, MPEG, and even exotic fractal compression codecs.
By itself, QuickTime with standard Cinepack encoding lacks the small file size of MPEG
or proprietary video files, but the quality of QuickTime files is high. Creating or editing
QuickTime files is also relatively easy when using tools such as the popular Adobe
Premiere package.

Starting with Netscape 3, QuickTime is supported in Macintosh and Windows
versions of Netscape. Although the plug-in is available on both systems, Windows

Figure 9-3. LiveVideo rendering under Netscape

users are required to install QuickTime services for their operating systems. The way to
include QuickTime media into a Web page is similar to the way in which you include
LiveVideo support. Keep in mind, however, that QuickTime provides support for
many forms of media and is really more of a generic media architecture than AVI.

The basic syntax for the <EMBED> statement for the Netscape QuickTime plug-in
is shown here:

<EMBED
SRC="URL of QuickTime object"

ALIGN="top | bottom | center | baseline | left |

right | texttop | middle | absmiddle | absbottom"
AUTOPLAY="true | false"

CACHE="true | false"
CONTROLLER="true | false"

CORRECTION="none | partial | full" (QuickTime VR Only)
FOV="5.0 to 85.0" (QuickTime VR Only)
HEIGHT="pixels or percentage"

HIDDEN

HOTSPOT hotspot-id="URL of page to load"
HREF="URL of page to load"
HSPACE="pixels"

LOOP="true | false | palindrome"
NODE="node number" (QuickTime VR Only)

PAN="0.0 to 360.0" (QuickTime VR Only)

PLUGINSPAGE="URL of page with plug-in information"
PLAYEVERYFRAME="true | false"

TARGET="valid frame name"
TILT="-42.5 to 42.5" (QuickTime VR Only)
VOLUME="0 - 256"

VSPACE="pixels"

WIDTH="pixels or percentage">

The following lists and describes the key attributes in the preceding syntax:

■ SRC Required, and should be set to the URL of a valid QuickTime file.

■ ALIGN Acts similarly to same attribute for the element and accepts
the same values.

■ AUTOPLAY Can be set to true or false (default); indicates whether the movie
should be played as soon as possible. Attribute has no meaning when embedding
a QuickTime VR (Virtual Reality) file.

■ CACHE Can be set to true or false. Providing the attribute by itself implies a
true value. Under Netscape 3 and above, a CACHE value of true causes the
browser to treat the information just like other information and keep it in a local
disk cache, so that it does not need to be downloaded again. When set to false,
the movie must be downloaded again.

C h a p t e r 9 : H T M L a n d O t h e r M e d i a T y p e s 313

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

■ CONTROLLER Can be set to true or false; determines whether the movie
controller is visible. The controller provides standard stop, play, pause, rewind,
frame selection, and volume controls. The controller is 24 pixels high, so the
HEIGHT value should be set to account for this. By default, the value of
CONTROLLER generally is set to true, unless a QuickTime VR file is being
embedded. The QuickTime VR object does not use the same style of controls.

■ CORRECTION Can be set to NONE, PARTIAL, or FULL (default); used to
set the display correction for a QuickTime VR object. Has no meaning beyond a
QuickTime VR scene.

■ FOV Specifies the initial field of view angle for a QuickTime movie. Typical
values for this attribute range from 5.0 to 85.0 degrees. Has no meaning outside
of QuickTime VR objects.

■ HEIGHT Set like the WIDTH attribute, with a pixel value or percentage. The
value specifies the HEIGHT of the object and is cropped or expanded in the
same method as WIDTH. For example, if a supplied height is greater than the
movie’s height, the movie is centered within this height. If the value is smaller,
the object is cropped. Avoid values of 0 or 1 for the HEIGHT attribute, because
they may cause unpredictable results. Be aware that controls for the movie are
24 pixels high, which must be added to the HEIGHT value for the object to
display properly.

■ HIDDEN Takes no parameters and its presence determines whether the
movie should be visible. By default, the HIDDEN value is off. In most cases,
such as embedding a QuickTime video or QuickTime VR object, this is not an
appropriate attribute to use. However, if a sound-only movie is being inserted,
this can provide a background sound-like function, assuming that AUTOPLAY
has been set to true. The HIDDEN attribute typically sets the CONTROLLER
attribute to false; but, to make sure, the attribute can be set directly by the
page author.

■ HOTSPOT Comes in a strange format. By setting the hot spot identifier to a
URL, you can link the hot spot to a Web object. Hot spots in a movie can be
defined by using a QuickTime VR authoring tool. Attribute makes sense only
within a QuickTime panorama.

■ HREF Indicates the URL of a page to load when the movie is clicked. The
meaning of this attribute is somewhat troublesome if the CONTROLLER
attribute is set to false. The problem revolves around the click having two
meanings, one to start the movie and the other to go to the page. Page authors
should either use the autoplay feature or provide controls when using this
attribute. This attribute is not appropriate when using QuickTime VR objects
that may have included their own hot links.

■ HSPACE Sets the horizontal pixel buffer for the plug-in and acts the same
way as the HSPACE attribute for the element.

314 H T M L : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 9 : H T M L a n d O t h e r M e d i a T y p e s 315

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

■ LOOP Indicates whether the movie should play in a looped fashion. Setting
the attribute to true loops the movie until the user stops it. The default value is
false. When the LOOP value is set to PALINDROME, the movie loops back
and forth. Setting this value produces interesting effects with movies and even
reverses the soundtrack. This parameter is not appropriate for QuickTime VR
objects, because they have no distinct time order.

■ NODE An optional attribute that has meaning to a multinode QuickTime VR
movie. In many QuickTime VR situations, setting multiple areas or viewpoints,
called nodes, is desirable. Setting the NODE attribute to the integer value of a
node in the scene loads the movie at the particular scene. This attribute has no
meaning for non-QuickTime VR objects.

■ PAN An optional attribute for QuickTime VR objects; allows the author to
specify the initial pan angle in degrees. The range for the PAN attribute is
between 0 and 360 degrees. This attribute has no meaning for other forms of
QuickTime objects.

■ PLAYEVERYFRAME Can be set to either true or false. When set to true,
instructs the plug-in to play every frame, even if it requires the movie to play at
a slower rate. In some sense, this is appropriate in case the processor drops
frames that may be valuable. Setting this value to true is not advisable for movies
with audio tracks; it has the side-effect of turning off the sound. Furthermore,
this attribute should not be used when embedding QuickTime VR objects.

■ PLUGINSPAGE Sets the URL of the page that contains information about the
required plug-in and how it can be downloaded and installed, if it is not
currently installed. This feature is supported by Netscape; it is also documented
to work under Internet Explorer. Be careful when using this attribute. It
generally should be set to http://quicktime.apple.com, unless special
instructions are included beyond standard QuickTime information.

■ SCALE Takes a value of TOFIT, ASPECT, or a number corresponding to the
desired scaling factor, such as 1.5. The default SCALE value is 1, which is a
normally scaled movie. Setting the attribute to ASPECT scales the movie to fit
the bounding box set by the HEIGHT and WIDTH attributes. A value of
TOFIT scales the movie to fit the HEIGHT and WIDTH attribute, with no
regard to aspect ratio. Be careful when scaling movies, because it may degrade
the playback performance and image quality.

■ TARGET Used in conjunction with the HREF attribute to set the name of a
frame into which to load the page indicated by the HREF attribute. The normal
reserved frame names, such as _blank, as well as explicitly named frames are
available as valid targets. More information on frames can be found in Chapter 8.

■ TILT Can be set when using QuickTime VR objects to specify the initial tilt
angle (up or down) for the scene. The value of the attribute is specified in
degrees and typically ranges from around –42.5 to 42.5 degrees. The parameter
has no meaning outside of QuickTime VR objects.

316 H T M L : T h e C o m p l e t e R e f e r e n c e

■ VOLUME Can be set to a value from 0 to 256. The higher the value, the
louder the audio track on the QuickTime movie. A value of 0 effectively mutes
the soundtrack, whereas 256 sets the volume at the maximum level. If the
attribute is not set, the default is 256. This option does not have meaning with
QuickTime VR. This is a newer attribute and will not be supported under older
versions of the QuickTime plug-in.

■ VSPACE Set to the number of vertical pixels to buffer between the embedded
object and surrounding content. Used in the same way as the corresponding
attribute for the element.

■ WIDTH Set to a pixel value or percentage. Be aware that the plug-in may not
necessarily stretch the video image to take up the space. As mentioned previously,
setting the SCALE attribute to ASPECT scales the movie to fit the bounding
box set by the HEIGHT and WIDTH attributes. If the value supplied for the
object width is smaller than the object’s true width, it is cropped to fit the
dimensions provided. The WIDTH value must be set, unless the HIDDEN
attribute is used. Be careful when using small widths, such as 0 and 1 pixels,
because this can cause problems.

The QuickTime plug-in for Netscape is quite complex. The following example
illustrates only the most basic use of the plug-in, a rendering of which is shown in
Figure 9-4:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>
<TITLE> QuickTime Support Under Netscape </TITLE>

<BODY>

 This example shows a frame from a promotional
clip for QuickTime, as viewed in a Netscape browser.

<EMBED SRC="quicktime.mov" WIDTH="180" HEIGHT="178"

AUTOPLAY="TRUE" ALIGN="LEFT" HSPACE="12" VSPACE="20">
</BODY>

</HTML>

Interested readers should check Apple’s QuickTime site, which is located at
http://www.quicktime.apple.com, for more information about using QuickTime and
QuickTime VR on the Web.

Microsoft’s ActiveMovie
Microsoft’s media technology comes under many guises, but the main effort is called
ActiveMovie. It provides services for the playback of multimedia streams from local files
or network-based servers. Specifically, ActiveMovie allows playback of video and
audio content, compressed in various formats. ActiveMovie supports the following
formats:

■ MPEG-1 and MPEG-2 (.mpg, .mpeg, .mpv, .mp2, .mpa)

■ Audio Video Interleaved (.avi)

■ Nonproprietary QuickTime files (.mov)

■ Wave (.wav)

■ AU (.au, .snd)

■ AIFF (.aif, .aiff)

C h a p t e r 9 : H T M L a n d O t h e r M e d i a T y p e s 317

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

Figure 9-4. QuickTime support under Netscape

If QuickTime is already available on a system, ActiveMovie keeps existing relationships.
This is particularly useful because ActiveMovie doesn’t support proprietary QuickTime
features, such as QuickTime VR. However, you may find that ActiveMovie (as well as
other video technologies) occasionally overrides existing file relationships, which may
make viewing movies difficult.

ActiveMovie-supported files can be played in one of two ways: either embedded
within a Web page or externally, in a window displayed separately. External support
of active content is handled through use of a linked object with the <A> element, as
discussed earlier in the chapter. However, the following are the three HTML elements
that you can use to embed ActiveMovie content:

<OBJECT>

<EMBED>

ACTIVEMOVIE WITH THE OBJECT ELEMENT Using the <OBJECT> element, the
CLASSID attribute must be set to the appropriate ActiveMovie class identifier (CLSID)
so that a control to be used for playback is specified. The following short code fragment
sets this control explicitly and uses the <PARAM> element to specify the address of
the file to play:

<OBJECT CLASSID="CLSID:05589FA1-C356-11CE-BF01-00AA0055595A">

<PARAM NAME="FileName" VALUE="test.avi">

</OBJECT>

The CLASSID value should not be entered by hand unless absolutely necessary.
This may change some day, though it is very unlikely. The various PARAM values that
can be set for the <OBJECT> element are too numerous to discuss. As discussed earlier
in the chapter, a tool such as Microsoft’s ControlPad should be used to set the PARAM
values. To illustrate, some sample parameter values are shown here:

<OBJECT ID="TestMovie " HEIGHT="200" WIDTH="200"
CLASSID="CLSID:05589FA1-C356-11CE-BF01-00AA0055595A">

<PARAM NAME="Version" VALUE="1">
<PARAM NAME="EnableContextMenu" VALUE="-1">

<PARAM NAME="ShowDisplay" VALUE="-1">

<PARAM NAME="ShowControls" VALUE="-1">
<PARAM NAME="ShowPositionControls" VALUE="0">

<PARAM NAME="ShowSelectionControls" VALUE="0">
<PARAM NAME="EnablePositionControls" VALUE="-1">

318 H T M L : T h e C o m p l e t e R e f e r e n c e

<PARAM NAME="EnableSelectionControls" VALUE="-1">

<PARAM NAME="ShowTracker" VALUE="-1">
<PARAM NAME="EnableTracker" VALUE="-1">

<PARAM NAME="AllowHideDisplay" VALUE="-1">
<PARAM NAME="AllowHideControls" VALUE="-1">
<PARAM NAME="MovieWindowSize" VALUE="0">

<PARAM NAME="FullScreenMode" VALUE="0">

<PARAM NAME="MovieWindowWidth" VALUE="200">
<PARAM NAME="MovieWindowHeight" VALUE="200">

<PARAM NAME="AutoStart" VALUE="0">
<PARAM NAME="AutoRewind" VALUE="-1">

<PARAM NAME="PlayCount" VALUE="1">
<PARAM NAME="Appearance" VALUE="1">
<PARAM NAME="BorderStyle" VALUE="1">

<PARAM NAME="FileName"

VALUE="http://www.bigcompany.com/movies/test.mpg">
<PARAM NAME="DisplayMode" VALUE="0">
<PARAM NAME="AllowChangeDisplayMode" VALUE="-1">

<PARAM NAME="DisplayForeColor" VALUE="16777215">
<PARAM NAME="DisplayBackColor" VALUE="0">

</OBJECT>

USING THE <EMBED> ELEMENT You can also insert an ActiveMovie file by using
the Netscape-style <EMBED> syntax. The <EMBED> element works identically to the
<OBJECT> element when used with Internet Explorer 3 or greater, because the
browser simply figures out what the content is and launches the ActiveMovie control
with the appropriate parameters. An example of using ActiveMovie is shown here:

<EMBED SRC="test.avi" AUTOSTART="FALSE" LOOP="FALSE" HEIGHT="100"

WIDTH="100">

If ActiveMovie is available, this HTML fragment works under both Netscape and
Internet Explorer. Microsoft pushes the <OBJECT> element, and the HTML 4.0
specification favors this syntax. Nevertheless, for the time being, to guarantee support
across browsers, you should enclose an EMBED element inside of the <OBJECT>
element, to allow for fallback.

USING THE ELEMENT WITH THE DYNSRC ATTRIBUTE The DYNSRC
attribute for the element originated in Internet Explorer 2 and allowed AVI
files to be played within a Web page. Although the syntax is currently maintained for
backward compatibility, using the <OBJECT> or <EMBED> elements is preferable.

C h a p t e r 9 : H T M L a n d O t h e r M e d i a T y p e s 319

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

320 H T M L : T h e C o m p l e t e R e f e r e n c e

Originally, the DYNSRC attribute supported only AVI files, but testing shows that any
ActiveMovie-supported data can be included with this syntax. The basic attributes for
 are all valid; however, the following additions are also available:

■ This attribute should be set to the URL, either relative or absolute, of the
content to play.

DYNSRC="URL of Active content"

■ If this attribute is present, controls are presented below the content, if possible.
The attribute does not need a value.

CONTROLS

■ This attribute is used to set the number of times to loop the included content.
When set to a positive integer, the content loops the specified number of times.
When set to –1 or the keyword INFINITE, the content loops continuously.

LOOP="value"

■ This attribute to the element is used with DYNSRC to specify how the
content should be played. Setting the value to FILEOPEN plays the content as
soon as the data file has finished opening. Setting the value equal to MOUSEOVER
delays playing the content until the mouse is positioned over it. The default
action for active content is FILEOPEN.

START=FILEOPEN | MOUSEOVER

An example of using the DYNSRC attribute with the image element for an AVI
movie is shown here. Figure 9-5 shows the rendering of the example under Internet
Explorer 4.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>
<HEAD>

<TITLE> DYNSRC Viewed Under Internet Explorer </TITLE>
</HEAD>

<BODY>

This example shows use of the DYNSRC element, with the CONTROL

attribute, as viewed in an Internet Explorer browser.

<IMG SRC="critter.gif" DYNSRC="critter.avi" CONTROLS ALIGN="left"

VSPACE="20">
</BODY>

</HTML>

In terms of browser support, it is difficult to come up with a best bet for simple
Web video. Netscape 3 and Internet Explorer both support AVI in their Windows
incarnations, but Macintosh users don’t even get a consolation prize. For QuickTime,
Internet Explorer and Netscape for Windows users without QuickTime installed on
their operating systems are left out in the cold. AVI apparently might be less of a
problem, but the size and synchronization quality of AVI video files makes the format
far from ideal. In some sense, you probably should stick with a video format such as
RealVideo, given its wide acceptance and streaming approach.

C h a p t e r 9 : H T M L a n d O t h e r M e d i a T y p e s 321

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

Figure 9-5. DYNSRC under Internet Explorer

322 H T M L : T h e C o m p l e t e R e f e r e n c e

Other Video Formats
Like their audio compatriots, proprietary video formats offer one thing that many
standard digital video formats lack: the possibility of truly streaming data. Remember
that a 28.8Kbps modem user receives approximately 2K of data per second. If one
second of video and sound could be represented in 2K, and that data could be delivered
to the end user in time to play it, the video could effectively “stream” over the Internet.
Still, a few potential drawbacks exist to streaming audio. First, to compress video far
enough for streaming, you have to sacrifice a certain degree of quality. Second, the
Internet protocols themselves do not readily support the requirements of streaming, as
discussed in the section “Audio File Formats and Compression,” earlier in this chapter.

The main streaming video format is RealNetworks’ RealVideo (http://www.real.com).
Like its audio counterpart, this technology uses different attributes with the <EMBED>
and <OBJECT> elements to support RealAudio’s own video protocol. Although most
video formats share common attributes, such as HEIGHT and WIDTH, make sure to
check the appropriate site for information about the particular syntax to support a
proprietary video format. Fortunately, RealNetworks provides a production tool that
should insert most of the syntax to handle video.

While proprietary formats may offer many benefits with respect to streaming or
image quality, page authors should carefully consider the lack of built-in support
before rushing out to use a new technology. Choosing the wrong technology could
limit the audience that is able to view the content in the page.

Like audio, the future of video on the Internet ultimately lies in integration. People
will resist downloading dozens of plug-ins for numerous data formats. They prefer single
technologies that integrate into one whole presentation, and QuickTime and ActiveMovie
show how this can be done. Furthermore, Macromedia supports a variety of extras for
Shockwave, and integrating video into a presentation should also be possible.

Even with better integration of video into a Web page, compression and performance
guarantees will be the key points—unless the bandwidth problem is resolved. More
exotic compression technologies, such as fractal or wavelet video compression, will
certainly become more commonplace as people struggle to stream the smallest files to
users and provide the closest semblance to the holy grail of Web TV. The Internet,
however, is a difficult place to broadcast information. With single sites as video stream
sources, latency will make streaming to distant users impossible, regardless of how
much compression is used. Unless a wide range of video and audio mirror services are
deployed, allowing European users the same access to video clips as users in North
America or Asia, real-time broadcasting of video on the Internet will remain restricted
to a select few.

Other Binary Formats
Besides audio and video, many other data objects can be inserted into a Web page. The
most common binary object besides those discussed in this chapter are Adobe Acrobat
files, which are cross-platform documents, and Macromedia Shockwave and Flash files,

C h a p t e r 9 : H T M L a n d O t h e r M e d i a T y p e s 323

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

which are complex multimedia files. Both of these technologies can be included in a
Web page by using either the <EMBED> syntax popularized by Netscape or the
<OBJECT> syntax to reference an ActiveX control. The <EMBED> syntax is the safest
until <OBJECT> is finally cleared up as the standard way to include a file. Of course,
the <OBJECT> element syntax enables authors to include an <EMBED> element to
provide backward compatibility for browsers that don’t yet support <OBJECT>.
Fortunately, obtaining canned scripts is becoming easier, which can provide HTML
markup for all the various browser, plug-in, and control situations.

Flash
One of the most popular new media formats on the Internet is Macromedia’s Flash
(http://www.macromedia.com). The Flash format is a powerful vector-based
animation format that includes sound and interactivity. One of the nicest things about
the format is that it is very bandwidth friendly.

Creating a Flash file requires using Macromedia’s Flash tool. After you assemble
the animation, you can save it in the form of a SWF file and reference it from a Web
page. To reference a Flash file, you can use the <EMBED> syntax to use a Netscape
plug-in, as shown in this example:

<EMBED SRC="test.swf" swLiveConnect="FALSE" WIDTH="320"
HEIGHT="240" QUALITY="autohigh" BGCOLOR="#FFFFFF"

TYPE="application/x-shockwave-flash"

PLUGINSPAGE="http://www.macromedia.com/shockwave/download/
index.cgi?P1_Prod_Version=ShockwaveFlash">

<NOEMBED>

</NOEMBED>

You also can use the <OBJECT> syntax to reference an ActiveX control, as follows:

<OBJECT classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"
codebase="http://active.macromedia.com/flash2/cabs/

swflash.cab#version=3,0,0,0"

ID="test" WIDTH="320" HEIGHT="240">

<PARAM NAME="movie" VALUE="test.swf">

<PARAM NAME="quality" VALUE="autohigh">
<PARAM NAME="bgcolor" VALUE="#FFFFFF">

</OBJECT>

You can even use an <APPLET> tag to reference a Java version of the Flash player,
as shown here:

<APPLET CODE="Flash.class" ARCHIVE="Flash.jar" WIDTH="320"

HEIGHT="240">
<APPLET CODE="Flash.class" ARCHIVE="Flash.zip" WIDTH="320"

HEIGHT="240">
<PARAM NAME="cabbase" VALUE="Flash.cab"> ');
<PARAM NAME="movie" VALUE="test.swf"> ');

<PARAM NAME="quality" VALUE=autohigh> ');

</APPLET>

Alternative renderings may be provided, and you can logically assume that forms
can be combined to support any situation. Because of the complexity of doing this,
Macromedia has created a tool called AfterShock, which outputs the appropriate
HTML syntax and JavaScript code to ensure that the Flash file is properly supported in
most every situation. A brief discussion of this is presented in Chapter 15, in the section
“Cross-Platform Support with Plug-Ins and ActiveX Controls.” A rendering of a Flash
file in action is shown in Figure 9-6.

324 H T M L : T h e C o m p l e t e R e f e r e n c e

Figure 9-6. Flash animation in progress

C h a p t e r 9 : H T M L a n d O t h e r M e d i a T y p e s 325

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

Before Flash, the Macromedia Director format, in a compressed form called Shockwave
for Director, was very popular. The biggest problem with Director-built animations was
that they tended to be very large. While Shockwave for Director files (.dcr) still exist
online, they are most appropriate for complex multimedia applications rather than the
simple animations and presentations that Flash is often used for. Naming confusion does
exist and people seem to use Shockwave and Flash interchangeably at times. They are
actually different technologies, though they are merging as time passes.

If you are interested in adding animation to your Web pages, you should check
into Flash, at http://www.macromedia.com/flash. Now that many browsers such as
Netscape are shipping with the Flash format, use of this technology should skyrocket.

Acrobat
Adobe’s Acrobat technology is one approach to the distribution of electronic
documentation. Originally proposed to help implement the mythical ideal of the
paperless office, Acrobat has now matured into a product with uses both on and off the
Web. Adobe Acrobat provides the capability to deliver an electronic document to an
end user without requiring the reader to have the authoring environment to open the
file. Visually, Acrobat preserves the exact look and feel of the document, both onscreen
and in print. For design-oriented Web publishers, Acrobat provides a highly motivating
alternative to HTML that easily surpasses HTML’s relatively simplistic and imprecise
layout features, as shown in Figure 9-7.

Acrobat files are created by using a combination of traditional text authoring tools
(word processors and desktop publishing software) and special Acrobat authoring
software (Adobe Exchange or Distiller). The files are then saved in a file format aptly
named Portable Document Format, or PDF. PDF files are small, self-contained documents
that can be transported in a variety of ways: via disk, CD-ROM, or network. The end
user then reads the files by using special Adobe Acrobat Reader software. Thus, by its
very nature, Acrobat reader technology must be cross-platform. Acrobat Reader
software is currently available for the following operating systems: Microsoft Windows
3.1, Windows 95, and Windows NT; Macintosh; Linux; Sun Microsystems’ Sun SPARC
Solaris and Sun SPARC SunOS; Hewlett-Packard’s HP-UX; Silicon Graphic’s IRIX;
IBM’s AIX and OS/2; and Digital’s VMS.

With regard to HTML, inserting an Acrobat file in a page is a choice between
linking to the document with the <A> element or using the <EMBED> or <OBJECT>
element to insert the document inline. The format of the <EMBED> element is very
straightforward, as shown by the following HTML fragment:

<EMBED SRC="spec.pdf" ALIGN="LEFT HSPACE="20" HEIGHT="300"

VSPACE="20" WIDTH="480">

The only thing to worry about is how the HEIGHT and WIDTH attributes are
handled with the Acrobat Reader. Be careful not to use widths smaller than around

326 H T M L : T h e C o m p l e t e R e f e r e n c e

480 pixels; otherwise, some of the controls on the reader will be chopped off. It seems
like the controls should be settable with attributes or even eliminated, but any support
for that appears to be undocumented. For more information about Acrobat and more
details on how Acrobat might be included in a Web page, visit Adobe’s Web site
(http://www.adobe.com).

Summary
Many different binary objects are available that can be inserted into a Web page. Most all of
these objects use the <EMBED>, <APPLET>, or <OBJECT> element. In some proprietary
browsers, special elements or attributes have been invented in a few instances to deal with
new media types. A prime example is the DYNSRC attribute to the element,
introduced by Microsoft. Although the specific attributes vary from one media type to
another, most of these elements share common attributes, such as HEIGHT, WIDTH,
ALIGN, HSPACE, VSPACE, and so on. For the most common media types, such as audio
and video, browsers often provide built-in support either with a plug-in or a control. The
syntax for these common forms is discussed in detail in this chapter. For other important
media types, such as Flash and Acrobat, the syntax is currently in a state of flux. However,
the W3C is actively moving all included binary objects to a common object format, using
the <OBJECT> element.

Figure 9-7. Sample Acrobat document

Chapter 10
Style Sheets

327

Copyright 1999 The McGraw-Hill Companies. Click Here for Terms of Use.

328 H T M L : T h e C o m p l e t e R e f e r e n c e

HTML is a poor language for page formatting, but this isn’t a failing of the
technology. As mentioned throughout this book, HTML elements are not
supposed to be used to represent layout. Even so, people often use HTML as a

visual design environment. They tend to think visually, rather than organizationally,
when building Web pages. Why? Well, not very many choices were available in the
past. Everybody wanted the same thing—a high degree of control over the layout of
their Web pages. Until recently, this control required using tables, HTML tricks, and
images for layout; or embedding a binary form, such as Acrobat, in a page. These
solutions generally were unsatisfactory, however.

A better solution is emerging. Finally, style sheets, in the form of Cascading Style
Sheets (CSS), are available in the major browsers. Style sheets offer what designers have
been clamoring for over the years: more control over layout. Arguably, style sheets are
the best approach for creating attractive pages. Although style sheets are still relatively
new, they are likely to become the dominant way to format Web pages in the near
future. Netscape and Microsoft Internet Explorer fall short in some areas of CSS1 (the
first specification) support, but both browsers seem to be trending toward improved
support. Another browser, Opera 3.5 (http://www.operasoftware.com/), already
approaches full CSS1 compliance. As you’ll see in this chapter, designers should begin
transitioning away from HTML layout, which relies heavily on tables, and toward
using style sheets. Furthermore, CSS2, the newest style sheet specification, is laying the
groundwork for expanded media possibilities for Web pages. Although CSS2 isn’t
supported by many browsers yet, it will be soon, so this chapter discusses some of its
more interesting features. The chapter ends with a section that covers some proprietary
style sheet properties introduced by Microsoft.

The Rise of Style
Basically, style sheets separate the structure of a document from its presentation.
Dividing layout and presentation has many theoretical benefits; most importantly, it can
provide for flexible documents that display equally well across many types of output
devices. In general, Web-based style sheets contain information that describes how
documents are presented, whether on a computer monitor, in print, or perhaps even
pronounced by a speech-based system for the visually impaired. Although, in some
ways, this doesn’t sound much different from what many people consider to be the
function of HTML, in fact, it is fundamentally different than the intended function
of HTML.

As early as 1993, people have been interested in adding more layout control to
HTML. Many approaches have been discussed and many continue to be used. As
mentioned earlier, these approaches include misuse of HTML tags and embedded
binary object formats (such as Adobe’s Acrobat). Because of the theoretical benefits of
style sheets, they have been the favorite solution of the standards bodies. However,
work on a style sheet standard for the Web didn’t begin until Bert Bos of the World

C h a p t e r 1 0 : S t y l e S h e e t s 329

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

Wide Web Consortium (W3C) wrote a charter to do so in 1995. Eventually, Hkon Lie,
also of the W3C, introduced a proposal for cascading style sheets; in December 1996,
this proposal became the W3C’s recommendation of Cascading Style Sheets Level 1
(CSS1). The cascading style sheet approach of the W3C provides a chain of precedence,
so that local style may override global style, and a document creator’s style might even
override reader styles.

But cascading isn’t the most interesting aspect of CSS1. These newly introduced
style rules move a step closer toward device independence, and reduce reliance on
proprietary HTML elements and tricks to force layout. As previously discussed, many
of these HTML layout tags and tricks are not supported across the multitude of
browsers. The motivation of style sheets to divide the semantic meaning of a page from
its physical presentation may seem a bit grandiose, but style sheets are gaining
acceptance rapidly. The greater degree of layout control than was previously possible
is the main reason that Web developers may start to use style sheets. For example, style
sheets can be used to create a paragraph with a half-inch margin, 100 pixels between
lines, and text rendered in 48-point green Impact font. Try doing that in HTML.

Style sheets might sound wonderful, but the fact remains that they still aren’t
widely supported. Internet Explorer 3 and 4, Netscape 4, and later versions of both
browsers all support CSS1-based style sheets to some degree, but no widely used
browser supports all aspects of the W3C CSS definition. And now the W3C has
finalized the CSS Level 2 (CSS2) specification, which incorporates many of the features
introduced by browser vendors—notably positioning features—and introduces new
features to support aural processing of styles and printing features. Other than outside
positioning, most of CSS2 is unsupported in any 4.x generation browser (although
forthcoming 5.x-generation browsers probably will include more CSS2 support).

To further complicate matters, more than one type of style sheet exists. Many
industry pundits support a type of sheet known as Document Style Semantics and
Specification Language (DSSSL), developed by the SGML community. The most recent
addition is Extensible Style Language (XSL), an industry proposal based on DSSSL that
uses Extensible Markup Language (XML) syntax. XSL provides more-complex style
manipulation, but is more complicated to use than CSS1. Whether XSL will achieve
industry acceptance is an open question.

Fortunately, despite industry confusion and the browser vendors’ slow adoption of
style sheets, you can take advantage of what style sheets offer without causing
problems for browsers that are not “style aware.”

Style Sheet Basics
CSS1 style sheets rely on an underlying markup structure, such as HTML. They are not
a replacement for HTML. Without a binding to an element, a style really doesn’t mean
anything. The purpose of a style sheet is to create a presentation for a particular

330 H T M L : T h e C o m p l e t e R e f e r e n c e

element or set of elements. Binding an element to a style specification is very simple; it
consists of an element, followed by its associated style information within curly braces:

element {style specification}

Suppose that you want to bind a style rule to the <H1> element so that a 28-point
Impact font is always used. The following rule would result in the desired display:

H1 {font-family: Impact;

font-size: 28pt}

In general, a style specification or style sheet is simply a collection of rules. These
rules include a selector—an HTML element, a CLASS name, or an ID value—which is
bound to a style property such as font-family, followed by a colon and the value(s) for
that style property. Multiple style rules may be included in a style specification by
separating the rules with semicolons. You can also use many shorthand notations and
grouping rules that are available, as discussed in “Advanced Style Rules: Contextual
Selection, Grouping, and Inheritance,” later in this chapter. Style sheets alone do
nothing; first, you must bind the rule to a tag(s) or class of HTML objects. Currently,
more than 50 properties are specified under CSS1 that affect the presentation of an
HTML document, and more than 50 more properties are defined under CSS2.
Unfortunately, not all of them are supported consistently across the major browsers.
Even worse, most of the newer style properties defined by CSS2 are not supported by
any browser. The full CSS1 specification can be found at the following address:
http://www.w3.org/TR/REC-CSS1.

The style sheet information itself is not HTML. Style information may be included
within an HTML document or outside it, but it isn’t necessarily subject to the same
rules as HTML pages. Many of the basic ideas do apply. Like HTML, style sheet rules
are case-insensitive, except for the aspects of the rule that are outside the control of the
style sheet language; these aspects include font family names (such as Britannic Bold)
and URLs (such as http://www.bigcompany.com/Staff/thomas.htm), both of which may
be case-sensitive.

Adding Style to a Document
Style information may be included in an HTML document in any one of three basic ways:

■ Use an outside style sheet, either by importing it or by linking to it.

■ Embed a document-wide style in the <HEAD> element of the document.

■ Provide an inline style exactly where the style needs to be applied.

Each of these style sheet approaches has its own pros and cons, as listed in Table 10-1.

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

Linking to a Style Sheet
An external style sheet is simply a plain text file containing the style specifications for
HTML tags or classes. The extension indicating that the document provides style sheet
information is .css, for Cascading Style Sheets.

The following CSS1 style rules might be found in a file called corpstyle.css, which
defines a corporate style sheet for a large Web site:

BODY {font: 10pt;
font-family: Serif;

color: black;

background: white}

H1 {font: 24pt;

font-family: Sans-Serif;
color: black}

C h a p t e r 1 0 : S t y l e S h e e t s 331

External Style
Sheets Document-Wide Style Inline Style

Pros *Can set style for
many documents
with one style sheet

*Can control style for a
document in one place
*No additional download
time for style information

*Can control style to
a single character
instance
*Overrides any
external or
document styles

Cons *Require extra
download time for
the style sheet,
which may delay
page rendering

*Need to reapply style
information for other
documents

*Need to reapply
style information
throughout the
document and
outside documents
*Bound too closely to
HTML—difficult to
update

Table 10-1. Comparison of Style Sheet Approaches

H2 {font: 16pt;

font-family: Sans-Serif;
color: black}

P {text-indent: 0.5in;
margin-left: 50px;
margin-right: 50px}

A:link: {color: blue;

text-decoration: none}

A:visited: {color: red;

text-decoration: none}

A:active: {color:red;

text-decoration: none}

.important {background: yellow;
font-weight: extra-bold}

#note {background: orange}

An HTML file that uses this style sheet could reference it by using the <LINK> tag
within the <HEAD> element of the document. Recall from Chapter 4 that the <LINK>
element isn’t exclusive to style sheets and has a variety of possible relationship settings
that can be set with the REL attribute. The following is an example of how style sheet
linking is used:

<HTML>
<HEAD>

<TITLE> Style Sheet Linking Example </TITLE>

<LINK REL="STYLESHEET" HREF="corpstyle.css" MEDIA="screen"
TYPE="text/css">

</HEAD>

<BODY>
...Content affected by style sheet...

</BODY>

</HTML>

332 H T M L : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 0 : S t y l e S h e e t s 333

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

In this example, the relationship for the <LINK> element as indicated by the REL
attribute is set to be STYLESHEET; then, the HREF attribute is used to indicate the
URL of the style sheet to use. In this case, the style sheet resides in the same directory
as the referencing file and is known as corpstyle.css. However, a remote style sheet
could also be referenced by using a URL, such as http://www.bigcompany.com/
styles/test-style1.css. Note that linking to an external style sheet has the same problems
as linking to an external object insofar as the object may no longer be available or the
speed of acquiring that object may inhibit performance of the page.

The MEDIA attribute is used under CSS2 to provide an indication of which media
the style sheet should apply to. This attribute enables the page designer to define one
style for computer screens, one for print, and perhaps one for personal digital
assistants (PDAs). For example, a document could include two links, one for screen
and one for print, as shown here:

<LINK REL="STYLESHEET" HREF="screenstyle.css" MEDIA="screen"

TYPE="text/css">

<LINK REL="STYLESHEET" HREF="printstyle.css" MEDIA="print"

TYPE="text/css">

Multiple values may also be set for the attribute. These should be separated by
commas, to show that the style may apply to many media forms—for example,
MEDIA="screen,print". Currently, the MEDIA attribute isn’t widely understood by
browsers. For a discussion of media types defined by CSS2, see “CSS2: New Feature
Summary,” later in this chapter.

The last thing to note in the linked style sheet example is the use of the TYPE
attribute in the <LINK> element, which is set to the MIME type "text/css". This value
indicates that the linked style sheet is a cascading style sheet, but another form of style
sheet certainly could be linked. A style sheet type may be defined both inline and
document wide. To avoid having to use the TYPE attribute, you may want to set a
default style sheet language in the <HEAD> element of the document by using the
<META> element, as shown here:

<META HTTP-EQUIV="Content-Style-Type" Content="text/css">

As it stands, by default, most browsers assume that CSS1 is being used; the TYPE
setting may have little effect, regardless of how it is applied.

Embedding and Importing Style Sheets
The second way to include an external style sheet is to embed it. When you embed a
style sheet, you write the style rules directly within the HTML document. You could

334 H T M L : T h e C o m p l e t e R e f e r e n c e

separate the style rules into another file and then import these rules, much as an include
file is used in a programming language such as C. However, imported style sheets are
not supported consistently by browsers and are merely shorthand for pulling in all of
the style information without typing it directly.

Document-wide style is a very easy way to begin using style sheets. It involves
using the <STYLE> element found within the <HEAD> element of an HTML
document. You enclose the style rules within the <STYLE> and </STYLE> tag pair and
place this pair within the head section of the HTML document. Because multiple forms
of style sheets may be included (beyond the standard CSS format), you should still
include the TYPE attribute to indicate which format of style sheet you are using,
regardless of the browser’s support for other style sheet technologies. You can have
multiple occurrences of the <STYLE> element within the head of the document, and
you may even import some styles, link to some style rules, and specify some styles
directly. Dividing style information into multiple sections and forms may be very
useful, but a way must exist to determine which style rules apply. This is the idea of
the cascade, which is discussed in more detail later in the chapter.

One concern when including style sheets within an HTML document is that not all
browsers understand style information. To avoid problems, comment out the style
information by using an HTML comment, such as <- - - ->, so that the comments aren’t
displayed onscreen or misinterpreted by older browsers. A complete example of a
document-wide style sheet, including hiding rules from older browsers, is shown here:

<HTML>

<HEAD>
<TITLE> Document-Wide Style Sheets </TITLE>

<STYLE TYPE="text/css" MEDIA="PRINT">

<!--
BODY {background: white;

margin-left: 1in;
margin-right: 1.5in}

H1 {font-size: 24pt;

font-family: sans-serif;
color: red;

text-align: center}

P {font-size: 12pt;
font-family: Serif;

text-indent: 0.5in;

color: black}
-->

</STYLE>

</HEAD>

<BODY>

...Content affected by style sheet...
</BODY>

</HTML>

Importing a style into a document is another way to use a document-wide style
rather than provide the style directly. The idea is similar to linking. An external style
sheet is referenced; but, in this case, the reference is similar to a macro expansion inline.
The syntax for the rule for importing a style sheet is @import followed by the URL of
the style sheet to include. This rule must be included within the <STYLE> element; it
has no meaning outside that element, as compared to the linked style sheet. An
example of how to import a style sheet is shown here:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Final//EN">

<HTML>
<HEAD>
<TITLE> Imported Style Sheets </TITLE>

<STYLE TYPE="text/css">

<!--
@import "http://www.bigcompany.com/styles/corpstyle.css";
@import "docstyle.css";

H1 {font-size: 24pt;
color: red;

text-align: center} /* local rules

that may override import */
-->

</STYLE>
</HEAD>

<BODY>

...Content affected by style sheet...
</BODY>

</HTML>

Although imported style sheets may seem to provide a great advantage for
organizing style information, their use currently is limited by the fact that none of the
browsers support this form of style sheet access. Page designers should stick to the
<LINK> form of accessing external style sheets until this form has more support.

C h a p t e r 1 0 : S t y l e S h e e t s 335

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

336 H T M L : T h e C o m p l e t e R e f e r e n c e

Using Inline Style
Beyond using a style sheet for the whole document, you can add style information right
down to the single element. The simplest way to add style information, but not necessarily
the best, is to add style rules to the particular HTML element. Here’s how it works.
Suppose you want to set one particular <H1> tag to render in 48-point, green, Arial font.
You could apply that style to all <H1> elements, or to a class of them (discussed in the next
section), by applying a document-wide style. On the other hand, you could apply the style
to only the tag in question; this is done with the STYLE attribute, which can be used within
nearly any HTML element. For example, the following example shows how style rules
could be applied to a particular <H1> element:

<H1 STYLE="font-size: 48pt; font-family: Arial; color: green"> CSS1

Test </H1>

This sort of style information doesn’t need to be hidden from a browser that isn’t
style-sheet–aware, because browsers ignore any attributes that they don’t understand.

By using inline style, you can easily apply a style to a certain section or division of a
document by using the <DIV> element. Setting a two-paragraph portion of a
document to have a yellow background with bold, black text is fairly simple, as shown
here:

<DIV STYLE="background: yellow; font-weight: bold; color: black">
<P>Style sheets separate the structure of a document from its

presentation. Dividing layout and presentation has many

theoretical benefits and can provide for flexible documents
that display equally well on large graphically rich systems
and palmtop computers. </P>

<P>This is another paragraph describing the wonderful benefits of
style sheets. </P>

</DIV>

If you want to provide style information solely for a few words, or even a few
letters, the best approach is to use the element. As a block element, the
<DIV> element works well to surround other block elements, such as paragraphs; but,
when setting a localized style within a paragraph, is the correct element to
bind style information. For example, notice how is used here to call attention
to a particular section of text:

<P>Calling out <SPAN STYLE="background: yellow; font-weight: bold;

color: black"> special sections of text isn’t hard with

SPAN.</P>

Although putting style inline with the elements may seem like the best way to get
started with style sheets, it isn’t; instead, you can add style to a particular set of
elements or even to a single, unique occurrence of a <P> element.

Using Classes and IDs
In the previous examples, the style rules were bound to a particular element or
included directly within the tag in the form of an attribute. While inlining style seems
easy, it gives up much of the benefit of separating the structure of the document from
the style. But without inline styles, how can a particular style be applied to one
occurrence of the <H1> element, or to only a few particular <H1> elements? The
solutions to these problems are the CLASS and ID attributes.

As discussed in Chapter 4, you can name a particular tag with the ID attribute so
that it can be made a destination for a link. For example,

<H1 ID="FirstHeading"> Welcome to Big Company, Inc. </H1>

assigns a name of "FirstHeading" to the <H1> element so that it can be referenced from
an anchor element:

 Go to Heading 1

The ID attribute is common to nearly all HTML elements. ID and CLASS should be
available to most HTML elements, except for a few, such as <HTML>, <HEAD>, and
<BODY>. Style sheets can also use ID values as selectors for the style rules, enabling
you to affect a particular element with a rule without creating an inline style for it. The
following markup shows how a green background is applied to the <P> element with
the ID value of "SecondParagraph", while no style is applied to the other paragraph:

<HTML>

<HEAD>
<TITLE> ID Style Sheet Example </TITLE>
<STYLE TYPE="text/css">

#SecondParagraph {background: green}

</STYLE>
</HEAD>

<BODY>

<P>This is the first paragraph. </P>

<P ID="SecondParagraph"> This is the second paragraph </P>

C h a p t e r 1 0 : S t y l e S h e e t s 337

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

<P>This is the third paragraph. </P>

</BODY>

</HTML>

Because almost every element can have an ID attribute, the style information
doesn’t need to be put within the tag. To write a style rule for an ID value, simply
include a rule with the name of the ID, preceded by a pound symbol, as the selector for
the rule. For example, to create a simple rule for an element with an ID value of
FirstHeading, use the following syntax:

#FirstHeading {color: blue}

The only worry that a page designer might have with using the ID attribute is the
idea of naming, because every ID value must be unique. So, how can a style be applied
to some occurrence of an element, but not to others? In the preceding markup example,
how can the same style be applied to the first and third <P> elements but not the
second? The answer is simple: use a class rule.

The CLASS attribute is referenced throughout the book when discussing the syntax
of various elements, because it defines the name of the class to which a particular
element belongs. CLASS values don’t have to be unique. Many elements can be
members of the same class; in fact, elements don’t even have to be of the same type to
be in a common class. The idea of using CLASS is illustrated here:

<HTML>
<HEAD>

<TITLE> ID Style Sheet Example </TITLE>

<STYLE TYPE="text/css">
.important {background: yellow}

</STYLE>

</HEAD>

<BODY>

<H1 CLASS="important"> Example </H1>

<P CLASS="important"> This is the first paragraph. </P>

<P>This is the second paragraph. </P>

<P CLASS="important"> This is the third paragraph. </P>
</BODY>

</HTML>

338 H T M L : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 0 : S t y l e S h e e t s 339

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

This example has three elements, each of which has its CLASS attribute set to
important. According to the style sheet information, all members of the important
class, as indicated by the period, have a yellow background color. Writing rules for
classes is easy: simply specify the class name, with a period before it as the selector:

.main-item {font-size: 150%}

Other variations on class rules are possible. For example, setting all <H1> elements
of the class important to have a background of orange could be written like this:

H1.important {background: orange}

Classes can be used to reduce significantly the number of style rules necessary in a
document. Other forms, such as contextual selection, grouping, and inheritance, which
are described next, may also be useful in certain situations.

Advanced Style Rules: Contextual Selection, Grouping,
and Inheritance
While the CLASS and ID attributes provide a great deal of flexibility for creating style
rules, many other types of rules of equal value exist. For example, it might be useful to
specify that all elements that occur within a <P> element get treated in a
certain way, as compared to the same elements occurring elsewhere within the
document. To create such a rule, the concept of contextual selection must be used.
Contextual selectors are created by showing the order in which the attributes must be
nested for the rule to be applied:

P STRONG {background: yellow}

This rule would set all occurrences of the element within a <P>
element to have a yellow background. Other occurrences of might not
necessarily have the yellow background, because potential issues of inheritance may
creep in.

HTML documents have an implicit structure. They all have an <HTML> element.
Within this element lie the <HEAD> and <BODY> elements, which might contain the
<TITLE> and <P> elements, respectively. The structure of the document looks
somewhat like a family tree. For example, the document shown here would have a
parse tree, as shown in Figure 10-1:

<HTML>

<HEAD>

<TITLE> Test File </TITLE>

</HEAD>

<BODY>

<H1>Test </H1>
<P>This is a Test .</P>

</BODY>
</HTML>

In the example parse tree, note how the element is enclosed within the <P>
element, which is in the <BODY>, which is in the <HTML> element. What happens if
you set a style rule to the <P> element? Wouldn’t this rule also apply to the
element? Sometimes it would; this is the idea of inheritance. Not all items inherit, so be
careful when making any assumptions about inheritance.

In some cases, applying similar rules to several different elements may be more
useful than rewriting the rule for each separate element or creating a special grouping
class. In such a situation, you can provide a shorthand notation known as element

340 H T M L : T h e C o m p l e t e R e f e r e n c e

Figure 10-1. Simple parse tree to show inheritance

grouping. If you want <H1>, <H2>, and <H3> to have the same basic background and
color, you could apply the following rule:

H1, H2, H3 {background: yellow; color: black}

If it turns out that each particular heading should have a different size, you can
represent that by adding other rules:

H1 {font-size: 200%}

H2 {font-size: 150%}

H3 {font-size: 125%}

When the grouping rule and the other rules are encountered, they are combined.
The resulting rules create the whole style. But, what happens in the following
situation?

H1, H2, H3 {background: yellow; color: black}

H1 {background: green}

What’s the background color for the <H1> element supposed to be, green or
yellow? Some might say green because it is second. But what happens if the rules are
swapped? This idea, called the cascade, is the key to powerful style sheet rules.

The general idea of the cascade, in effect, is that it provides a system to sort out
which rules apply to a document that has many style sheets. For example, a document
may include a linked style sheet, embedded style definition, and inline style
information for a particular element. It may even include a special style definition
assigned by the user in his or her browser. With all of these different style rules in the
document, one rule—perhaps a compound rule—eventually takes precedence. Under
CSS, the browser’s style is the least important, the user’s style is next, and the
designer’s specified style is the most important. From a designer’s point of view, this
seems appropriate. Beyond this basic priority scheme, within the document itself,
inline styles, such as those set with a STYLE attribute, take precedence over document
styles, which take precedence over linked or included styles. Essentially, the closer to
the element, the more priority the style has.

The cascade concept, combined with the idea of inheritance, makes style sheets very
flexible. Imagine that you need to set a corporate-wide style in one document and link it
to every file in a Web site, except for one particular document that requires some special
changes. Why redo the corporate style when a local style can be added to take
precedence over the global style? However, all of this theorizing about the cascade
concept isn’t really necessary, because all that you need to know can be revealed simply
by using style sheets. Thus, the next section provides an example that you can follow.

C h a p t e r 1 0 : S t y l e S h e e t s 341

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

342 H T M L : T h e C o m p l e t e R e f e r e n c e

Style Sheet Example
The example shown here uses two forms of style: document wide and inline. The
example also illustrates the use of the CLASS and ID attributes. Most of the properties
should make sense, particularly after seeing the rendering. If you don’t get it, don’t
worry; basic CSS properties and examples are covered later in the chapter.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>
<HEAD>

<TITLE> Simple CSS Example </TITLE>
<STYLE TYPE="text/css">
<!--

BODY {background: black}

DIV.PAGE {background: #FFD040;
color: black;

margin: 50px 10px 50px 10px;
padding: 10px 10px;

width: 100%;
height: 100%}

H1 {font-size: 24pt;

font-family: Comic Sans Ms, Cursive;

text-align: center}
.black {color: black; background: white}
.white {color: white; background: black}

P {font-family: Arial, Sans-serif;
font-size: 16pt;

line-height: 200%;

text-align: justify;
text-indent: 20px;}

.style {color: blue; font-family: Arial;
font-style: oblique}

.size {font-size: x-large}

#letterspace {letter-spacing: 15pt}
-->

</STYLE>

</HEAD>

<BODY>

<DIV CLASS="PAGE">
<H1> CSS

 Fun</H1>
<HR>
<P>

With style sheets, you will be able to control the presentation

of Web pages with greater precision. Style sheets can be used to
set everything from font styles and

 sizes to letter
spacing and line heights.

</P>
</DIV>
</BODY>

</HTML>

Figure 10-2 shows how the preceding CSS example is rendered by Internet Explorer 4.

C h a p t e r 1 0 : S t y l e S h e e t s 343

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

Figure 10-2. Rendering of the CSS example under Internet Explorer 4

Style Sheet Properties
The basic idea of how rules are formed in style sheets was discussed earlier in this
chapter (refer to “Style Sheet Basics”), but what are the various properties that can be
set? CSS1 defines more than 50 different properties and values, and the browser
vendors are busy inventing new ones all the time. This section covers the standard
CSS1 properties, which should work in all browsers. Although they should work, some
properties may not work in your browser. Although CSS1 promises a lot more
flexibility than HTML, you still have the issues regarding lack of support across
browsers and minor rendering differences.

Font Properties
CSS1 provides numerous font-oriented properties to set the family, style, size, and
variations of the font used within a Web page. Beyond font properties, you also can
combine these rules with rules for color, background, margin, and spacing to create a
variety of interesting typographic effects.

font-family
The font-family property is used to set the font family that is used to render text. The
font-family property may be set to a specific font, such as Arial, or to a generic family,
such as sans serif. You have to quote any font family names that contain white space,
such as "Britannic Bold", and you may have to capitalize font values for a match.

According to the CSS1 specification, the following generic families should be
available on all browsers that support CSS1:

■ Serif (e.g., Times)

■ Sans-serif (e.g., Helvetica)

■ Cursive (e.g., Zapf-Chancery)

■ Fantasy (e.g., Western)

■ Monospace (e.g., Courier)

Like the element, when setting the font-family, you can provide a
prioritized list of names, separated by commas, that will be checked in order.
Remember to always provide a backup generic font family at the end of the
font-family list in case the user’s browser doesn’t support the fonts suggested.
To set a document-wide font, use a rule such as the following:

BODY {font-family: Arial, Helvetica, Sans-serif}

344 H T M L : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 0 : S t y l e S h e e t s 345

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

The end of this chapter discusses how downloadable fonts are handled with style
sheets and includes a discussion of other important font properties, as well as a
complete example.

font-size
The font-size property is used to set the relative or physical size of the font used. The
value for the property may be a value that is mapped to a physical point size or to
a relative word describing the size. Physical point-size values include xx-small,
x-small, small, medium, large, x-large, and xx-large, or a relative word such as larger
or smaller. Physical sizes also may include examples, such as 48pt, 2cm, or .25in.
Percentage values, such as 150%, are also valid for relative sizing; negative percentages
or point sizes are not allowed. A few example rules are shown here:

P {font-size: 18pt}

STRONG {font-size: larger}

H1 {font-size: 200%}

One suggestion with the font-size property is to avoid setting point sizes, when
possible, because users who can’t see well may have a hard time adjusting size.
On certain monitors, a 10-point font might look fine; but, on others, it might be
microscopic. If you use exact point size, remember that large often is better as far as
readability is concerned.

font-style
The font-style property is used to specify normal, italic, or oblique font style for the
font being used. A few examples are shown here:

H1 {font-style: oblique}

.first {font-style: italic}

.plain {font-style: normal}

Don’t try to override HTML elements with this property. Setting a rule whereby
the element has an italic rendering may not work. When it does, it makes for
confusing markup.

font-weight
The font-weight property selects the weight, or darkness, of the font. Values for the
property range from 100 to 900, in increments of 100. Keywords are also supported,

including bold, bolder, and lighter, which are used to set relative weights. Some
browsers may also provide keywords such as extra-light, light, demi-light, medium,
demi-bold, bold, and extra-bold, which correspond to the 100 to 900 values. Because
font families also include bold values, and the meaning within them varies, the
numeric scheme is preferred. A few examples are shown here:

STRONG {font-weight: bolder}

H1 {font-weight: 900}

.special {font-weight: extra-bold}

Typically, the value bold is the same as 700, while the normal font value is 400.

font-variant
The font-variant property is used to select a variation of the specified (or default) font
family. The only current variants supported with this property are small-caps, which
displays as small uppercase letters, and normal, which doesn’t do anything. A simple
rule is shown here:

EM {font-variant: small-caps}

font
The font property provides a concise way to specify all of the font properties with one
style rule. One attribute that is included within font is line-height, which specifies the
distance between two lines of text. Each font attribute can be indicated on the line,
separated by spaces, except for line-height, which is used with font-size and separated
by a slash. You can use as few or as many font rules in this shorthand notation as you
want. The general form of the font rule is shown here:

font: font-style font-variant font-weight font-size/line-height

font-family

The following is an example of using a compact font rule:

P {font:italic small-caps 600 18pt/24pt "Arial, Helvetica"}

The shorthand notation does not require all of the properties, so the next example is
just as valid as the complete notation:

P {font: italic 18pt/24pt}

346 H T M L : T h e C o m p l e t e R e f e r e n c e

Two other properties, text-transform and text-decoration, also affect type, so they
are discussed next, before a complete example is presented.

text-decoration
The text-decoration property is used to define an effect on text. The standard values for
this property include blink, line-through, overline, underline, and none. The meaning
of these values is obvious, except for overline, which creates a line above text. The
following examples show possible uses for this property:

.struck {text-decoration: line-through}

SPAN.special {text-decoration: blink}
H1 {text-decoration: overline}

A {text-decoration: none}
#author {text-decoration: underline}

As the fourth example shows, the text-decoration property often is used with the
<A> element and its associated pseudoclasses, which include A:link, A:active, and
A:visited. Make sure to note the colon in the pseudoclass. The following example sets
unselected links to be underlined, turns off the underlining during the click, and puts a
line through already-visited links:

A:link {text-decoration: underline}

A:active {text-decoration: none}

A:visited {text-decoration: line-through}

Using grouping, or just applying the rule to the <A> element, itself, might be more
appropriate if the same style is to be applied to all states of a link. For example,

A:link, A:active, A:visited {text-decoration: none}

text-transform
The text-transform property determines the capitalization of the text that it affects. The
possible values for this property are capitalize, uppercase, lowercase, and none. Note
that the value capitalize may result in capitalizing every word. Here are some possible
uses of the text-transform property:

P {text-transform: capitalize}

.upper {text-transform: uppercase}

.lower {text-transform: lower}

C h a p t e r 1 0 : S t y l e S h e e t s 347

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

348 H T M L : T h e C o m p l e t e R e f e r e n c e

The following is a complete style sheet example that uses all of the font rules, as
well as text-transform and text-decoration:

<HTML>

<HEAD>
<TITLE> CSS Font Attributes Example </TITLE>

<STYLE TYPE="text/css">
<!--
BODY {font-size: 14pt}

.serif {font-family: serif}

.sans-serif {font-family: sans-serif}

.cursive {font-family: cursive}

.fantasy {font-family: fantasy}

.comic {font-family: Comic Sans MS}

.xx-small {font-size: xx-small}

.x-small {font-size: x-small}

.small {font-size: small}

.medium {font-size: medium}

.large {font-size: large}

.x-large {font-size: x-large}

.xx-large {font-size: xx-large}

.smaller {font-size: smaller}

.larger {font-size: larger}

.points {font-size: 18pt}

.percentage {font-size: 200%}

.italic {font-style: italic}

.oblique {font-style: oblique}

.weight {font-weight: 900}

.smallcaps {font-variant: small-caps}

.uppercase {text-transform: uppercase}

.lowercase {text-transform: lowercase}

.capitalize {text-transform: capitalize}

.underline {text-decoration: underline}

.blink {text-decoration: blink}

.line-through {text-decoration: line-through}

.overline {text-decoration: overline}
-->

</STYLE>

</HEAD>

<BODY>

<H2>Font Family </H2>
This text is in Serif.

This text is in Sans-Serif.

C h a p t e r 1 0 : S t y l e S h e e t s 349

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

This text is in Cursive.

This text is in Fantasy.

Actual fonts can be specified like

Comic Sans MS

<H2>Font Sizing </H2>
This is xx-small text.

This is x-small text.

This is small text.

This is medium text.

This is large text.

This is x-large text.

This is xx-large text.

This is smaller text than the rest.

This is larger text than the rest.

This is exactly 18 point text.

This is 200% larger text.

<H2>Font Style, Weight, and Variant </H2>
This text is italic.

This text is oblique.

This text is bold.

This text is in smallcaps.

<H2>Text Transformation </H2>
The next bit of text is transformed to all

uppercase.

The next bit of text is transformed to
all lowercase.

 This text is all capitalized. It doesn't
do what you think, does it?

<H2>Text Decoration </H2>

This text should blink under Netscape.

This text should be underlined.

This text should be struck.

This text should be overline.

</BODY>

</HTML>

The rendering of the font and text example is shown in Figure 10-3. Note that small
differences still exist between Netscape and Microsoft style sheet implementations.

Downloadable fonts and other changes to font support under style sheets are
discussed later in this chapter. The next section covers colors and backgrounds.

350 H T M L : T h e C o m p l e t e R e f e r e n c e

Figure 10-3. Rendering of font and text example under Internet Explorer 4 (left)
and Netscape Navigator 4 (right)

C h a p t e r 1 0 : S t y l e S h e e t s 351

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

Color and Background Properties
CSS1 supports a variety of properties that can be used to control the colors and
backgrounds in a document. With style sheets, you can create arbitrary regions with
different background colors and images. In the past, such designs were difficult to
accomplish without turning to tables or proprietary HTML extensions.

CSS1 style sheets support three basic forms of color specifications:

■ Color names The suggested keyword colors supported by browsers are a set
of 16 color names taken from the Windows VGA palette. The colors include
Aqua, Black, Blue, Fuchsia, Gray, Green, Lime, Maroon, Navy, Olive, Purple,
Red, Silver, Teal, White, and Yellow. These are the same predefined colors
from the HTML specification.

■ Hexadecimal values Support for the standard, six-digit color form #RRGGBB
as used with the and <BODY> elements. A shortened, three-digit
color form, in which R, G, and B are hex digits, is also supported under CSS, but
currently is an uncommon form of color specification and thus isn’t suggested.

■ RGB values The RGB format is also specified in the form rgb (R,G,B), whereby
the values for R, G, and B range from 0 to 255. This format should be very
familiar to users of Adobe Photoshop. Currently, most browsers don’t support
the rgb (R,G,B) color format, so use it with caution.

color
CSS supports the color property, which is used to set the text color. Its use is illustrated
in the following examples:

BODY {color: green}

H1 {color: #FF0088}

.fun {color: #0f0}

#test {color: rgb(0,255,0)}

background-color
The background-color property sets an element’s background color. The default value
is none, which allows any underlying content to show through. This state is also
specified by the keyword transparent. The background-color property is often used in
conjunction with the color property that sets text color. With block elements,
background-color colors content and padding, the space between an element’s contents
and its margins. With inline elements, background-color colors a box that wraps with

352 H T M L : T h e C o m p l e t e R e f e r e n c e

the element if it occurs over multiple lines. This property takes colors in the same
format as the color property. A few example rules are shown here:

P {background-color: yellow}

BODY {background-color: #0000FF}

.fun {background-color: #F00}

#test {background-color: rgb(0,0,0)}

The second example is particularly interesting, because it sets the background color
for the entire document. Given this capability, the BGCOLOR attribute of the
<BODY> element isn’t needed.

background-image
The background-image property associates a background image with an element. If
the image contains transparent regions, underlying content shows through. To prevent
this, designers often use the background-image property in conjunction with the
background-color property. The color is rendered beneath the image and provides an
opaque background. The background-image property requires a URL to the
appropriate image to use as a background. Images that can be used as backgrounds
include whatever the browser supports for the BACKGROUND attribute of the
<BODY> element, typically GIF and JPEG. A few examples are shown here, including
some that work in conjunction with the background-color property:

B {background-image: url(donut-tile.gif);

background-color: white}
BODY {background-image: url(funtile.gif)}

.brick {background-image: url(brick.gif)}
#prison {background-image: url(bars.gif)}

Notice that you can set a background for a small element, such as , just as easily as
you can for the whole document, by applying the rule to the <BODY> element.

background-repeat
The background-repeat property determines how background images tile in cases in
which they are smaller than the canvas space used by their associated elements. The
default value is repeat, which causes the image to tile in the horizontal and vertical
dimensions. A value of repeat-x for the property limits tiling to the horizontal
dimension. The repeat-y value behaves similarly for the vertical dimension. The
no-repeat value prevents the image from tiling.

C h a p t e r 1 0 : S t y l e S h e e t s 353

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

P {background-image: url(donut-tile.gif);

background-repeat: repeat-x}

BODY {background-image: url(donut-tile.gif);

background-repeat: no-repeat}

By using the background-repeat property, you can avoid some of the undesirable tiling
effects from HTML-based backgrounds. As discussed in Chapter 6, designers often must
resort to making very wide or tall background tiles so that users won’t notice the repeat.
Because the direction of repeat can be controlled, designers can now use much smaller
background tiles.

The second example may present an issue of what happens when the user scrolls
the screen: should the background be fixed or scroll off screen? It turns out that this
behavior is specified by the next property, background-attachment.

background-attachment
The background-attachment property determines whether a background image should
scroll like the element content with which it is associated scrolls, or whether the image
should stay fixed on the screen while the content scrolls. The default value is scroll.
The alternative value, fixed, can implement a watermark effect, similar to the
proprietary attribute BGPROPERTIES of the <BODY> element that was introduced
by Microsoft. An example of how a watermark effect might be used is shown here:

BODY {background-image:url(logo.gif);

background-attachment: fixed}

background-position
The background-position property specifies how a background image, not a color, is
positioned within the canvas space used by its element. Three ways exist to specify a
position:

■ The top-left corner of the image can be specified as an absolute distance.

■ The position can be specified as a percentage along the horizontal and vertical
dimensions.

■ The position can be specified with keywords to describe the horizontal and
vertical dimensions. The keywords for the horizontal dimension are left, center,
and right. The keywords for the vertical dimension are top, center, and bottom.
When keywords are used, the default for an unspecified dimension is assumed
to be center.

The first example shows how to specify the top-left corner of the background by
using an absolute distance:

P {background-image:url(picture.gif);

background-position: 10px 10px}

Remember that this distance is relative to the element and not to the document as a
whole, unless, of course, the property is being set for the <BODY> element.

The next example shows how to specify a background image position by using
percentage values along the horizontal and vertical dimensions:

P {background-image:url(picture.gif);

background-position: 20% 40%}

If you forget to specify one percentage value, the other value is assumed to be 50%.
Specifying an image position by using keywords is an easy way to do simple

placement of an image. When you set a value, the keyword pairs have the following
meanings:

Keyword Pair Horizontal Position Vertical Position

top left 0% 0%

top center 50% 0%

top right 100% 0%

center left 0% 50%

center center 50% 50%

center right 100% 50%

bottom left 0% 100%

bottom center 50% 100%

bottom right 100% 100%

An example of using keywords to position a background image is shown here:

BODY {background-image: url(picture.gif);

background-position: center center}

Remember that if only one keyword is set, the second keyword defaults to center.
Thus, in the preceding example, the keyword center was needed only once.

354 H T M L : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 0 : S t y l e S h e e t s 355

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

background
The background property is a comprehensive property that allows any or all of the specific
background properties to be set at once, not unlike the shorthand font property. Property
order does not matter. Any property not specified uses the default value. A few examples
are shown here:

P {background: white url(picture.gif) repeat-y center}

BODY {background: url(tile.jpg) top center fixed}

.bricks {background: repeat-y top top url(bricks.gif)}

A complete example of all of the background properties in cascading style sheets is
shown here:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>
<HEAD>

<TITLE> CSS Background Attributes Example </TITLE>
<STYLE TYPE="text/css">
<!--

P {background: yellow url(logo.gif) repeat-y }

-->
</STYLE>

</HEAD>

<BODY>

<P>This is a paragraph of text. The left side will probably be hard to
read because it is on top of an image that repeats along the y axis.
Notice that the area not covered by the background image is filled with

the background color. This is more text just to illustrate the idea.

This is even more text. This is more text just to illustrate the idea.
This is even more text. This is more text just to illustrate the idea.
This is even more text. This is more text just to illustrate the idea.

This is even more text. This is more text just to illustrate the idea.
This is even more text.

</P>

</BODY>
</HTML>

Notice that multiple background types with a variety of elements may be included. A
similar layout is possible under pure HTML, but the required <TABLE> element
would be somewhat complicated. A rendering of the background style sheet example
is shown in Figure 10-4.

Text Properties
Text properties are used to affect the spacing and layout of text inline, namely, the text
within block elements such as paragraphs. The basic properties enable the page
designer to set indentation, word spacing, letter spacing, spacing between lines, and
horizontal and vertical text alignment. Although these would seem to be very useful
properties, they currently aren’t well supported in browsers.

When you manipulate text and other objects with a style sheet, you often must
specify a length or size. CSS1 supports a variety of measurement forms. For fonts, the
most familiar form of measurement is probably points (pt). The CSS1 specification also
supports measurements such as inches (in), centimeters (cm), and millimeters (mm), as

356 H T M L : T h e C o m p l e t e R e f e r e n c e

Figure 10-4. Rendering of background properties

well as picas (pc), the em measurement (em), the ex unit (x-height), and (under certain
measurement situations), pixels (px). In other cases, relative measurements, such as
150%, may be specified. Page designers who are used to electronic layout tools will
probably stick to the measurements most familiar to them, such as points or pixels.

Currently, the major browsers have only limited support, if any, for measurements
using em or x-height.

word-spacing
The word-spacing property specifies the amount of space between words. The default
value, normal, uses the browser’s word-spacing default. Designers are free to specify
the distance between words in a variety of measurements, including inches (in),
centimeters (cm), millimeters (mm), points (pt), picas (pc), the em (em) measurement,
and pixels (px). A few examples are shown here:

P {word-spacing: 1em}

BODY {word-spacing: 10pt}

At the time of this writing, neither of the major browsers supports the
word-spacing property. Page designers should check to make sure this property works
in their target audience’s browser(s) before relying on this property.

letter-spacing
The letter-spacing property specifies the amount of space between letters. The default
value, normal, uses the browser’s letter-spacing default. Like the word-spacing
property, a variety of measurements may be used to set word spacing, from pixels to
em values. A few examples of this property are shown here:

P {letter-spacing: 0.2em}

BODY {letter-spacing: 2px}

.wide {letter-spacing: 10pt}

#Fun {letter-spacing: 2cm}

vertical-align
The vertical-align property controls the vertical positioning of text and images with
respect to the baseline currently in effect. The possible values for the vertical-align
property include baseline, sub, super, top, text-top, middle, bottom, text-bottom, and
percentage values. Compare these values with the ALIGN attribute for the
element, as well as alignment options for table cells, and things should begin to make
sense. The flexibility of style sheets enables you to set element values on individual

C h a p t e r 1 0 : S t y l e S h e e t s 357

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

characters. When not specified, the default value of vertical-align is baseline. The
following are a few examples:

P {vertical-align: text-top}

.superscript {vertical-align: super; font-size: smaller}

.subscript {vertical-align: sub; font-size: 75%}

Notice in the example how vertical-align can be used with other properties to create an
interesting contextual class, like .superscript.

text-align
The text-align property determines how text in a block-level element, such as the <P>
element, is horizontally aligned. The allowed values for this property are left, right,
center, and justify. The default value for the property is left. This property should act
similar to most of the ALIGN attributes, which are available on certain block-level
elements in HTML. Be aware that justification of a block element may be very
noticeable when the font is very large, and may show the added spaces. A few
examples are shown here:

P {text-align: justify}

DIV {text-align: center}

.goright {text-align: right}

text-indent
The text-indent property sets the indentation for text in the first line of a block-level
element. Its value can be given either as a length value (.5cm, 15px, 12pt, and so on) or
as a percentage of the width of the block, such as 10%. The default value for the
property is 0, which indicates no indentation. A few examples of how text-indent
might be used are shown here:

P {text-indent: 2em}

P.heavy {text-indent: 50px}

One interesting effect is the use of negative values to create a hanging indent,
wherein the text within the block element expands outside of the block. The following
rule creates a paragraph with a yellow background, in which the first line of text starts
left of the text:

P {text-indent: -10px; background: yellow}

358 H T M L : T h e C o m p l e t e R e f e r e n c e

Combining the hanging indent with a large first letter for the paragraph creates an
interesting effect.

line-height
The line-height property sets the height between lines in a block-level element, such as a
paragraph. The basic idea is to set the line spacing, known more appropriately as leading.
The value of the attribute may be specified as the number of lines (1.4), a length (14pt), or
as a percentage of the line height (200%). So, double spacing could be written as

P.double {line-height: 2}

as well as

P.double2 {line-height: 200%}

Other examples of using line-height are shown here:

P {font-size: 12pt; line-height: 18pt}

P.carson {font-size: 24pt; line-height: 6pt}

Notice in the second example how the line-height property is much smaller than the
font-size property. A browser generally should render the text on top of the other text,
creating a hard-to-read, but potentially “cool” effect.

A complete example showing the HTML and cascading style sheet markup for text
properties is shown here:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>

<HEAD>

<TITLE> CSS Text Attributes Example </TITLE>
<STYLE TYPE="text/css">

<!--
.letterspaced {letter-spacing: 10pt}

.sub {vertical-align: sub}

.super {vertical-align: super}

.right {text-align: right}

.left {text-align: left}

.center {text-align: center}
P.indent {text-indent: 20px;

line-height: 200%}

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

C h a p t e r 1 0 : S t y l e S h e e t s 359

P.negindent {text-indent: -10px;

background: yellow}

#BIGCHAR {background: red;

color: white;
font-size: 28pt;
font-family: Impact;

}

P.carson {font-size: 12pt;
font-family: Courier;

letter-spacing: 4pt;
line-height: 5pt}

-->
</STYLE>
</HEAD>

<BODY>

<H2>Letter Spacing and Vertical Alignment </H2>
<P>This is a paragraph of text. Spacing
letters is possible but word spacing is not. Vertical

alignment can be used to make Subscript
and Superscript text, but the real use of

the property is for aligning text next to images and objects. </P>

<H2>Alignment </H2>
<P CLASS="LEFT">

It is possible to set paragraphs to align left.
</P>

<P CLASS="RIGHT">

It is possible to align paragraphs to the right.
</P>

Even lines can be set to center.

<H2>Indentation and Line Height </H2>
<P CLASS="indent">

With style sheets it is possible to set indentation as well as line

360 H T M L : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 0 : S t y l e S h e e t s 361

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

height. Now double spacing is a reality. This is just dummy text to

show the effects of the indentation and spacing. This is just dummy
text to show the effects of the indentation and spacing. </P>

<P CLASS="negindent"> This is another
paragraph which has negative indenting. Notice how you can pull a
character outside the paragraph for interesting effects. This is

just dummy text to show the effect of the indent. This is just

dummy text to show the effect of the indent. </P>

<H2>Surf Gun </H2>

<P CLASS="carson"> Don't get carried away with your newfound powers.
You may be tempted to show how cool you can be using text on top of

other text. While this may be good for certain situations, it may
also confuse the viewer. </P>
</BODY>

</HTML>

The rendering of the text properties example is shown in Figure 10-5.

Box Properties
Block-level elements, such as the <P> element, can be thought of as occupying
rectangular boxes on the screen. Three aspects of these boxes can be controlled with
style properties. The box properties that can be controlled include the following:

■ Margin properties Determine the distance between edges of an element’s
box and the edges of adjacent elements.

■ Border properties Determine the visual characteristics of a border
surrounding an element’s edges.

■ Padding properties Determine the distance inside an element between its
edges and its actual content.

■ Height, width, and positioning properties Determine the size and position
of the box that the element creates.

362 H T M L : T h e C o m p l e t e R e f e r e n c e

The box properties are equivalent to attributes such as BORDER, HEIGHT, and
WIDTH when used with block elements such as , but the box properties
provide even more power than is available under standard HTML.

Margin Properties
Four margin properties are available to set individually each of an element’s four margins.
A fifth margin property allows all of the margins to be set together. Individual margins for
a block element can be set by using margin-top, margin-right, margin-bottom, or
margin-left properties. The values for the margins should be a length (such as 15pt or
2em), a percentage value of the block element’s width (such as 20%), or the value auto,
which attempts to figure out the appropriate margin automatically:

BODY {margin-top: 20px;

margin-bottom: 20px;

margin-left: 30px;

margin-left: 50px}

Figure 10-5. Rendering of text properties under Internet Explorer 4 (left) and
Netscape Navigator 4 (right)

P {margin-bottom: 20mm}

DIV.fun {margin-left: 1.5cm; margin-right: 1.5cm}

One interesting use of margin properties is to set negative margin values. Of
course, negative margins may clip the content of the block element in the browser
window, if you aren’t careful. Try an example such as

P {margin-left: -2cm; background: green}

to get an idea of how negative margins work.
The last few examples show that you can set one or many margins. To make setting

multiple margins even easier, a shorthand notation is available that enables page
designers to set all of the margins at once. Using the margin property, one to four
values can be assigned to affect the block element margins. If a single value is specified,
it is applied to all four margins. For example,

P {margin: 1.5cm}

sets all of the margins equal to 1.5 cm. If multiple values are specified, they are applied
in clockwise order: first the top margin, followed by (in order) the right, bottom, and
left margins. For example,

P {margin: 10px, 5px, 15px, 5px}

sets the top margin to 10 pixels, the right to 5 pixels, the bottom to 15 pixels, and the
left to 5 pixels. If only two or three values are specified in the rule, the missing values
are determined from the opposite sides. For example,

P {margin: 10px, 5px}

sets the top margin to 10 pixels and the right margin to 5 pixels. The opposite sides are
then set accordingly, making the bottom margin 10 pixels and the left margin 5 pixels.

A complete example using the margin properties is shown here. Notice that the
example uses one negative margin. The background color makes it easier to see the effect.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

C h a p t e r 1 0 : S t y l e S h e e t s 363

<TITLE> CSS Margin Example </TITLE>

<STYLE TYPE="text/css">
<!--

#ONE {background: yellow;
margin: 1cm 1cm;

}

#TWO {background: orange;

margin-top: 1cm;
margin-bottom: 1cm;

margin-right: .5cm;
margin-left: -10px;

}

#BIGCHAR {background: red;
color: white;

font-size: 28pt;

font-family: Impact;
}

-->

</STYLE>
</HEAD>

<BODY>

<P ID="ONE"> This is a paragraph of text that has margins set for
all sides to 1 cm. This is just dummy text to show the effects of

the margins. This is just dummy text to show the effects of the margins. </P>

<P ID="TWO">This is another paragraph that has
negative margins on one side. Be careful not to clip things with negative

margins. This is just dummy text to show the effect of the
margins. This is just dummy text to show the effect of the margins. </P>

</BODY>

</HTML>

364 H T M L : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 0 : S t y l e S h e e t s 365

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

The rending of the cascading style sheet margin example under Internet Explorer 4
is shown in Figure 10-6.

Border Properties
Elements may be completely or partially surrounded by borders placed between
their margins and their padding. The border properties control the edges of block
elements by setting whether they should have a border—what the borders look
like—their width, their color, and so on. Borders are supposed to work with both
block-level and inline elements; you may, however, see browsers automatically
convert elements with borders to block elements by adding preceding and
following carriage returns.

Figure 10-6. The margin example under Internet Explorer 4

366 H T M L : T h e C o m p l e t e R e f e r e n c e

border-style The border-style property is used to set the appearance of the borders.
The default value for the property is none, which means no border is drawn,
regardless of any other setting. The values for border-style include

Value Intended Rendering

dotted A dotted border

dashed A dashed-line border

solid A normal solid-line border

double A double-line border

groove An etched border

ridge An extruded border

inset An inset border, making an object look like it is set into the page

outset A beveled border, making an object look raised

A few examples of border-style rules are shown here:

H1 {border-style: solid}

P.boxed {border-style: double}

.button {border-style: outset}

The border-style property sets the borders for each of the sides of the element.
Individual border styles can be controlled with border-top-style, border-bottom-style,
border-left-style, and border-right-style. The border-style property can also act as a
shorthand notation and may take up to four values starting from top, right, bottom,
and then left. Like the margin property, when less than four values are set, the
opposite sides are set automatically. To set double borders on the top and bottom, use
either of the following rules:

P {border-style: double none}

P.one {border-style: double none double none}
P.two {border-top-style: double;

border-bottom-style: double;

border-left-style: none;

border-right-style: none}

C h a p t e r 1 0 : S t y l e S h e e t s 367

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

border-width Numerous properties are used to set the width of borders. Four
properties set the width for specific borders: border-top-width, border-right-width,
border-bottom-width, and border-left-width. Similar to the border-style property, the
border-width property sets all four borders at once and takes from one to four values.
Multiple values are applied to borders in a clockwise order: top, right, bottom, left. If
only two or three values are used, the missing values are determined from the opposite
sides, just as with margins and border styles.

Width can be specified by using the keywords thin, medium, and thick as values
indicating the size of the border, or by using an absolute measurement such as 10
pixels. The following examples illustrate how border widths can be set:

P {border-style: solid; border-width: 10px}

P.double {border-style: double; border-width: thick}

P.thickandthin {border-style: solid; border-width: thick thin}

.fun {border-style: double none; border-width: thick}

border-color Borders may be assigned a color by using the border-color property.
Color values are specified by using either a supported color name or a numeric RGB
specification. The border-color property sets all four borders and takes from one to
four values. Multiple values are applied to borders in a clockwise order: top, right,
bottom, left. If only two or three values are used, the missing values are determined
from the opposite sides. As with border widths and styles, you can use a property for
each border’s color by using border-top-color, border-right-color, border-bottom-color,
and border-left-color. The following examples illustrate the basic ways to set a
border’s colors:

P {border-style: solid; border-color: green}
P.all {border-style: solid; border-top-color: green;

border-right-color: #FF0000;
border-bottom-color: yellow;

border-left-color: blue}

border shorthand Several border properties allow any combination of width, color,
and style information to be set in a single property. The border-top, border-right,
border-bottom, and border-left properties support this for their respective borders. For
example, to set the top border or paragraph elements to be red, double-line style, and
20 pixels thick, use

P {border-top: double 20px red}

The order of the property values to set the style, width, and color is arbitrary, but
according to the specification, designers should probably set the style, and then the
width, followed by the color. Multiple properties can be combined in one rule to set the
borders differently, as shown in the following example:

#RainbowBox {background: yellow;

border-top: solid 20px red;
border-right: double 10px blue;

border-bottom: solid 20px green;
border-left: dashed 10px orange}

Besides a shorthand notation for each individual border side, you can use a
shorthand notation for all sides by using the border property. For example, to set all
borders of a paragraph to be red, double-line style, and 20 pixels thick, use

P {border: double 20px red}

Note that it is impossible to set the individual border sides with this shorthand
notation. The actual properties to set the various borders must be used, such as
border-top or, even more specifically, border-top-style.

The following brief example shows all of the border properties used so far. Notice
that both compact and explicit notations are used in the example.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>
<HEAD>

<TITLE> CSS Border Example </TITLE>
<STYLE TYPE="text/css">
<!--

#OUTER {background: orange;

border-style: solid;
border-width: 5px;
padding: 10px 10px

}

#ONE {background: yellow;

border-style: double;

border-width: medium;
}

368 H T M L : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 0 : S t y l e S h e e t s 369

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

#TWO {background: yellow;

border-style: double solid;
border-color: red green purple blue;

border-width: thin medium thick .25cm;
}

-->

</STYLE>

</HEAD>

<BODY>

<DIV ID="outer">
<P ID="one"> This is a paragraph of text that has a red double border

around it. Notice how the text creeps up on the edges. Padding values
will help you avoid this problem. </P>

<P ID="two"> This is another paragraph that has its borders set in a

very bizarre way! </P>

Notice that the paragraph blocks can be within a large boxed block
structure.
</DIV>

</BODY>

</HTML>

The rendering of the border property example under Internet Explorer 4 is shown in
Figure 10-7.

Padding Properties
The space between an element’s border and its content can be specified by using the
padding properties. An element’s four padding regions can be set by using the
padding-top, padding-right, padding-bottom, and padding-left properties. As with
borders and margins, you can use a shorthand notation property, called padding, to set
the padding for all sides at once. This example illustrates some basic uses of padding
properties:

DIV {padding-top: 1cm}

P {border-style: solid;

padding-left: 20mm;

padding-right: 50mm}

370 H T M L : T h e C o m p l e t e R e f e r e n c e

The shorthand notation property padding allows a single property assignment to
specify all four padding regions. It can take from one to four values. A single value is
applied to all four padding areas. Multiple values are applied to padding regions in a
clockwise order: top, right, bottom, left. If only two or three values are used, the
missing values are determined from the opposite sides. So,

DIV {border-style: solid; padding: 1cm}

sets a region with a solid border, but with contents padded 1 cm from the border on all
sides. The following sets padding on the top and bottom to 2 mm and the right and left
to 4 mm for all paragraphs:

P {padding: 2mm 4mm}

Figure 10-7. CSS border properties rendered under Internet Explorer 4

C h a p t e r 1 0 : S t y l e S h e e t s 371

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

An example showing padding and borders to help you better understand padding
values is shown here:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>
<HEAD>

<TITLE> CSS Padding Example </TITLE>
<STYLE TYPE="text/css">
<!--

#ONE {background: yellow;

border-style: double;
border-width: medium;

padding-left: 1cm;
padding-right: .5cm;

}

#TWO {background: yellow;
border-style: double;

border-width: medium;

padding-top: 1cm;
padding-bottom: 1cm;

}

#THREE {background: yellow;
border-style: double;

border-width: medium;

padding: 1cm 1cm;
margin: .5cm 4cm;

}
-->
</STYLE>

</HEAD>

<BODY>

<P ID="one"> This paragraph of text has padding on the left and

right,but not on the top and bottom. </P>

<P ID="two"> This paragraph has padding, but this time only on the

top and bottom. </P>

<P ID="three"> Be careful when using margins. They don't necessarily

apply to the text within the box, but to the box itself. </P>

</BODY>

</HTML>

The rendering of the padding example is shown in Figure 10-8.

width and height
The width property sets the width of an element’s content region (the width of the area
actually filled with content as opposed to its padding, border, or margin). The
following example sets a paragraph with a width of 300 pixels:

P {width: 300px;

padding: 10px;
border: solid 5px;

background: yellow;
color: black}

You can also use percentage values for the width. With the width property, tables
apparently aren’t necessary under CSS. This is true, but given the current level of support
for these style sheets, relying on this feature for layout probably isn’t a good idea.

Similar to width, the height property sets the height of an element’s content region.
When thinking about elements in Web pages other than images, setting the height
property might seem unusual. In most cases, it is probably best to leave the height
property alone, so that the default value, auto, is used. The most legitimate use of
this property is to set the height for objects, such as images. An absolute value or a
percentage is supported for the height property, just as it is for width. The following
examples show how these properties might be used:

IMG {height: 10cm; width: 10%}

P {height: 100px; width: 300px}

float and clear
The float property influences the horizontal alignment of elements. It causes them to
“float” toward either the left or right margins of their containing element. This is
especially useful for placing embedded media objects (such as images and similar
support) into a Web page. Similar floating capabilities under vanilla HTML can be
found with the ALIGN attribute settings. As with HTML, the values available for the
float property include left, right, or none. The value of none is the default. To imitate

372 H T M L : T h e C o m p l e t e R e f e r e n c e

the HTML code , apply a style sheet rule
such as this to the element:

IMG.LOGO {float: right}

The previous example might raise a few questions. How can the HSPACE and
VSPACE of the item be set by using style sheets? You have a great deal of control over
the border, margin, padding, height, and width of any object, so you shouldn’t have
difficulty achieving the layout that you want. One thing that may not be obvious is
how to clear the content that may flow around an object.

The use of floating elements creates a need to position vertically those elements that
immediately follow them in an HTML document. Should the content flow continue at
the floating element’s side or after its bottom? If floating elements are defined on the
right and left margins of the page, should content flow continue between them, after

C h a p t e r 1 0 : S t y l e S h e e t s 373

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

Figure 10-8. Rendering of padding example under Internet Explorer 4

the bottom of the left element, the right element, or whichever is larger? The clear
property allows this to be specified. A value of left for the property clears floating
objects to the left, a value of right clears floating objects to the right, and the both value
clears whichever is larger. The default value is none. Notice that this is extremely
similar to the use of the CLEAR attribute with the
 element in HTML. The
following code example demonstrates the use of the clear and float properties:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>

<HEAD>

<TITLE> Image and Layout Control under CSS </TITLE>
<STYLE TYPE="text/css">

<!--
IMG.aligned-right {width: 150; height: 150; float:right}

BR.clear-text {clear:both}
-->
</STYLE>

</HEAD>

<BODY>
<P>This is some dummy text.

This is some dummy text. This is some dummy text.
This is some dummy text. This is some dummy text.

This dummy text should stop flowing here.

<BR CLASS="clear-text">
This text should appear after the picture.

</P>
</BODY>

</HTML>

The rendering of the image alignment and text flow example is shown in Figure 10-9.

Classification Properties
Cascading style sheets contain several classification properties that determine the
display classification of an element. Is it a block-level element or an inline element?
Does it preserve or collapse white-space characters? Is it a list element? If so, what list
style does it use? The following attributes are some of the miscellaneous items in
cascading style sheets.

374 H T M L : T h e C o m p l e t e R e f e r e n c e

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

C h a p t e r 1 0 : S t y l e S h e e t s 375

display
The CSS model recognizes three types of displayed elements: block elements, inline
elements, and lists. The display property allows an element’s display type to be
changed to one of four values: block, inline, list-item, and none. The none value
causes an element not to display or use canvas space. This differs from the property
setting visibility (discussed later in this chapter), which also prevents an element from
displaying, but may reserve canvas space. To turn off a paragraph, try a rule such as
the following:

P.remove {display:none}

Besides turning off elements, the browser should be able to turn a block element
(such as a paragraph) into an inline element, thus keeping it from adding a new line.

Figure 10-9. Rendering of image alignment and text flow under cascading style
sheets

376 H T M L : T h e C o m p l e t e R e f e r e n c e

For example, the following would change the form of all paragraphs in the document;
overriding the known action of the element is not suggested:

P {display:inline}

Browsers may be able to turn an inline element into a block:

EM {display:block}

You can also coerce an element to act somewhat like a list by casting it with the
display property, as shown here:

B {display: list-item}

In very few cases, other than setting display to none, does type overriding make
sense. While you might be able to dream up interesting uses for element form changing,
it upsets the improved simplicity of HTML files provided by cascading style sheets.

white-space
The white-space property controls how spaces, tabs, and newline characters are
handled in an element. The default value, normal, collapses white-space characters into
a single space and automatically wraps lines, just as normal HTML. When a value of
pre is used for the property, white-space formatting is preserved, similar to how the
<PRE> element works in HTML. The nowrap value prevents lines from wrapping
if they exceed the element’s content width. This short example shows how the
white-space property would be used to simulate the <PRE> element:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>
<HEAD>

<STYLE TYPE="text/css">
<!--

P.pre {white-space:pre}
-->
</STYLE>

</HEAD>

<BODY>
<P CLASS="pre"> This will be preformatted. </P>
</BODY>

</HTML>

C h a p t e r 1 0 : S t y l e S h e e t s 377

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

Like many of the display attributes already discussed, the nowrap and pre values
are not well supported in browsers at the time of this writing.

List Properties
As discussed in Chapter 4, HTML supports three major forms of lists: ordered lists,
unordered lists, and definition lists. Cascading style sheets provide some list
manipulation, including three style properties that can be set for lists: list-style-type,
list-style-image, and list-style-position. A general property, list-style, provides a
shorthand notation to set all three properties at once.

list-style-type The items in ordered or unordered lists are labeled with a numeric
value or a bullet, depending on the list form. These list labels can be set in cascading
style sheets by using the list-style-type property. Six values are appropriate for
ordered lists: decimal, lower-roman, upper-roman, lower-alpha, and upper-alpha.
Three values are appropriate for unordered lists: disc, circle, and square. The value
none prevents a label from displaying. These values are similar to the TYPE attribute
for the list elements in HTML. Setting the following

OL {list-style-type: upper-roman}

is equivalent to <OL TYPE="I">, while the following is equivalent to <UL
TYPE="square">:

UL {list-style: square}

Nested lists can be controlled by using context selection rules. For example, to set
an outer order list to uppercase roman numerals, an inner list to lowercase roman
numerals, and a further embedded list to lowercase letters, use the following rules:

OL {list-style-type:upper-roman}

OL OL {list-style-type:lower-roman}

OL OL OL {list-style-type:lower-alpha}

The list-style-type property can also be associated with the element, but be
aware that setting individual list elements to a particular style might require the use of
the ID attribute, or even inline styles.

list-style-image The list-style-type property provides little functionality that is
different from HTML lists, but the list-style-image property can assign a graphic image
to a list label; this is awkward to do under plain HTML. The value of the property is

378 H T M L : T h e C o m p l e t e R e f e r e n c e

either the URL of the image to use as a bullet or the keyword none. So, to use the
lovely red 3-D balls with your list, use a rule such as this:

UL {list-style-image: url("ball.gif")}

Although setting the list-style-image for an ordered list may be possible, be careful,
because the meaning of the list is then lost.

list-style-position Display elements in cascading style sheets are treated as existing
inside a rectangular box. Unlike other elements, the labels for list items can exist outside
and to the left of the list element’s box. The list-style-position property controls where a
list item’s label is displayed in relation to the element’s box. The values allowed for this
property are inside or outside. The outside value is the default. The following example
tightens up a list by bringing the bullets inside the box for the list:

UL.COMPACT {list-style-position: inside}

list-style Like margin, padding, and other shorthand notation, the list-style
property allows a list’s type, image, or position properties to all be set by a single
property. The properties may appear in any order and are determined by value. The
following is an example of the shorthand notation that sets an unordered list with a
bullet image that appears within the list block:

UL.special {list-style: inside url("bullet.gif")}

Up to this point, this chapter has discussed the basic CSS1 standard, but a few
things are still missing. Already, new style sheet properties are being introduced. One
extension in particular, positioning, bears closer inspection.

Positioning with Style Sheets
The W3C finalized the CSS2 specification on May 12, 1998. The complete specification
can be viewed online at http://www.w3.org/TR/REC-CSS2/. Currently, few
important CSS2 features have been implemented by browser vendors, with one major
exception: positioning. The rest of this chapter covers positioning in detail; summarizes
new, unimplemented features in CSS2; and ends with a discussion of some proprietary
style sheet effects introduced by Microsoft.

Positioning was originally developed as a separate specification called CSS-P,
which has now been incorporated into the CSS2 specification. Even before finalization
of CSS2, the major browsers supported style sheet–based positioning. When combined
with elements such as <DIV>, the functionality of proprietary elements (such as
<LAYER>) can be achieved with style sheets.

Positioning and Sizing of Regions
The first property to discuss for layout is the position property, which has three values:

■ static Places elements according to the natural order in which they occur in a
document (the default).

■ absolute Defines a coordinate system independent from the usual block and
inline element placement common in HTML documents. An element whose
position is absolute becomes a visual container for any elements enclosed in its
content. If the element is repositioned, all of the elements defined inside it move
with it. If any of those contained elements are assigned coordinates outside of
their parent’s dimensions, they disappear.

■ relative Makes the element’s position relative to its natural position in
document flow. This can be confusing, so most designers tend to use
absolute values.

After you specify how to position the region (absolute or relative), the actual
location of positioned elements should be specified by using their top-left corner. The
position is set with the left and top style properties. The coordinate system for
positioned elements uses the upper-left corner as the origin point, namely, 0,0. Values
for the x coordinate increase to the right; y values increase going down from the origin.
A value such as 10,100 would be 10 units to the right and 100 units down from the
origin. Values may be specified as a length in a valid CSS measurement (such as pixels)
or as a percentage of the containing object’s (parent’s) dimension. You may find
that elements contain other elements, so 0,0 isn’t always the upper-left corner of
the browser.

After you position the region, you may want to set its size. By default, the height
and width of the positioned region are set to fit the enclosed content, but the height
and width properties, as discussed earlier in this chapter, can be used to specify the
region’s size.

The following example uses an inline style to set a <DIV> element to be 120 pixels
from the left and 50 pixels down from the top-left corner of the browser:

<DIV STYLE="{position:absolute;

left: 120px; top: 50px;
height: 100px; width: 150px;
background: yellow}">

At last, absolute positioning!

</DIV>

Although using the inline style form isn’t the best way to do things, it serves its
purpose here.

C h a p t e r 1 0 : S t y l e S h e e t s 379

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

380 H T M L : T h e C o m p l e t e R e f e r e n c e

Before you rush off and position elements all over the screen, be aware of the
nuances of nested items. For example, look at the following markup. Notice how the
position of the second area is relative to the first. If you read the coordinate values
numerically, the inner area should be positioned to the left and above where it shows
onscreen. Remember, the coordinates are relative to the containing box.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>

<HEAD>

<TITLE> Positioning Nested Items </TITLE>
<STYLE TYPE="text/css">

<!--
#outer {position:absolute;

left: 100px;
top: 50px;
height: 100px;

width: 150px;

background: yellow}

#inner {position:absolute;
left: 75px;

top: 50px;
height: 30px;

width: 40px;

background: orange}
-->

</STYLE>
</HEAD>

<BODY>

<DIV ID="outer">
This is the outer part of the nest.

 This is the inner part of the nest.

</DIV>
</BODY>

</HTML>

The rendering of this example is shown in Figure 10-10.

Clipping Regions
For elements whose position type is absolute, a clipping rectangle defines the subset of
the content rectangle that is actually shown. The property clip can be used to set the
coordinates of the clipping rectangle that houses the content. The form of the property is

clip: rect(top right bottom left)

where top, right, bottom, and left are the coordinate values that set the clipping region:

<DIV STYLE="{position:absolute;

left:20; top:20;
width:100; height:100;

clip: rect(10 90 90 10)}">
This
is
a
case
of
lines
going

outside
the
box, which may be clipped.

</DIV>

C h a p t e r 1 0 : S t y l e S h e e t s 381

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

Figure 10-10. Rendering of nested boxes under Internet Explorer

382 H T M L : T h e C o m p l e t e R e f e r e n c e

overflow
Sometimes, an element’s content is greater than the space allocated for it. Most
browsers allocate space for content, unless size is set explicitly or a clipping region is
set. The overflow property determines how an element should handle the situation
when content doesn’t fit. A value of clip for the property clips content to the size
defined for the container. The scroll value allows content to scroll using a browser-
dependent mechanism, such as scroll bars. The default value is none, which does
nothing and may clip the content. The following example, which mimics the
functionality of a floating frame, creates a positioned region that allows scrolling if
content goes beyond its defined size:

<DIV STYLE="{position:absolute;

left:20; top:20;
width:100; height:100;

clip: rect(10 90 90 10);
overflow: scroll}">

This
is
a
case
of
lines
going

outside
the
box, which may be clipped.

</DIV>

z-index
Absolute and relative positioning allow element content to overlap. By default,
overlapping elements stack in the order in which they are defined in an HTML
document. The most recent elements go on top. This default order can be redefined by
using an element’s z-index property. Absolute- or relative-positioned elements define a
z-index context for the elements that they contain. The containing element has an index
of 0; the index increases with higher numbers stacked on top of lower numbers. The
following example forces all images inside a container to overlap, and it uses the top
class to position one image on top. Notice how the elements stack in the specified order
rather than as defined:

<HTML>

<HEAD>
<TITLE> Z-order Example </TITLE>
<STYLE TYPE="text/css">

<!--
DIV.one {position:absolute;

top:20;left:20;

height: 50; width: 50;
color: white;

background-color:blue;
z-index: 2}

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

C h a p t e r 1 0 : S t y l e S h e e t s 383

DIV.two {position:absolute;

top:30;left:30;
height: 25; width: 100;

background-color:orange;
z-index: 1}

DIV.three {position:absolute;

top:40;left:40;

height: 25; width: 25;
background-color:yellow;

z-index: 3}
-->

</STYLE>
</HEAD>

<BODY>

<DIV CLASS="one">

This is section one.
</DIV>

<DIV CLASS="two">

This is section two.
</DIV>

<DIV CLASS="three">

This is section three.
</DIV>

</BODY>
</HTML>

The rendering of this example is shown in Figure 10-11.

visibility
The visibility property determines whether an element is visible. The values for the
property are hidden, visible, or inherit. The inherit value means that a property
inherits its visibility state from the element that contains it. If an element is hidden, it
still occupies the full canvas space, but is rendered as transparent. This simple example
shows how the item is made invisible, but is not removed:

<P>This is a <EM STYLE="visibility: hidden"> test of the

visibility property.

Figure 10-12 shows how the word “test” still takes up space, but isn’t visible.

384 H T M L : T h e C o m p l e t e R e f e r e n c e

Figure 10-11. Rendering of z-order example

Figure 10-12. The visibility property preserves canvas space

Changing the visibility of different portions of the document may not seem that
important, but imagine if the visibility could be controlled. If you could turn the
visibility on and off, you could make content appear and disappear. A brief example
of how this might be accomplished with a little scripting is shown here:

<HTML>

<HEAD>
<TITLE> Visibility and Scripting </TITLE>

<STYLE TYPE="text/css">
<!--
#peek {background: red;

color: white;

font-family: Comic Sans Ms, Fantasy;
font-size: 64pt;

position: absolute;
top: 50px;

text-align: center;
visibility: hidden}

#button {background: yellow;

color: black;

border-style: outset;
border-width: thin;
text-align: center;

font-family: Arial, Sans-serif;
font-size: 12pt;

position: absolute;

top: 10px;
left: 10px;}

-->
</STYLE>
</HEAD>

<BODY>
<DIV ID="button" onClick="peek.style.visibility='visible'">

Press me!

</DIV>

Gotcha!

C h a p t e r 1 0 : S t y l e S h e e t s 385

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

</BODY>

</HTML>

Note that you can manipulate style values on-the-fly. By changing the look and feel
of items depending on a user action, a variety of effects are possible. Look at the small
code fragment here:

<A HREF="http://www.yahoo.com" onmouseover="this.style.color='red'"

onmouseout="this.style.color='black'">

This style of link roll effect can also be implemented by using the pseudoclass hover,
which is implemented by Microsoft. For example, a style rule such as A:hover {color:
yellow} would change links to yellow when the user passes over them under Internet
Explorer 4 and above. This low-bandwidth rollover effect would degrade gracefully
under Netscape browsers, because it would ignore the pseudoclass.

The markup for the link is modified so that the color of the item is changed to red and
then back to black as a user passes a mouse over it.

Dynamic styles present many possibilities. Both Netscape and Microsoft support
access to style sheets from a scripting language, though in different ways and to a
different degree. See Chapter 14 for more on scripting style sheet properties, in which
particular emphasis is given on the movement of layered objects.

Before looking at browser-specific style changes, an overview of the W3C CSS2
specification is important, because it promises even more future possibilities for using
style sheets, including expanded media options, discussed in the next section.

CSS2: New Feature Summary
This section is not a detailed examination of the CSS2 specification, but rather a
summary of some of its new features. Bear in mind that none of these properties are
supported by any browsers at the time of this writing; in fact, the major browser
vendors are only just beginning to fulfill the promises of CSS1.

Media Types
The CSS2 specification defines numerous media types, listed in Table 10-2. Until
browser vendors or developers of other user agents begin to support these media
types, these definitions may have no meaning outside of the specification.

386 H T M L : T h e C o m p l e t e R e f e r e n c e

Media-Dependent Style Sheets
Under the CSS2 specification, certain style sheet properties are supported only by
specific media types. In other cases, more than one media type supports a property but
may call for different values. For example, when font-related properties are used for
both computer display and for printing, two different media may require different font
styles or sizes.

CSS2 provides two main ways to define media types for style sheets. The first
method simply uses the HTML language to define the media type. The other method
uses either the @import rule or the @media rule.

The following code example shows how style sheet media types are defined
using HTML:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE> CSS Media Type Example </TITLE>

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

C h a p t e r 1 0 : S t y l e S h e e t s 387

Media Type Definition

All For use with all devices

aural For use with speech synthesizers

braille For use with tactile Braille devices

embossed For use with Braille printers

handheld For use with handheld devices

print For use with printed material and documents viewed
onscreen in print preview mode

projection For use with projected media (direct
computer-to-projector presentations), or printing
transparencies for projection

screen For use with color computer screens

tty For use with low-resolution teletypes, terminals, or
other devices with limited display capabilities

tv For use with television-type devices

Table 10-2. Media Types Defined Under CSS2

<LINK REL="stylesheet" TYPE="text/css" MEDIA="print, handheld"

HREF="newstyle.css">
</HEAD>

<BODY>
...Body content...
</BODY>

</HTML>

The @import rule has already been discussed in this chapter (refer to “Embedding
and Importing Style Sheets”). Defining a media type under CSS2 simply requires the
addition of an appropriate media type after defining the URL with the @import rule, as
shown in this code fragment:

@import url("braille.css") braille;

The @media rule is used to define style rules for multiple media types in a single
style sheet. For example, you may want to have a document display in a large,
sans-serif font when viewed on a monitor, but display in a smaller, serif font when
printed. Multiple media types should be separated by commas, as shown in the
following code fragment:

<STYLE TYPE="text/css">

<!--
@media screen {BODY

{font-family: sans-serif;

font-size: 18 pt}

}

@media print {BODY
{font-family: serif;

font-size: 9 pt}
}

@media screen, print {BODY

{line-height: 150%}
}

-->
</STYLE>

388 H T M L : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 0 : S t y l e S h e e t s 389

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

If implemented by a browser or another user agent, this code would cause the
body of the Document to display in an 18-point, sans-serif font on a computer
monitor, to print out as a 9-point, serif font, and to have a line height of 150 percent
in both media.

User Interface Changes
The CSS2 specification also promises more options for user interfaces, allowing
page designers to implement various contextual display options for cursors, colors,
and fonts, many of which can be set to match the end user’s system settings.

cursor
The cursor property determines how the cursor displays when passed over the
affected element. The auto value leaves the display to be determined by the user
agent, so the cursor will display according to either the browser default settings or
the user settings. The crosshair value renders the cursor as a simple cross, whereas
default displays the system’s default cursor (usually an arrow). Various other
values listed in the CSS2 specification may indicate that something is a link
(pointer), that text can be selected (text), that something may be resized in various
directions (e-resize, ne-resize, nw-resize, n-resize, se-resize, sw-resize, s-resize,
w-resize), or that the user must wait while a program is busy (wait). One value,
uri, can be used to reference a cursor source; multiple cursor sources may be listed,
as shown in this example from the CSS2 specification:

P {cursor : url("mything.cur"), url("second.csr"), text; }

As with fonts, the user agent should attempt to render the first cursor listed, try the
second one if necessary, and ultimately default to the generic cursor value listed last.
Internet Explorer already supports this property to a limited degree, as discussed later
in this chapter.

Integrating Colors with User Preferences
Under CSS2, authors will be able to provide color values that match preexisting
settings on the end user’s system. This may be particularly useful in providing
pages that are set to accommodate a user’s visual impairment or other disability.
These values may be used with any CSS color properties (color, background-color,
and so on). The CSS2 specification recommends using the mixed-case format of the
values shown in Table 10-3, even though they are not, in fact, case-sensitive.

390 H T M L : T h e C o m p l e t e R e f e r e n c e

Color Value Intended Rendering

ActiveBorder Color of user’s active window border setting

ActiveCaption Color of user’s active window caption setting

AppWorkspace Background color of user’s multiple document
interface setting

Background Color of user’s desktop background setting

ButtonFace Face color of user’s 3-D display elements setting

ButtonHighlight Highlight color of user’s 3-D display elements setting

ButtonShadow Shadow color of user’s 3-D display elements setting

ButtonText Color of user’s push button text setting

CaptionText Color of user’s text settings for captions, size box, and
scroll bar arrow box

GrayText Color of user’s disabled text setting; if system doesn’t
display gray, defaults to black

Highlight Background color of user’s control-selected items
setting

HighlightText Text color of user’s control-selected items setting

InactiveBorder Color of user’s inactive window border setting

InactiveCaption Color of user’s inactive window caption setting

InactiveCaptionText Text color of user’s inactive caption setting

InfoBackground Background color of user’s tool tip control setting

InfoText Text color of user’s tool tip control setting

Menu Color of user’s menu background setting

MenuText Text color of user’s menus setting

Scrollbar Color of user’s scroll bar setting (gray area)

ThreeDDarkShadow Dark-shadow color of user’s setting for edges of 3-D
display elements

ThreeDFace Face color of user’s 3-D display elements setting

ThreeDHighlight Highlight color of user’s 3-D display elements setting

Table 10-3. User Color Preferences Under CSS2

The following code fragment shows how these values could be used to make a
paragraph display with the same foreground and background colors as the user’s
system:

P {color: WindowText; background-color: Window}

Coordinating Fonts with User Preferences
Under CSS2, designers will have the option of coordinating fonts with the fonts
defined by the end user’s system. These system font values may be used only with the
shorthand font property, not with font-family. Table 10-4 lists these values and their
related system font values.

C h a p t e r 1 0 : S t y l e S h e e t s 391

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

ThreeDLightShadow Light-shadow color of user’s setting for edges
of 3-D display elements

ThreeDShadow Dark-shadow color of user’s setting for 3-D
display elements

Window Background color of user’s window setting

WindowFrame Frame color of user’s window setting

WindowText Text color of user’s window setting

Table 10-3. User Color Preferences Under CSS2 (continued)

Font Value System Font Referenced

Caption System font used to caption buttons and other controls

Icon System font used to label icons

Menu System font used for drop-down menus and menu lists

Message-box System font used in dialog boxes

small-caption System font used for labeling small controls

status-bar System font used in window status bars

Table 10-4. Using CSS2 to Match an End-User’s System Fonts

Thus, to make level-three headers in a document display in the same font as a
user’s system uses to display window status bars, you would use the following code
fragment in a style sheet:

H3 {font: status-bar}

Outline Properties
Outlines are a new CSS2 feature that resemble borders but take up no additional space,
and may be set to a shape different from that of the image, form field, or other element
to which they are applied. Outlines are drawn over an item, rather than around it, thus
causing no reflow. Outlines may be used dynamically, to indicate what element in a
page has focus. Outline properties include outline-width, outline-style, outline-color,
and the shorthand property outline. Table 10-5 lists the values associated with these
properties.

Aural Improvements
The CSS2 specification contains numerous properties designed to provide aural
rendering of Web documents. While not yet implemented, these properties represent
one of the most forward-looking aspects of CSS2, targeted primarily for the sight-
impaired, but offering expanded media possibilities for the Web, as well. While the use
of a speech-based interface may seem like science fiction, the advances made in both
speech synthesis and speech recognition suggest that practical use of this technology is
not far away. This is a brief summary of the aural properties defined in CSS2. Again,
these properties haven’t been implemented, so any references to them in the present
tense are based on their definition within the CSS2 specification, not on their actual use.

392 H T M L : T h e C o m p l e t e R e f e r e n c e

Outline Property Values Accepted

outline-width Same values as border-width

outline-style Same values as border-style, except hidden

outline-color All color values, including invert

outline Sets all three values

Table 10-5. CSS2 Outline Properties and Values

C h a p t e r 1 0 : S t y l e S h e e t s 393

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

Basically, aural style sheets allow synthetic speech sources to be associated with
paragraphs and other elements. Timing and the spatial relationships between sounds
will also be subject to control by style sheets. Presumably, various synthetic voices will
function in a way analogous to fonts on a computer screen; different “voices” may be
assigned to different elements or classes of elements, or the qualities of any given voice
may be altered to suit an element (more emphasis for headers, and so forth).

speech-rate The speech-rate property is used to determine the rate of speech.
Values include numeric values, x-slow, slow, medium, fast, x-fast, faster, slower, and
inherit. Numeric values determine the number of words spoken per minute (wpm).
Speeds range from 80 wpm for the value x-slow, to 500 wpm for the value x-fast. The
relative value faster increases the speech rate by 40 wpm, while slower reduces it by
40 wpm. The default value is medium. The value inherit may also be used with this
property.

voice-family The voice-family property works much like the font-family property
insofar as it can be set to reference a specific voice “font,” generic voice “fonts,” or a
combination thereof, using a comma-separated list. A sample might look like this:

P.1 {voice-family: "bill gates", executive, male}

P.2 {voice-family: "jewel", singer, female}

In this hypothetical example, the first voice name is a specific voice based on a
public figure, the second is a specific voice meant to suggest a similar character, and
the final voice is a generic voice. According to the CSS2 specification, names may be
quoted, and should be quoted if they contain white space. The value inherit may also
be used with this property.

pitch The pitch property defines the average pitch of a voice. Values include
numeric values, which determine the voice’s frequency in hertz, as well as x-low, low,
medium, high, and inherit. The default value is medium. The values x-low through
high are dependent on the pitch of the voice family in use (as determined by the
voice-family property). The value inherit may also be used with this property.

pitch-range The pitch-range property determines the range of pitch variation of a
voice’s average pitch, as defined through the voice-family and pitch properties. Values
are either inherited (inherit) or defined by a numeric value between 0 and 100. The
value 0 produces no pitch variation, 50 approximates normal pitch variation, and 100
produces an exaggerated pitch range. The value inherit may also be used with this
property.

394 H T M L : T h e C o m p l e t e R e f e r e n c e

stress The stress property assigns stress, or peaks, in a voice’s intonation. Used in
conjunction with pitch-range, this may allow the creation of more-detailed vocal
ranges. The rendering of numeric values may be dependent on the voice’s gender and
the language spoken. Values are numeric, ranging from 0 to 100; the default value is 50.
The value inherit may also be used with this property.

richness The richness property determines the richness of a voice. Numeric values
range from 0 to 100, with a default value of 50. The higher the number, the more the
voice carries. The value inherit may also be used with this property.

volume The volume property determines the average volume of a voice. Numeric
values range from 0 to 100. A value of 0 produces the lowest audible volume, and 100
the loudest comfortable volume. Values may also be set to a percentage of the inherited
volume. Other values include silent (no sound), x-soft (equivalent to 0), soft
(equivalent to 25), medium (equivalent to 50), loud (equivalent to 75), and x-loud
(equivalent to 100). The only other value is inherit. These values will depend largely on
the speech-rendering system used and on user settings, such as speaker volume.

speak The speak property determines whether text is spoken, and how. The value
none prevents text from being spoken. The default value normal renders text in a
“normal” speaking voice, as determined by other properties and the user agent. The
value spell-out causes the user agent to speak text as individual letters, useful when
dealing with acronyms. The only other value is inherit.

pause-before The pause-before property defines a pause to take place before an
element’s content is spoken. Values can be expressed as time, measured in seconds
(the default) or milliseconds (ms), or as a percentage. Percentages define pause length
in relation to the average length of a word, as determined by the speech-rate property.
(For a speech-rate of 100wpm, each word takes an average time of 600 milliseconds; a
pause-before value of 100% creates a pause of 600 ms, while a value of 50% creates a
pause of 300 ms.) The CSS2 specification recommends the use of relative (percentage)
units. This property is not inherited.

pause-after The pause-after property defines a pause to take place before an
element’s content is spoken. Values can be expressed as time, measured in seconds
(the default) or milliseconds (ms), or as a percentage. Percentages define pause length
in relation to the average length of a word, as determined by the speech-rate property.
(For a speech-rate of 100wpm, each word takes an average time of 600 milliseconds; a
pause-after value of 100% creates a pause of 600 ms, while a value of 50% creates a 300
ms pause.) The CSS2 specification recommends the use of relative (percentage) units.
This property is not inherited.

C h a p t e r 1 0 : S t y l e S h e e t s 395

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

pause The pause property is a shorthand notation for the pause-before and
pause-after properties, just discussed. A style rule of

P {pause: 12 ms}

creates a 12-second pause before and after rendering an element; a style rule of

P {pause: 12 ms 20 ms}

creates a 12-second pause before the element and a 20-second pause after it.

cue-before The cue-before property sets an audio icon to be played before an
element. One example might be a musical tone at the start of a paragraph, or a voice
stating “begin paragraph.” In some sense, this may be similar to the page-turning noise
that often is used in children’s books with an accompanying tape, record, or CD; this
would serve as an attention cue for the listener. The value can be set to the URI of an
audio file, as shown here:

P {cue-before: url("ding.wav")}

This would play the sound file ding.wav just before speaking the contents of the
paragraph. The value of the property may also be set to none. If a URI is used that
doesn’t reference a viable audio file, the property renders as if the value were none.
The CSS2 specification recommends that user agents reference a default sound file if
the file referenced is not valid. This property is not inherited, but the value can be set to
inherit from a parent element.

cue-after The cue-after property sets an audio icon to be played after an element.
Values are the same as for cue-before:

P {cue-after: url("ding.wav")}

cue The cue property provides shorthand notation for cue-before and cue-after.
A single value sets both properties to the same value; the properties can also be
set separately:

P {cue: url("ding.wav")}

396 H T M L : T h e C o m p l e t e R e f e r e n c e

play-during The play-during property allows a background sound (music, sound
effects, and such) to play while an element is being rendered. The sound is determined
by the URI of an audio file. Additional values include the following:

■ mix Causes the sound set by a parent element’s play-during property to
continue playing while the child element is being spoken; otherwise, the sound
determined by the child element’s play-during property plays.

■ repeat Causes the sound to repeat if its duration is less than the time needed
to render the element’s content; if the rendering time of content is shorter than
the sound file’s duration, the sound is clipped.

■ auto Causes the parent element’s sound to keep on playing.

■ none Terminates the parent element’s background sound until the child
element has finished rendering, at which time it should resume. The
play-during property is not inherited unless the value is set to inherit.

■ inherit Causes the parent element’s background sound to start over for the
child element, rather than continue to play as determined by the mix and
auto values.

azimuth The azimuth property determines the horizontal location of a sound. How
this renders will depend largely on the user agent and the audio system used with it.
Values can be set to specific angles, based on the concept of 360-degree surround
sound. A value of 0deg places a sound dead center, as if originating directly in front of
the listener. A value of 180deg places a sound directly behind a listener; 90deg
indicates dead right, while 270deg or −90deg indicates dead left. Named values include
left-side (270 degrees), far-left, left, center-left, center (0 degrees), center-right, right,
far-right, and right-side (90 degrees). The default value is center. The relative value
leftwards moves the sound 20 degrees counterclockwise, while rightward moves it 20
degrees clockwise. The CSS2 specification notes that these values indicate a desired
result, but that how this will work must be determined by user agents. The azimuth
property is inherited.

elevation The elevation property determines the vertical location of a sound relative
to the listener. Angle values range from 90deg (directly above) to −90deg (directly
below). A value of 0deg locates the sound on the same level as the listener. Named
values include above (90 degrees), level (0 degrees), and below (−90 degrees). The
relative value higher adds 10 degrees of elevation, while lower subtracts 10 degrees.
The elevation property is inherited.

speak-punctuation The speak-punctuation property affects how punctuation is
rendered. The value code causes punctuation to render as literal speech (in other
words, , is spoken as “comma” and ? is spoken as “question mark,” much as a person
giving dictation might speak the name of the punctuation out loud). A value of none

C h a p t e r 1 0 : S t y l e S h e e t s 397

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

(the default) renders punctuation as it would sound in ordinary speech—as short and
long pauses, proper inflection of questions, and so on. The only other value is inherit.
The speak-punctuation property is inherited.

speak-numeral The speak-numeral property provides two options for the
rendering of numbers. The value digits causes numbers to render as a sequence of
digits (1001 renders as one, zero, zero, one). A value of continuous (the default) causes
numbers to render as complete numbers (1001 renders as one thousand and one). The
only other value is inherit. The speak-numeral property is inherited.

speak-header The speak-header property provides options for speech rendering of
table headers relative to table data. Values include once, always, and inherit. The value
once causes the content of a table header to be spoken once before the content of all
associated table cells is rendered (“Animal: dog, cat, cow…”). The value always causes
the table header content to render before each associated table cell is rendered
(“Animal: dog; Animal: cat; Animal: cow…”). The speak-header property is inherited.

This is just a brief overview of many of the defined aural properties under CSS2.
While the exact syntax is well defined in the CSS2 specification, at the time of this
writing, no browsers actually support this technology for testing purposes. Syntax may
vary when the style properties are finally implemented. The next section covers some
properties that are implemented by browser vendors, but that may or may not be part
of the CSS specification.

Microsoft-Specific Style Sheet Properties
Browser vendors are already making new additions to cascading style sheets.
Microsoft has added a variety of multimedia filters and transitions that can be accessed
via a style sheet. Under Internet Explorer, you can also change the cursor of an object,
control the printing of a document to a limited degree, and even use downloadable
fonts. Undoubtedly, these additions are just the beginning of a slew of new proprietary
changes introduced into style sheets. For definitive information on the latest style sheet
extensions, check the browser vendor’s developer information.

Filters
Microsoft initially supported a variety of multimedia filters, such as ActiveX controls,
that were included with the Internet Explorer browser. Use of these multimedia effects
was somewhat limited due to the proprietary nature of ActiveX, as well as the public’s
lack of familiarity with the technology. Instead of using controls directly, Microsoft has
taken an approach to make these multimedia effects available via style sheets. What is
interesting about this approach is that Microsoft did it in a very generalized manner,

398 H T M L : T h e C o m p l e t e R e f e r e n c e

thus showing how other filters might be added by other vendors. The basic form of a
filter rule is shown here:

Filter: filtername (filtervalue1 , filtervalue2 ,...)

Each of the possible values for filtername is shown in Table 10-6. Note that each
filter might have many values that must be set in order for it to work properly. See the
Microsoft documentation available at http://www.microsoft.com/sitebuilder/ for a
complete discussion of the possible values for the various filters.

Filter Name Description

Alpha Sets a uniform transparency level

Blur Creates the impression of moving at high speed

Chroma Makes a specific color transparent

DropShadow Creates a solid silhouette of the object

FlipH Creates a horizontal mirror image

FlipV Creates a vertical mirror image

Glow Adds radiance around the outside edges of the object

Grayscale Drops color information from the image

Invert Reverses the hue, saturation, and brightness values

Light Projects a light source onto an object

Mask Creates a transparent mask from an object

Shadow Creates an offset solid silhouette

Wave Creates a sine wave distortion along the X axis

Xray Shows just the edges of the object

Table 10-6. Filter Names Supported in Internet Explorer 4

C h a p t e r 1 0 : S t y l e S h e e t s 399

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

An example that illustrates how the filters may be used with some text is shown here:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>
<HEAD>

<TITLE> Microsoft Filter Test </TITLE>
<STYLE TYPE="text/css">
<!--

.glow {height: 10; width: 400;

filter: Glow(Color=#00FF00, Strength=4)}
.blur {height: 10; width: 400;

filter: Blur(Add = 1, Direction = 90, Strength = 10);}
.dropshadow {height: 10; width: 400;

filter:DropShadow(Color=#FF0000, OffX=2, OffY=2,
Positive=1)}

.fliph {height: 10; width: 400; filter: fliph()}

.flipv {height: 10; width: 400; filter: flipv()}

.shadow {height: 10; width: 400; filter: Shadow(color=#00FF00)}

.wave {height: 10; width: 400;
filter: Wave(Add=1, Freq=4, LightStrength=50,

Phase=50, Strength=10)}
-->

</STYLE>

</HEAD>

<BODY>

<H1 ALIGN="CENTER">Microsoft Multimedia Filters </H1>

<DIV CLASS="blur"> This is the blur filter. </DIV>
<DIV CLASS="dropshadow"> This is the dropshadow filter. </DIV>

<DIV CLASS="fliph"> This is the flip horizontal filter. </DIV>
<DIV CLASS="flipv"> This is the flip vertical filter. </DIV>

<DIV CLASS="glow"> This is the glow filter. </DIV>

<DIV CLASS="shadow"> This is the shadow filter. </DIV>
<DIV CLASS="wave"> This is the wave filter. </DIV>

</BODY>
</HTML>

Playing with the values for the various filter properties may change the effects
dramatically. A rendering of the text filters from this example is shown in Figure 10-13.

Remember that a visual filter can be applied to any visible element on the HTML
page that supports the filter property, ranging from a single spanned character to the
entire body of the document. It is even possible to apply a visual filter to a <DIV> tag
to utilize a single set of filter effects on all of the visual objects in that region and even
stack up effects on enclosed objects.

Reveal Transition Filter
The reveal transition filter allows objects to be revealed by using a variety of
transitions, such as box-ins or wipes. These transitions are similar to those found in
presentation programs, such as Microsoft’s PowerPoint. The form of the filter property
for revealtrans is shown here:

filter: revealtrans(duration= duration , transition= transition#)

400 H T M L : T h e C o m p l e t e R e f e r e n c e

Figure 10-13. Rendering of multimedia filters example under Internet Explorer

The value of duration is the time it should take to reveal or hide the object in
seconds.milliseconds. The transition number is a numeric value from 0 to 24, which
corresponds to one of the predefined patterns to reveal objects. The following table
shows the values and their corresponding meanings:

Value Meaning

0 Box in

1 Box out

2 Circle in

3 Circle out

4 Wipe up

5 Wipe down

6 Wipe right

7 Wipe left

8 Vertical blinds

9 Horizontal blinds

10 Checkerboard across

11 Checkerboard down

12 Random dissolve

13 Split vertical in

14 Split vertical out

15 Split horizontal in

16 Split horizontal out

17 Strips left down

18 Strips left up

19 Strips right down

20 Strips right up

21 Random bars horizontal

22 Random bars vertical

23 Random

C h a p t e r 1 0 : S t y l e S h e e t s 401

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

A rule such as the following would set all paragraph elements of the class intro to
reveal themselves by using an expanding circle:

P.intro {filter: revealtrans(duration=4.0, transition=3)}

It may be required to trigger the transition with script code, so don’t just throw a bunch
of transitions on the page and hope that the page starts animating. These transitions
might be of little use on a set page, but what about between pages?

Interpage Transitions
Interpage transitions enable you to provide multimedia effects while a Web page is
loading or exiting. Interpage transitions are not handled with style sheets, but instead
are handled by using the <META> element within the <HEAD> section of a Web
page. However, the syntax of the transitions is the same as the reveal transition, so
covering it here seems appropriate.

The syntax for transitions consists of three parts: specifying when the event should
be played, the duration of the transition, and what kind of transition effect to use. The
following two examples show how to set transitions upon entry and exit of a page. To
make a checkerboard entrance that lasts three seconds, use a <META> element, such as
the following:

<META http-equiv="Page-Enter"

CONTENT="RevealTrans(Duration=3.0,Transition=10)">

To make a big exit, you could set a wipe effect that lasts two seconds:

<META http-equiv="Page-Exit"

CONTENT="RevealTrans(Duration=2.0,Transition=7)">

Of course, leaving the page would require a link from the page to another destination.
Experiment with all of the different transition effects by setting the transition

number anywhere from 0 to 23. While transitions seem pretty interesting, don’t get
carried away. They can be even more annoying than <BLINK>.

Setting the Cursor
Starting with Internet Explorer 4, Microsoft has added the capability to set the form of
the cursor when it is placed over an object. Because you can make everything on the
page capable of being pressed, resetting the cursor is certainly very useful. To set the
cursor, create a rule like this:

P {cursor: hand}

402 H T M L : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 0 : S t y l e S h e e t s 403

P
R

ES
EN

TA
TIO

N
A

N
D

LA
Y
O

U
T

Now, whenever the user places the mouse over a paragraph element, the cursor shows
up as a hand.

The possible values for the cursor property are crosshair, default, hand, move,
e-resize, ne-resize, nw-resize, n-resize, se-resize, sw-resize, s-resize, w-resize, text,
wait, and help. The default value of auto sets the cursor to whatever it should be,
based on the element it is over.

Setting Page Breaks
In the future, style sheets will certainly be extended to support more printing
capabilities, but Microsoft has already provided the page-break-before property and
page-break-after property under Internet Explorer 4. These properties can be used to
set a page break on the printer. By using these properties, you can set the printer to go
to a new page before or after a particular element. The default value for either of the
properties is auto. Other possible values include always, left, and right. Most likely,
the value always will be used to tell the printer to always insert a page break. Imagine
a rule such as this:

BR.newpage {page-break-after: always}

Adding this rule would always cause a page break wherever the rule is inserted into a
document.

If an issue of the newline showing onscreen arises, you can use a nonbreaking
element, such as , to set the page break. Ongoing work for standardizing CSS
Printing Extensions can be found at http://www.w3.org/TR/WD-print.

Downloadable Fonts
As with the font technology discussed in Chapter 6, fonts can be embedded in a Web
page by using style sheet syntax. To embed fonts in a Web document under Microsoft
Internet Explorer, use the @font-face property. This property allows the designer to
specify fonts in the document that might not be available on the viewer’s system.

To embed a font, first specify the font-family property. Then, specify the src
property and set it equal to the URL of an embedded OpenType file, which should
have an .eot extension. When the file is downloaded, it is converted to a TrueType font
and then displayed on the screen. By putting a rule such as the following in the style
sheet, the font named GhostTown can be used elsewhere on the page by using the
font-family property:

@font-face {font-family:GhostTown;

src:url(http://www.bigcompany.com/fonts/ghost.eot);}

One big question is, how can a special embedded font file be created? The designer
has to run the font through a tool to create the font definition file and then place that
file on the Web server. Another potential issue is having to make changes to the Web
server so that the file is delivered correctly. See the Microsoft Typography Web site, at
http://www.microsoft.com/typography, for information about font creation tools and
other deployment issues.

To embed fonts by the Netscape definition, use the @fontdef rule in a style sheet to
indicate the downloadable font. You will also need to create an embedded font file for
Netscape-based dynamic fonts—in this case, a PFR file. So, to bring in GhostTown, use

@fontdef url(http://www.bigcompany.com/fonts/ghosttown.pfr);

or, as discussed in Chapter 6, a <LINK> element could also be used in the <HEAD> of
the document, as shown here:

<LINK REL="FONTDEF"

SRC="http://www.bigcompany.com/fonts/ghosttown.pfr">

These style sheet and HTML font solutions work for Netscape. The Microsoft style
of adding an SRC rule for @font-face is the proposed solution from the W3C and
should eventually be supported by Netscape. More information about Netscape’s
current font and style sheet syntax, as well as links to dynamic font tools, can be found
at http://www.truedoc.com.

Summary
Cascading style sheets provide better control over the look and feel of Web pages. Style
sheets aren’t just useful for making attractive pages. By dividing structure and style,
they make documents simpler, and easier to manipulate. While style sheets provide a
great deal of flexibility in creating pages, they are not fully implemented yet in today’s
browsers. Some inconsistencies exist between implementations. When used in a
nonobtrusive manner, style sheets are a great way to improve the layout of pages,
without locking into a proprietary solution.

Despite the open nature of style sheets, extensions are already being made by
browser vendors, so this open nature of the technology might not be quite what it has
been built up to be. Pixel-level layout control and downloadable fonts are almost here,
but the innovations don’t stop. Why just strive for a print style layout when fully
programmed pages are possible? Chapter 11 starts the transition from static Web
pages to programmed pages, beginning with forms.

404 H T M L : T h e C o m p l e t e R e f e r e n c e

Part III
Programming and HTML

Copyright 1999 The McGraw-Hill Companies. Click Here for Terms of Use.

This page intentionally left blank.

Chapter 11
Basic Interactivity
and HTML: Forms

407

Copyright 1999 The McGraw-Hill Companies. Click Here for Terms of Use.

408 H T M L : T h e C o m p l e t e R e f e r e n c e

One of the most dynamic aspects of the Web is that it offers the ability to include
interactive features. Up to this point, the discussion has focused on the Web as a
static publishing environment. Adding a way for the end viewer to submit

information makes the Web more powerful than traditional media. At the simplest
level, you could create a link with a mailto URL, covered in Chapter 4, and have
visitors send in e-mail comments. There are other times when creating a fill-out form
would make more sense. With fill-out forms and the appropriate programs to handle
the submitted information, it is possible to create an interactive environment ranging
from an order entry system to a dynamically created Web site.

How Are Forms Used?
There are many uses for forms on the Web. The most common ones include comment
response forms, order entry forms, subscription forms, registration forms, and
customization forms:

■ A comment response is generally used as a way to collect comments from Web
site viewers and have people suggest improvements.

■ Order entry forms, which are now common on the Web, provide a way for
viewers to order goods from online stores. Order entry forms typically require
the user to provide an address, credit card number, and other information
necessary to facilitate online commerce.

Such forms are often used to access database-hosted information; for
example, looking up information in a catalog. Many e-commerce sites rely on
forms and databases to provide order entry services.

People worry about the interception of credit card numbers when they are sending them
to firms they may know very little about. There are facilities to encrypt data transmitted
between Web browser and server, but users should be very cautious about who is at the
other end of the connection. A little common sense can remove much of the fear around
sensitive data transmission.

■ Many sites, particularly those that attempt to generate revenue through direct
subscriptions or by selling advertising space, are adopting a subscriber model
using subscription forms.

■ Registration forms are used to collect information about a user and often are tied
to an authentication system, which limits access to the site.

■ Some sites allow the user to select the look and feel for the site itself, literally
creating a custom site for each visitor. A customization form might allow users
to specify what topics they are interested in within an online magazine. When
tied to an authentication system, a user accessing the site views a version set
according to his or her tastes.

There are many other examples of how forms might be used on the Web. The point
here is to illustrate the kind of interactivity provided by forms.

Form Preliminaries
Making forms is easy. Just add the <FORM> element and associated tags for the form
fields to the document, as you’ll learn more about in the next section. But how can the
contents of a form be processed once the user submits the information? After a form is
filled in, it is sent somewhere (as specified by a URL); generally, a program on a remote
Web server will then parse the submitted information and do something with it. The
programs that handle the incoming form data are usually Common Gateway Interface
(CGI) programs. They can also utilize ColdFusion, or NSAPI (Netscape Server API)
programs, or ISAPI (Internet Information Server API) filters. A basic overview of how
the relationship works is shown in Figure 11-1.

The point here isn’t to get into the complications of how to make a CGI program
or other programs to handle form submitted data, just to understand that the form
itself is only part of the equation. There still must be some way to make the form do
something, but this may not be your responsibility. CGI can get complicated, since it
usually involves real programming in languages like C, Perl, or even Applescript. It
may be beyond the skill set of the page designer. It is possible to use off-the-shelf CGI
programs in many cases.

But why worry about these issues? Does the person who creates the IRS tax form
know how the program that calculates things works? Why should you worry about
how the CGI for the database query form you created is written? This division of labor
is far too often missing in Web projects. The people who build the back end of the Web
site that the form interacts with probably aren’t the best ones to code the form. The
person who codes the form isn’t necessarily always the best person to write the
back-end CGI program. Think about how the form works in the grand scheme of
things, but worry mostly about making your end of the site work.

C h a p t e r 1 1 : B a s i c I n t e r a c t i v i t y a n d H T M L : F o r m s 409

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

Figure 11-1. Form interaction interview

The <FORM> Element
A form in HTML is enclosed between the <FORM> and </FORM> tags. The form itself
contains regular text; other HTML elements such as tables; and form elements such as
check boxes, pull-down menus, and text fields. The W3C specification calls these form
elements controls. This is somewhat confusing, because Microsoft also refers to ActiveX
objects as controls. To avoid confusion, we’ll call form elements either form fields or
form controls, not just controls. The form controls are set by a user to indicate the
contents of the form. Once the user has finished filling out the form, it must be
submitted for processing. Completed forms are generally passed to a remote program
that handles the data. The contents may even be mailed to a user for further inspection.
To make the form work, you must specify two things, and potentially two other
important features. First, specify the address of the program that will handle the form
contents using ACTION. Next, specify the method in which the form data will be
passed using the METHOD attribute. The NAME attribute is also very important to set
a name for the form so it can be later manipulated by a scripting language such as
JavaScript. Finally, in some cases you may have to specify how the form will be
encoded using the ENCTYPE attribute.

ACTION Attribute
How an HTML form is to be handled is set using the ACTION attribute for the form
element. The ACTION attribute is usually set to a URL of the program that will handle
the form data. This URL will usually point to a CGI script to decode the form results.
For example, the code

<FORM ACTION="http://www.bigcompany.com/cgi-bin/post-query"

METHOD="POST">

would be for a script called post-query in the cgi-bin directory on the server
www.bigcompany.com. It is also possible to use a relative URL for the ACTION
attribute if the form is delivered by the same server that houses the form-handling
program:

<FORM ACTION="../cgi-bin/post-query" METHOD="POST">

Setting the ACTION immediately begs this question: what program should the
data be passed to? This depends on who writes the program. There may be canned
programs to handle the contents of the form. But what happens if there is no way to
use a remote program? It is possible to create a “poor man’s” form using the mailto
URL. Remember that the ACTION attribute is set to a URL. Thus, in some cases, a
form element such as the following will work.

410 H T M L : T h e C o m p l e t e R e f e r e n c e

<FORM ACTION="mailto:formtest@bigcompany.com" METHOD="POST"

ENCTYPE="text/plain">

It is even possible to use an extended form of mailto URL, which is supported by
Netscape browsers. For example:

<FORM ACTION="mailto:formtest@bigcompany.com?

Subject=Comment%20Form%20Result">

Although the mailto form seems the best way to do things, not all browsers support
this style. There are also potential security issues. Even if the browser supports the
mailto style, the data should be passed using the POST method. It may be useful to
encode the data differently by setting it to use text/plain encoding rather than the
default style, which is a cryptic encoding style similar to how URLs look. The next
section discusses the methods and the encoding type.

METHOD Attribute
It is also necessary to specify how the form will be submitted to the address specified
by the ACTION attribute. How data will be submitted is handled by the METHOD
attribute. There are two acceptable values for the METHOD attribute: GET and POST.
These are the HTTP methods that a browser uses to “talk” to a server. We’ll find out
more about that in a moment, as well as in Chapter 12. Note that if the METHOD
attribute remains unspecified, most browsers will default to the GET method. While
much of the following discussion is more applicable to the people writing the
programs that handle form data, it is important to understand the basic idea of
each method.

GET Method
The GET method is generally the default method for browsers to submit information.
In fact, HTML documents are generally retrieved by requesting a single URL from a
Web server using the GET method, which is part of the HTTP protocol. When you
type a URL such as http://www.bigcompany.com/staff/thomas.htm into your
Web browser, it is translated into a valid HTTP GET request such as this:

GET /staff/thomas.htm HTTP/1.0

This request is then sent to the server www.bigcompany.com. What this request
says, essentially, is “Get me the file thomas.htm in the staff directory. I am speaking
the 1.0 dialect of HTTP.” How does this relate to forms? You really aren’t getting a file
per se when you submit a form, are you? In reality, you are running a program to
handle the form data. For example, the ACTION value might specify a URL like

C h a p t e r 1 1 : B a s i c I n t e r a c t i v i t y a n d H T M L : F o r m s 411

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

http://www.bigcompany.com/cgi-bin/comment.exe, which is the address of a
program that can parse your comment form. So wouldn’t the HTTP request be
something like the one shown here?

GET /cgi-bin/comment.exe HTTP/1.0

Not quite. You need to pass the form data along with the name of the program to run.
To do this, all the information from the form is appended onto the end of the URL
being requested. This produces a hundred-character URL with the actual data in it, as
shown here:

http://www.bigompany.com/cgi-bin/comments.exe?

Name=Al+Smith&Age=30&Sex=male

The GET method isn’t very secure, since the data input appears in the URL.
Furthermore, there is a limitation to just how much data can be passed with the GET
method. It would be impossible to append a 10,000-word essay to the end of a URL, as
most browsers limit a URL to several thousand characters. Further problems with GET
become obvious when dealing with foreign language environments. Would it be
possible to deal with Japanese Kanji characters in the URL using the GET method?
Maybe not. Under the HTML 4.0 specification, the GET method has been deprecated.
Despite the fact that GET is not recommended, it is still the default method when the
METHOD attribute is not specified.

With all these problems, why use GET? First, GET is easy to deal with. An example
URL such as the following should make it obvious that the Name field is set to "Al
Smith", the Age field is set to "30", and the Sex field is set to "male":

http://www.bigompany.com/cgi-bin/

comments.exe?Name=Al+Smith&Age=30&Sex=male

Form field names are set to values that are generally encoded with plus signs instead of
spaces. Nonalphanumeric characters are replaced by %nn, where nn is the hexadecimal
ASCII code for the character, similar to the URL encoding, as described in Chapter 4.
The individual form field values are separated by ampersands. It would be trivial to
write a parsing program to recover data out of this form.

The other method, POST, is just as easy, so this is not a motivating reason to use
GET. Perhaps the best reason to use GET is that it comes in the form of a URL, so it can
be set as a link or bookmarked. GET is used well in search engines. When a user
submits a query to a search engine, the engine runs the query and then returns page
upon page of result. It is possible to bookmark the query results and rerun the query
later. It is also possible to create anchors that fire off canned CGI programs. This is
particularly useful in certain varieties of dynamic Web sites. For example, the link

412 H T M L : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 1 : B a s i c I n t e r a c t i v i t y a n d H T M L : F o r m s 413

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

shown next fires off a CGI program written in the ColdFusion Markup (CFM) language
and passes it a value setting—setting the ExecutiveID to 1.

 John Kowalski

The query is built into the link; when the link is clicked, the CGI program will
access the appropriate database of executives and bring up information about John
Kowalski.

While the GET method is far from perfect, there are certain situations where it
makes a great deal of sense. It is unlikely that GET will be truly deprecated for quite
some time.

POST Method
In situations in which a large amount of information must be passed back, the POST
method is more appropriate than GET. The POST method transmits all form input
information immediately after the requested URL. In other words, once the server has
received a request from a form using POST, it knows to continue “listening” for the
rest of the information. In some sense, this method requires making two contacts to the
Web server. The GET method only requires one, because the method comes with the
data to use right in the request. The encoding of the form data is handled in the same
general way as the GET method by default; spaces become plus signs and other
characters are encoded in the URL fashion. A sample form might send data that would
look like

Name=Al+Smith&Age=30&Sex=male

The data will still have to be broken up to be used by the handling program. The
benefit of using the POST method is that a large amount of data can be submitted this
way because the form contents are not in the URL. It is even possible to send the
contents of files using this method. In the case of the POST example, the encoding of
the form data is the same as GET. It is possible to change the encoding method using
the ENCTYPE attribute.

NAME Attribute
It is often desirable to check data before it is sent into the Web server. Users find it very
frustrating to fill out a form and submit it to a server only to have the server return a
page indicating data problems or omissions. Checking data before submission, often
termed form validation, requires the use of JavaScript, which is discussed in Chapters 13
and 14. Key to using JavaScript is making sure to give the form an alphanumeric
identifier. The NAME attribute can be set to an alphanumeric value such as
“orderform.” As with all form elements, you should be sure to always set the NAME
attribute for a <FORM> element for future manipulation by a scripting language.

414 H T M L : T h e C o m p l e t e R e f e r e n c e

There many be some confusion on the use of NAME since the HTML 4.0
specification provides the ID attribute as a core attribute. However, browsers,
including Netscape 2 and 3, depend on the occurrence of NAME to provide access to
the form. Page authors looking to use ID instead should consider setting NAME and
ID to the same value. Note that while many browsers will handle this just fine, it is not
allowed according to the specification, since the NAME and ID attributes share
namespace. This example is one of these specification-versus-practice problems so
common on the Web.

ENCTYPE Attribute
When data is passed from a form to a Web server, it is typically encoded just like a
URL. In this encoding, spaces are replaced by the + symbol and nonalphanumeric
characters are replaced by %nn, where nn is the hexadecimal ASCII code for
the character. The form of this is described in the special MIME file format
application/x-www-form-urlencoded. By default, all form data is submitted in this form.
It is possible, however, to set the encoding method for form data by setting the
ENCTYPE attribute. When using a mailto URL in the ACTION attribute, the encoding
type of text/plain might be more desirable. The result would look like the example
shown here:

First Name=Joe

Last Name=Smith

Sex=Male

Submit=Send it

Each form field is on a line of its own. Even with this encoding form, nonalphanumeric
characters may be encoded in the hexadecimal form.

Another form of encoding is also important: multiform/form-data. When passing
files back via a form, it is important to designate where each file begins and ends. A value
of multipart/form-data for the ENCTYPE is used to indicate this style. In this encoding,
spaces and nonalphanumeric characters are preserved; data elements are separated by
special delimiter lines. The following file fragment shows the submission of a form with
multipart/form-data encoding, including the contents of the attached files:

Content-type: multipart/form-data;

boundary=---------------------------2988412654262
Content-Length: 5289

-----------------------------2988412654262
Content-Disposition: form-data; name="firstname"

Homer

C h a p t e r 1 1 : B a s i c I n t e r a c t i v i t y a n d H T M L : F o r m s 415

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

-----------------------------2988412654262

Content-Disposition: form-data; name="lastname"
Simpson

-----------------------------2988412654262
Content-Disposition: form-data; name="myfile";
filename="C:\WINNT\PROFILES\ADMINISTRATOR\DESKTOP\TEST.HTM"

Content-Type: text/html

<html><head><title> Test File </title></head><BODY>

<center> Test File </center><hr></BODY></html>

--
8/12/99 4:47:45 PM--SF_NOTIFY_PREPROC_HEADERS

URL=/clients/postit.cfm?
--
8/12/99 4:47:45 PM--SF_NOTIFY_URL_MAP

URL=/clients/postit.cfm

Physical Path=C:\InetPub\wwwroot\clients\postit.cfm
--

Simple <FORM> Syntax
Given that we have a destination for the form contents as specified by the ACTION
attribute and possibly a METHOD, either GET or POST, and maybe an encoding
form, we can write a simple stub example for a form as shown here:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>

<HEAD>
<TITLE> Form Stub </TITLE>

</HEAD>

<BODY>
<FORM ACTION="/cgi-bin/post-query" METHOD="POST">

Form field controls and standard HTML markup
</FORM>
</BODY>

</HTML>

While this syntax is adequate to build the form framework in most cases, there are
other attributes for the <FORM> element that may be useful for frame targeting,

scripting, and style sheets. Before discussing the individual form controls, let’s review
the complete syntax for the <FORM> element.

Complete <FORM> Syntax
The <FORM> element is a block-level structure used to define a fill-in form. Form
contents are enclosed within the <FORM> and </FORM> tags, both of which are
mandatory. The <FORM> element has a variety of attributes, as shown here:

<FORM

ACCEPT-CHARSET="list of supported characters sets"
ACTION="URL"

CLASS="class name(s)"
DIR="LTR | RTL"
ENCTYPE="application/x-www-form-urlencoded |

multipart/form-data | text/plain |

Media Type as per RFC 2045"
ID="unique alphanumeric identifier"

LANG=language code
METHOD="GET | POST"

STYLE="style information"
TARGET="frame name | _blank | _parent | _self | _top"

(transitional)

TITLE=advisory text

eventhandler ="script">

Form controls and HTML markup

</FORM>

Two additional attributes for the <FORM> element are defined by Internet
Explorer 4. The NAME attribute is also supported by most Web browsers.

NAME="unique alphanumeric identifier"

LANGUAGE="JAVASCRIPT | JSCRIPT | VBSCRIPT | VBS"

Attributes
The <FORM> element has a variety of attributes. Most of these are common to the
HTML 4.0 standard or the major browsers.

416 H T M L : T h e C o m p l e t e R e f e r e n c e

ACCEPT-CHARSET This attribute specifies the list of character encoding values
for input data that must be accepted by the server processing the form. The value is
a space- or comma-delimited list of character sets defined in RFC 2045 (http://ds.
internic.net/rfc/rfc2045.txt). The default value for this attribute is the reserved
value UNKNOWN.

ACTION This attribute specifies the address to which the form contents will be sent.
This is usually the URL of a server-side program that handles the form content. It may
also be a mailto URL. The ACTION value is required for working forms, though on
some browsers a value similar to the base URL of the document will be assumed if the
ACTION is left out.

CLASS This attribute is used to specify the class name for the form so that it can be
used as a subclass from a style sheet, as discussed in Chapter 10.

DIR This attribute is intended to specify the direction of text (left-to-right or right-to-left)
with the values LTR and RTL.

ENCTYPE This attribute is used to specify the encoding form of the form data. By
default, the encoding value is application/x-www-form-urlencoded, where spaces are
translated to plus signs and other nonalphanumeric values are translated into
hexadecimal values just as URLs are encoded. As discussed earlier, other possible
values for this attribute include plain/text, which is useful when mailing form contents
to people, and multipart/form-data, which is used to upload files via forms.

ID This attribute is used to specify a unique name for the <FORM> element. It can
also serve as the destination of a link or be manipulated by a style sheet. The ID value
also makes the form available for scripting; but, for now, for backward-compatibility,
you may want to stick to specifying only the NAME attribute, as older browsers will
recognize it.

LANG This attribute is used to specify the language being used in the form.
The language is specified by setting the attribute to the ISO-standard language
abbreviation form.

LANGUAGE The Internet Explorer–specific LANGUAGE attribute is used to specify
the language of the script associated with the <FORM> element. In particular, this
attribute applies to the script handlers bound to the various events handled in the
<FORM> element itself. This attribute has no bearing on the language of scripts called
by form controls or the functions that may be called via the event handlers. The value
for the LANGUAGE attribute is JavaScript by default, but JSCRIPT, VBS, and
VBSCRIPT are also possible.

C h a p t e r 1 1 : B a s i c I n t e r a c t i v i t y a n d H T M L : F o r m s 417

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

METHOD This attribute indicates how the form data should be sent to the address
specified by the ACTION attribute. The possible values for this attribute are GET and
POST. GET sends the information within the URL of the request, while POST sends it
following the request. Under HTML 4, the GET element is considered deprecated;
however, it is still the default value when this method is unspecified. When using a
mailto ACTION value, be sure to set the METHOD to POST.

NAME This attribute is used to provide a name for the form for manipulation from a
scripting language. While the HTML 4.0 specification may prefer the ID attribute,
browsers—including Netscape 2 and 3—depend on the occurrence of NAME to
provide access to the form. Page authors looking to use ID instead should consider
setting NAME and ID to the same value. However, note that while many browsers will
handle this just fine, it is not allowed according to the specification, since the NAME
and ID attributes share namespace. This example is another one of those
specification-versus-practice problems so common on the Web.

STYLE This attribute is used to specify an inline style rule for the <FORM> element.

TARGET This attribute is used to set the window or frame that should display any
results returned by the form action. As with all frame-oriented extensions, values of
_blank, _parent, _self, and _top have special meaning. When the value is not specified,
the form loads over itself.

TITLE This attribute is used to set advisory text for the form. The contents of the
TITLE attribute might be rendered onscreen as a tool tip when the user’s mouse hovers
over the form or may simply act as a note to readers of the HTML text. TITLE will also
benefit users of speech browsers or other alternative access media. The use of the
TITLE attribute generally makes more sense for the individual form controls than for
the form itself.

Event Handlers
A variety of events can be associated with the form. HTML 4 defines onsubmit and
onreset as the primary events that correspond to the submission of the form and the
resetting of the form’s fields to their defaults, respectively. Other events defined
include onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup, onreset, and onsubmit.
Microsoft Internet Explorer 4 also supports ondragstart, onhelp, and onselectstart as
events for a form. A more detailed discussion of how events are used with forms is
presented later in the section “Forms and Events.”

418 H T M L : T h e C o m p l e t e R e f e r e n c e

Form Controls
A form is made up of fields or controls, as well as the markup necessary to structure
the form and control its presentation. The controls are the items filled in or
manipulated by the user to indicate the state of the form. Form controls include text
fields, password fields, multiple-line text fields, pop-up menus, scrolled lists, radio
buttons, check boxes, and buttons. Hidden form controls are also possible. The most
common element used to specify a form control is the <INPUT> element. However,
<SELECT>, in conjunction with the <OPTION> element and the <TEXTAREA>
elements, is also common in forms. Rather than discuss the syntax of the particular
elements, let’s first approach learning forms by exploring the form controls, and then
look at the complete syntax for the elements. This discussion only covers basic form
controls. Newer form items, represented by <BUTTON>, <LABEL>, <FIELDSET>,
and <LEGEND>, are discussed in the section “New and Emerging Form Elements,
later in this chapter.”

Text Controls
Text controls are form fields, generally one line long, that take text input like a
person’s name and address, and other information. These fields are specified with the
<INPUT> element, but it is possible to specify a multiple-line text field using the
<TEXTAREA> element.

Simple Text Entry
The simplest type of form control is the text entry type. To set a text entry control, use
the <INPUT> element and set the TYPE attribute equal to TEXT:

<INPUT TYPE="TEXT" NAME="CustomerName">

All form elements should be named. NAME="CustomerName" is used to create a text
field to collect a customer’s name on an order form.

This example creates a one-line text entry field that will be associated with the
name CustomerName:

C h a p t e r 1 1 : B a s i c I n t e r a c t i v i t y a n d H T M L : F o r m s 419

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

Remember to pick a name that makes sense and is unique to the form. The name
will be used when the form is submitted, as well as for manipulation by scripting
languages.

The last example does not specify the size of the field or the maximum number of
characters that can be entered into the field. By default, unless specified, this field
generally will be a width of 20 characters. To set the size of the field in characters, use
the SIZE attribute. For example,

<INPUT TYPE="TEXT" NAME="CustomerName" SIZE="40">

The value of the SIZE field for an <INPUT> element is the number of characters to
be displayed. It is possible for the user to type more characters than this value. The text
will just scroll by. If you want to limit the size of the field, you need to set the value of
the MAXLENGTH attribute to the maximum number of characters allowed in the
field. The browser will prevent the user from typing more than the number of
characters specified. Browser feedback may include beeping or may just overstrike the
last character. To set a text field that shows 30 characters but has a maximum of 60
characters that can be entered, use something like

<INPUT TYPE="TEXT" NAME="CustomerName" SIZE="30" MAXLENGTH="60">

The last attribute that is useful to set with a text entry field is the VALUE attribute.
With this attribute, you can specify the default text you want to appear in the field
when the form is first loaded. For example, in the following code fragment, a value of
"Enter your name here" is provided as a prompt to the user to fill in the field properly:

<INPUT TYPE="TEXT" NAME="CustomerName" SIZE="30" MAXLENGTH="60"

VALUE="Enter your name here">

A very simple example of the basic text field type is shown here:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE> Text Field Example </TITLE>
</HEAD>

<BODY>

<H1 ALIGN="center"> Gadget Order Form </H1>

<HR>

420 H T M L : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 1 : B a s i c I n t e r a c t i v i t y a n d H T M L : F o r m s 421

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

<FORM ACTION="http://www.bigcompany.com/cgi-bin/post-query"

METHOD="POST">

Customer Name:

<INPUT TYPE="text"
NAME="CustomerName"
SIZE="25"

MAXLENGTH="35">

</FORM>
<HR>

</BODY>
</HTML>

Password Fields
The password style of form control is the same as the simple text entry field, except
that the input to the field is not revealed. In many cases, the browser may render each
character as an asterisk or dot to avoid people seeing the password being entered, as
shown here:

Not echoing the password onscreen is appropriate. It discourages the idea of
“shoulder surfing,” where an unscrupulous user looks on your screen to see what
secret data you input. To set a password form control, use the <INPUT> element, but
set the TYPE attribute equal to PASSWORD. As with the text entry field, it is possible
to specify the size of the field in characters with SIZE, the maximum entry with
MAXLENGTH in characters. In the case of the password control, it is probably wise to
limit the length of the field so users don’t become confused about how many characters
they have entered.

The password form is very similar to the single-line text entry field. However,
setting a default value for the password field with the VALUE attribute doesn’t make

422 H T M L : T h e C o m p l e t e R e f e r e n c e

much sense since the user can see it by viewing the HTML source of the document. A
complete example of the password field’s use within the form is shown here:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>
<HEAD>

<TITLE> Password Field Example </TITLE>
</HEAD>

<BODY>

<H1 ALIGN="center"> Gadget Order Form </H1>

<HR>

<FORM ACTION="http://www.bigcompany.com/cgi-bin/post-query"

METHOD="POST">

Customer Name:

<INPUT TYPE="text"
NAME="CustomerName"
SIZE="25"

MAXLENGTH="35">

Customer ID:
<INPUT TYPE="PASSWORD"

NAME="CustomerID"
SIZE="10"

MAXLENGTH="10">

</FORM>
<HR>

</BODY>
</HTML>

Multiple-Line Text Input
When it is necessary to enter more than one line of text in a form field, the <INPUT>
element must be abandoned in favor of the <TEXTAREA> element. Like the text input
field, there are similar attributes to control the size of the data entry area as well as the
default value and the name of the control. For example, to set the number of rows in
the text entry area, set the ROWS attribute equal to the number of rows desired. To set
the number of characters per line, set the COLS attribute. So, to define a text area of
five rows of 80 characters each, use the following:

C h a p t e r 1 1 : B a s i c I n t e r a c t i v i t y a n d H T M L : F o r m s 423

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

<TEXTAREA ROWS="5" COLS="80" NAME="CommentBox">

</TEXTAREA>

Because there may be many lines of text within the <TEXTAREA> element, it is not
possible to set the default text for the area using the VALUE attribute. Instead, place
the default text between the <TEXTAREA> and </TEXTAREA> tags:

<TEXTAREA ROWS="5" COLS="80" NAME="CommentBox">

Please fill in your comments here.

</TEXTAREA>

The information enclosed within the <TEXTAREA> element must be plain text and
should not include any HTML markup. In fact, the contents of the element act like the
<PRE> element by preserving spaces, returns, and other characters. HTML elements
entered within the form control will not be interpreted. A complete example of a
multiple-line text field is shown here:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>

<HEAD>

<TITLE> Multiple-line Text Field Example </TITLE>
</HEAD>

<BODY>
<H1 ALIGN="center"> Gadget Order Form </H1>

<HR>

<FORM ACTION="http//www.bigcompany.com/cgi-bin/post-query"
METHOD="POST">

Special Instructions:

<TEXTAREA ROWS="10" COLS="40" NAME="Instructions">
Enter any special gadget ordering instructions in this space.
</TEXTAREA>

</FORM>
<HR>

</BODY>

</HTML>

A rendering of the text area example is shown in Figure 11-2.

424 H T M L : T h e C o m p l e t e R e f e r e n c e

Netscape supports a special WRAP attribute for the <TEXTAREA> element. The
values for this attribute are OFF, HARD, and SOFT. A value of OFF disables word
wrapping in the form control. Any text users enter is displayed exactly as is, though
users may insert hard returns of their own. A value of HARD allows word wrapping,
and the actual break points are included when the form is submitted. A value of SOFT
allows word wrapping in the form control, but the line breaks are not sent with the
form’s contents. A value of SOFT is the default, and this mimics how other browsers
deal with the <TEXTAREA> element. These are the only unique attributes for
<TEXTAREA>; but, like most elements under HTML 4, <TEXTAREA> also supports
ID, CLASS, STYLE, TITLE, LANG, DIR, and a multitude of event handler attributes
like onclick. See Appendix A for more information about these. The <TEXTAREA>
element has three important accessibility attributes—DISABLED, TABINDEX, and

Figure 11-2. <TEXTAREA> element rendering under Internet Explorer

C h a p t e r 1 1 : B a s i c I n t e r a c t i v i t y a n d H T M L : F o r m s 425

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

READONLY—which are described in the section “Form Accessibility Enhancements,”
later in this chapter.

Pull-Down Menus
HTML form controls include pull-down menus. A pull-down menu lets the user select
one choice out of many possible choices. One nice aspect of pull-down menus is that all
choices do not have to be seen on the screen and are normally hidden. The following
illustration shows the rendering of a pull-down menu under different browsers:

To create a pull-down menu, use the <SELECT> element. This element must
include both a start and an end tag. It should only contain zero or more occurrences of
the <OPTION> element. The <OPTION> elements specify the actual choices on the
menu, and generally do not use a close tag (similar to how the element is used).
In many ways, the structure of a pull-down menu looks similar to a list structure, as
shown in the following code fragment:

<SELECT NAME="GadgetType">

<OPTION>Super Gadget
<OPTION>Mega Gadget

<OPTION>Mongo Gadget
<OPTION>Plain Gadget

</SELECT>

As shown in the code fragment, like all form controls, the <SELECT> element has a
NAME attribute that is used to set a unique name for the control for purposes of
decoding the user selection. It is also possible to set attributes for the <OPTION>
element. An occurrence of the attribute SELECTED in the <OPTION> element sets the
form control to select this item by default. If no value is selected, typically the field
remains undefined. Some user agents may preselect the first item specified with the
<OPTION> element. Normally, the value submitted when the form is sent is the value
enclosed by the <OPTION> element. However, it is possible to set the VALUE
attribute for the element that will be returned instead. This might be important when
the user has different names for items than “official” names. A complete example of a
simple pull-down menu is shown here:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>
<HEAD>
<TITLE> Pull-down Menu Example </TITLE>

</HEAD>

<BODY>
<H1 ALIGN="center"> Gadget Order Form </H1>

<FORM ACTION="mailto:test@bigcompany.com" METHOD="POST">

Gadget Type:
<SELECT NAME="GadgetType">

<OPTION VALUE="SG-01"> Super Gadget

<OPTION VALUE="MEG-G5">Mega Gadget
<OPTION VALUE="MO-45"> Mongo Gadget

<OPTION SELECTED>Gadget
</SELECT>
</FORM>

</BODY>

</HTML>

Scrolled Lists
The <SELECT> element also may contain the SIZE attribute, which is used to specify
the number of items showing on the screen at once. The default value for this attribute
is 1, which specifies a normal pull-down menu. Setting a positive number creates a list
in a window of the specified number of rows, as shown here:

426 H T M L : T h e C o m p l e t e R e f e r e n c e

In many cases, scrolled lists act just like pull-down menus. However, if the
<SELECT> element contains the attribute MULTIPLE, it becomes possible to select
more than one entry. How multiple items are selected depends on the browser; but,
generally, it requires holding down some modifier key such as ALT, COMMAND, or SHIFT
and selecting the appropriate items with the mouse.

Many novice users have a hard time with the scrolled list control and multiple entries.
Depending on your target audience, it might be wise to provide instructions near the
control to assist the user.

Because it is possible to select more than one entry in a scrolled list when the
multiple option is applied, it is then possible to use the SELECTED attribute multiple
times in the enclosed <OPTION> elements. A complete example illustrating how the
scrolled list is used is shown here:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>
<HEAD>

<TITLE> Scrolled List Example </TITLE>
</HEAD>

<BODY>
<H1 ALIGN="center"> Gadget Order Form </H1>

<FORM ACTION="mailto:order@bigcompany.com" METHOD="POST">

C h a p t e r 1 1 : B a s i c I n t e r a c t i v i t y a n d H T M L : F o r m s 427

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

428 H T M L : T h e C o m p l e t e R e f e r e n c e

Gadget Options:

<SELECT NAME="GadgetOptions" MULTIPLE SIZE="3">
<OPTION VALUE="Hit with hammer" SELECTED> Bumps

<OPTION VALUE="Add glitter"> Sparkles
<OPTION VALUE="Buff it"> Polished
<OPTION SELECTED>Scratches

<OPTION>Shrink wrapped

</SELECT>
</FORM>

<HR>
</BODY>

</HTML>

Check Boxes
With the scrolled list, it is possible to select many items out of a large group of items.
Unfortunately, not all the items are presented at once for the user to choose. If there are
a few options to select from that are not mutually exclusive, it is probably better to use
a group of check boxes that the user can check off. Check boxes are best used to toggle
choices on and off. While it is possible to have multiple numbers of check boxes and let
the user select as many as he or she wants, if there are too many it may be difficult to
deal with. Don’t forget about scrolled lists.

To create a check box, use the <INPUT> element and set the TYPE attribute equal
to CHECKBOX. The check box should also be named by setting the NAME attribute.
For example, to create a check box asking if a user wants cheese, use some markup like

Cheese: <INPUT TYPE="CHECKBOX" NAME="Cheese">

In this example, the label to the left is arbitrary. It could be to the right as well. The
label could say “Put cheese on it,” but there will be no indication to the receiving
program of this label. In this simple example, if the check box is selected, a value of
Cheese=on will be transmitted to the server. Setting a value for the check box might
make more sense. Values to be transmitted instead of the default value can be set with
the VALUE attribute. The code

Cheese: <INPUT TYPE="Checkbox" NAME="Extras" VALUE="Cheese">

would send a response like Extras=Cheese to the server. It is also possible to have
multiple check box controls with the same name. The code

C h a p t e r 1 1 : B a s i c I n t e r a c t i v i t y a n d H T M L : F o r m s 429

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

Cheese: <INPUT TYPE="CHECKBOX" NAME="Extras" VALUE="Cheese">

Pickles: <INPUT TYPE="CHECKBOX" NAME="Extras" VALUE="Pickles">

would send multiple entries like the following to the server when both extras were
selected:

Extras=Cheese&Extras=Pickels

It is possible to set a check box to be selected by default by using the CHECKED
attribute within the <INPUT> element. The CHECKED attribute requires no value. A
complete example using check box controls is shown here:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>
<HEAD>

<TITLE> Check Box Example </TITLE>
</HEAD>

<BODY>

<H1 ALIGN="center"> Gadget Order Form </H1>

<HR>

<FORM ACTION="mailto:order@bigcompany.com" METHOD="POST">

Gadget Bonus Options:

Super-magneto:
<INPUT TYPE="CHECKBOX" NAME="BONUS" VALUE="Magnetize">

Kryptonite Coating:

<INPUT TYPE="CHECKBOX" NAME="BONUS" VALUE="Anti-Superman" CHECKED>

Anti-gravity:

<INPUT TYPE="CHECKBOX" NAME="BONUS" VALUE="Anti-gravity">

</FORM>

<HR>
</BODY>

</HTML>

Radio Buttons
Radio buttons use a similar notation to check boxes, but only one option may be chosen
among many. This is an especially good option for choices that don’t make sense when
selected together. In this sense, radio buttons are like pull-down menus that allow only
one choice. The main difference is that all options are shown at once with radio
buttons.

Like check boxes, this form control uses the standard <INPUT TYPE=""> format.
In this case, set TYPE equal to RADIO. Setting the NAME field is very important
in the case of radio buttons because it groups together controls that share the radio
functionality. The radio functionality says that when an item is selected, it deselects
the previously pressed item. If the names are different for each radio button, the
functionality becomes that of a check box, but with a different shape. Possible
renderings of the radio button form control are shown here:

Another important attribute is VALUE. It is important to set each individual radio
button to a different value entry. Otherwise, it will be impossible to decipher which
button was selected. Like check boxes, the occurrence of the SELECTED attribute in
the <INPUT> element will preselect the item. Only one item may be selected as a
default out of a radio group. If the SELECTED attribute does not occur, the browser
typically will not display any items as selected. A complete example using radio
buttons is shown here:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>

<HEAD>

<TITLE> Radio Button Example </TITLE>
</HEAD>

<BODY>
<H1 ALIGN="center"> Gadget Order Form </H1>

<HR>

430 H T M L : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 1 : B a s i c I n t e r a c t i v i t y a n d H T M L : F o r m s 431

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

<FORM ACTION="mailto:order@bigcompany.com" METHOD="POST">

Gadget Color:

Groovy Green: <INPUT TYPE="RADIO" NAME="Color" VALUE="Green">

Rocket Red: <INPUT TYPE="RADIO" NAME="Color" VALUE="Red" CHECKED>
Yipee! Yellow: <INPUT TYPE="RADIO" NAME="Color" VALUE="Yellow">
</FORM>

<HR>

</BODY>
</HTML>

Reset and Submit Buttons
Once a form has been filled in, there must be a way to send it on its way, whether it is
submitted to a program for processing or simply mailed to an e-mail address. The
<INPUT> element has two values, RESET and SUBMIT, for the TYPE attribute; these
can create common buttons that are useful for just about any form. Setting the TYPE
attribute for the <INPUT> element to RESET creates a button that allows the user to
clear or set to default all the form controls at once. Setting the TYPE attribute for
<INPUT> to SUBMIT creates a button that triggers the browser to send the contents of
the form to the address specified in the ACTION attribute of the <FORM> element.
Common renderings of the SUBMIT and RESET form controls are shown here:

The buttons themselves take two basic attributes: VALUE and NAME. The VALUE
attribute sets both the value of the button when pressed and the wording of the button.
The NAME value associates an identifier with the form control. A complete example
showing a small form with submit and reset buttons is shown here:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

432 H T M L : T h e C o m p l e t e R e f e r e n c e

<TITLE> Complete Form Example </TITLE>

</HEAD>

<BODY>

<H1 ALIGN="center"> Gadget Order Form </H1>
<HR>

<FORM ACTION="mailto:order@bigcompany.com"

METHOD="POST" ENCTYPE="text/plain">

Customer Name:
<INPUT TYPE="TEXT"

NAME="CustomerName"
SIZE="25"

MAXLENGTH="35">

Customer ID:

<INPUT TYPE="PASSWORD"

NAME="CustomerID"
SIZE="10"
MAXLENGTH="10">

Gadget Type:

<SELECT NAME="GadgetType">

<OPTION VALUE="SG-01"> Super Gadget
<OPTION VALUE="MEG-G5">Mega Gadget

<OPTION VALUE="MO-45"> Mongo Gadget
<OPTION SELECTED>Gadget

</SELECT>

<INPUT TYPE="SUBMIT" VALUE="Order Gadget" NAME="SubmitButton">

<INPUT TYPE="RESET" VALUE="Reset Form" NAME="ResetButton">

</FORM>
<HR>

</BODY>
</HTML>

Because the submit and reset buttons cause an action, either form submission or
field reset, it would not seem obvious why the VALUE or NAME field might be useful.
While having multiple reset buttons might not be useful, multiple submit buttons are
useful because the value of the button is sent to the address specified in the <FORM>
element’s ACTION attribute. One possible use might be to have three submit buttons:
one for add, one for delete, and one for update.

<INPUT TYPE="SUBMIT" VALUE="Place Order" NAME="Add">

<INPUT TYPE="SUBMIT" VALUE="Delete Order" NAME="Delete">

<INPUT TYPE="SUBMIT" VALUE="Update Order" NAME="Update">

<INPUT TYPE="RESET" VALUE="Reset Form" NAME="ResetButton">

When the form is submitted, the value of the button is sent to the form-handling
program, which will decide what to do with the submitted data based upon its
contents. This use of a submit button hints at a more generalized form of button, which
is discussed in the next section.

If you have two buttons next to each other, it is useful to separate the two with
nonbreaking spaces (). Otherwise, the buttons will probably render too closely
together. Another approach would be to use a small table around the buttons and provide
some cell padding or a blank cell between the buttons.

Additional <INPUT> Types
There are a few forms of the <INPUT> element that have not been discussed. These
form elements hint at the potential complexity of using forms. Some of these elements,
particularly the file selection form element, are not supported in older browsers.

Hidden Text and Its Uses
The usefulness of this form control is not always obvious to the new user. By setting
the TYPE attribute of the <INPUT> element to a value of HIDDEN, it is possible to
transmit default or previously specified text that is hidden from the user to the
handling program. If there were many versions of the same form all over a Web site,
then the hidden text could be used to specify where the form came from, as shown in
this example:

<INPUT TYPE="hidden" NAME="SubmittingFormName" VALUE="Form1">

Because this field is not shown on the page, it is impossible for the user to modify it.
Thus, it must have its VALUE attribute set. While this last example seems rather
contrived, there is actually a very important use for hidden form controls.

C h a p t e r 1 1 : B a s i c I n t e r a c t i v i t y a n d H T M L : F o r m s 433

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

When filling in forms, there is often an issue of remembering information from one
form to the next. Imagine a form in which the user fills in his or her personal information
on one page and the ordering information on the next page. How will the two pages be
related to each other? This presents the state-loss problem. The protocols of the Web,
primarily HTTP, do not support a “memory.” In other words, they don’t preserve state.
One way to get around this is to use hidden text. Imagine that, in the last example, the
personal information is passed to the next page by dynamically embedding it in the
ordering page as hidden text. Then state has been preserved—or has it? When users are
finished ordering, they submit the whole form at once as a complete transaction. This idea
of using hidden text to get around the state-loss problem is illustrated in Figure 11-3.

There are other approaches to saving state, including extended path information
and cookies. These ideas are briefly discussed in Chapter 12.

434 H T M L : T h e C o m p l e t e R e f e r e n c e

Figure 11-3. Using hidden form controls to preserve state

C h a p t e r 1 1 : B a s i c I n t e r a c t i v i t y a n d H T M L : F o r m s 435

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

Image Type
One form of the <INPUT> element that is somewhat strange is the image type, as
specified by setting TYPE="IMAGE". This form of <INPUT> creates a graphical
version of the submit button, which not only submits the form but transmits coordinate
information about where the user clicked in the image. The image is specified by the
SRC attribute. Many of the attributes used for the element may be valid for
this form of <INPUT> as well. The specification defines ALT and ALIGN. Other
attributes like BORDER, HSPACE, or VSPACE may or may not be supported by
browsers. Like all other forms of <INPUT>, the NAME attribute is a very important
part of how the coordinate information is transmitted. The example use of <INPUT>
shown next could be used to insert a map of the United States, allowing users to click
the regional office in which they want to submit their order forms.

<INPUT TYPE="IMAGE" SRC="usamap.gif" NAME="Sales"

ALT="Sales Region Map">

When clicked, the form values would be submitted, along with two extra values,
Sales.x and Sales.y. Sales.x and Sales.y would be set equal to the x and y coordinates of
where the image was clicked. The x and y coordinates are relative to the image with an
origin in the upper left-hand corner of the image. You may notice a similarity to image
maps. Indeed, much of the functionality of this form control could be imitated with a
client-side image map in conjunction with some scripting code. A future extension to this
form of the <INPUT> element would be to make it less server-side dependent, possibly
even allowing the page author to set a map name to decode coordinates or set function.
Except for specialized needs, page designers should probably look to provide the
functionality of the image form control in some other way.

File Form Control
A recent addition to the <INPUT> element that is now part of the HTML 4.0
specification is the possibility of setting the TYPE attribute to FILE. This form control is
used for file uploading. The field generally consists of a text entry box for a filename
that can be manipulated with the SIZE and MAXLENGTH attributes, as well as a
button immediately to the right of the field, which is usually labeled Browse. Pressing
the Browse button allows the user to browse the local system to find a file to specify for
upload. The logistics of how a file is selected depend on the user agent.

Following is an example of the file form control syntax, in which the ENCTYPE
value has been set to multipart/form-data to allow the file to be attached to the
uploaded form:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

436 H T M L : T h e C o m p l e t e R e f e r e n c e

<TITLE> File Upload Test </TITLE>

</HEAD>

<BODY>

<H1 ALIGN="CENTER">File Upload System</H1>
<HR>

<FORM ACTION="http://www.bigcompany.com/cgi-bin/uploadfile.pl"

METHOD="POST" ENCTYPE="mutipart/form-data">

File Description:

<INPUT TYPE="TEXT" NAME="Description" SIZE="50"

MAXLENGTH="100">

Specify File to Post:

<INPUT TYPE="FILE" NAME="FileName">

<HR>

<DIV ALIGN="center">

<INPUT TYPE="SUBMIT" NAME="Submit" VALUE="Send it">
</DIV>
</FORM>

</BODY>

</HTML>

A rendering of the file upload example showing the browsing mechanism is given
in Figure 11-4.

While it is possible to set the SIZE and MAXLENGTH values of the file entry box,
this is not suggested, since the path name may be larger than the size specified. (This
depends on how the user has set up his or her system.) The file form control is not
supported by all browsers. HTML 4 also specifies the ACCEPT attribute for the
<INPUT TYPE="FILE"> element, which can be used to specify a comma-separated list
of MIME types that the server receiving the contents of the form will know how to
handle properly. Browsers could use this attribute to keep users from uploading files
that are unacceptable to a server (for example, executable files). It is not known if
browsers actually pay any attention to this attribute.

C h a p t e r 1 1 : B a s i c I n t e r a c t i v i t y a n d H T M L : F o r m s 437

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

Generalized Buttons
One last form of the <INPUT> element, hinted at earlier, is the generalized button. By
using <INPUT TYPE="BUTTON">, it is possible to create a button in the style of the
submit or reset buttons that, unlike the submit or reset buttons, has no predetermined
actions. Inserting something like the following doesn’t really do much:

<INPUT TYPE="BUTTON" VALUE="Press Me!" NAME="mybutton">

If you click the rendering of this button, no action is triggered, and no value will be
submitted. So what’s the point? By using a scripting language, it is possible to tie an
event to the button and create an action. At the end of this chapter, as well as in
Chapter 13, you’ll see how forms can be tied to scripting languages to create powerful
interactive documents.

Figure 11-4. File form control rendering with browsing mechanism

New and Emerging Form Elements
At the time of this writing, the W3C has proposed adding several form-related tags and
attributes to the next version of HTML. These are intended to address limitations in the
current forms and to make them more interactive. Microsoft has already implemented
several of these proposed extensions in Internet Explorer 4.

<BUTTON> Element
This element provides a way to add generic buttons to forms. The text enclosed by the
tags is the button’s label. In its simplest usage, the <BUTTON> element is functionally
equivalent to <INPUT TYPE="BUTTON">, which is not supported by the official
HTML 3.2 definition. In newer browsers like Internet Explorer 4 that support both
button forms, the following two statements render identically.

<INPUT TYPE="BUTTON" VALUE="Press Me">

<BUTTON>Press Me </BUTTON>

The <BUTTON> usage is more versatile because its content can include most
inline and block-level elements. The following example illustrates a button element
containing text, an embedded image, and the use of a cascading style sheet rule to
change the background and text color.

<BUTTON NAME="HomePage" VALUE="Test Button"
STYLE="{background-color:blue; color:yellow}">

BigCompany Home Page
</BUTTON>

What is interesting about this element is that the browser should render the button
in a relief style and even present a pushing effect, just like a submit or reset button, so it
is not quite the same as <INPUT TYPE="IMAGE">. Another key difference between
the image button previously described and the new <BUTTON> element is that the
new element does not submit any coordinate information, nor is it strictly a submit
button. In fact, it is possible to tie this style of button to a general action using the TYPE
attribute. Allowed values for this attribute are BUTTON (default), SUBMIT, and
RESET. The HTML 4.0 documentation suggests that SUBMIT is the default value, but
this does not make sense, nor is it supported by the browsers that understand the
<BUTTON> element.

It is incorrect to associate an image map with any image enclosed by a
<BUTTON> element.

438 H T M L : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 1 : B a s i c I n t e r a c t i v i t y a n d H T M L : F o r m s 439

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

While the <BUTTON> element seems a more generalized way to deal with images
as form buttons, it is not widely supported yet—only by Internet Explorer 4. Older
browsers may require an alternative approach.

Labels
Another new form element introduced in HTML 4 and supported by advanced
browsers is the <LABEL> element. One motivation for this tag is to better support
speech-based browsers that can read descriptions next to form fields. However, a more
common use of the <LABEL> element is to associate the labeling text of form controls
with the actual controls they describe.

The <LABEL> element can be associated with a form control by enclosing it as
shown here:

<LABEL>First Name:

<INPUT TYPE="TEXT" NAME="FirstName" SIZE="20" MAXLENGTH="30">

</LABEL>

A <LABEL> element can also be associated with a control by referring to the
control’s ID with the FOR attribute. In this usage, the label does not need to enclose the
control. This allows labels to be positioned in tables with their own cells. It is common
to use tables to make better-looking forms. Far too often, form elements snake down a
page and are not aligned very well. The following code fragment illustrates how the
<LABEL> element with the FOR attribute would be used.

<TABLE>

<TR>
<TD ALIGN="RIGHT">

<LABEL FOR="CustName"> Customer Name : </LABEL>

<TD ALIGN="LEFT">

<INPUT TYPE="TEXT" ID="CustName" SIZE="25" MAXLENGTH="35">
</TR>

</TABLE>

The <LABEL> element also supports the ID, CLASS, STYLE, TITLE, LANG, and
DIR attributes, as well as numerous event handlers. These are used in the same way as
on any other HTML element. The DISABLED and ACCESSKEY are also supported
attributes for this element and are discussed further in the section on form accessibility
enhancements, later in the chapter.

<FIELDSET>
This proposed element groups related form elements similar to the way the <DIV>
element groups general body content. Like <DIV>, the <FIELDSET> element can be

440 H T M L : T h e C o m p l e t e R e f e r e n c e

nested; it can also have an associated <LEGEND> element to describe the enclosed
items. The <FIELDSET> element itself has no special attributes besides those common
to all elements, like ID, CLASS, LANG, DIR, TITLE, STYLE, and event handlers.
However, the <LEGEND> element does support the ALIGN attribute, which can be
used to specify where the description will be rendered in relation to the group of form
items; its values are TOP (the default value), BOTTOM, LEFT, or RIGHT. In addition
to ALIGN, <FIELDSET> supports the common attributes to most elements under
HTML 4—ID, CLASS, STYLE, TITLE, LANG, DIR, and the numerous event handlers.
See the element reference in Appendix A for more information about these. The
example shown here illustrates how the <FIELDSET> and <LEGEND> elements
are used:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>
<HEAD>
<TITLE> Fieldset and Legend Example </TITLE>

</HEAD>

<BODY>
<FORM ACTION="mailto:order@bigcompany.com" METHOD="POST">
<FIELDSET>

<LEGEND>Customer Identification </LEGEND>

<LABEL>Customer Name:

<INPUT TYPE="TEXT" ID="CustomerName" SIZE="25"
</LABEL>

<LABEL>Customer ID:
<INPUT TYPE="PASSWORD" ID="CustomerID" SIZE="8" MAXLENGTH="8">

</LABEL>

</FIELDSET>

</FORM>
</BODY>

</HTML>

The W3C proposal recommends that a <FIELDSET> be enclosed by a box. This
rendering is supported by Internet Explorer 4, as shown in the rendering in Figure 11-5.

Form Accessibility Enhancements
One of the most important changes made to forms under HTML 4 is the improved
support for accessibility. HTML 4 defines the ACCESSKEY attribute for the <LABEL>,
<INPUT>, <BUTTON>, and <LEGEND> elements. Setting the value of the key to a
character creates an accelerator key that can activate the form control associated with
the element. Generally, the key must be pressed in combination with the CONTROL, ALT,
or OPTION key in order to activate the field. An example of how this attribute might be
used is shown in the following code example:

<LABEL ACCESSKEY="N">Customer <U>N</U> ame:

<INPUT TYPE="TEXT" ID="CustName" SIZE="25">

</LABEL>

Notice how the <U> element is used to highlight the letter that will activate the field.
This is the common practice to indicate accelerator keys in a Windows GUI. According
to the HTML 4.0 specification, browsers should provide their own form of highlighting
for an access key, but in practice this isn’t very common.

The HTML 4.0 standard defines the ACCESSKEY attribute for the <LABEL>,
<INPUT>, <LEGEND>, and <BUTTON> elements, though it leaves off support for

C h a p t e r 1 1 : B a s i c I n t e r a c t i v i t y a n d H T M L : F o r m s 441

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

Figure 11-5. <FIELDSET> and <LEGEND> rendering under Internet Explorer 4

<SELECT> and <TEXTAREA>. Microsoft supports this attribute for the <SELECT>
and <TEXTAREA> elements. It seems likely that this will eventually be rolled into the
final HTML 4.0 specification.

While the ACCESSKEY attribute can improve a form by making it more keyboard
access friendly, there are certain letters to avoid because they map to browser functions
in the two major browsers, as shown in Table 11-1.

Another accessibility improvement introduced in HTML 4 is the use of the
TABINDEX attribute for the <INPUT>, <SELECT>, <TEXTAREA>, and <BUTTON>
elements. This attribute allows the tab order between fields to be defined. In the
Microsoft implementation, elements with TABINDEX values greater than zero are
selected in increasing order. Generally, if a browser supports tabbing through form
fields it is by the order in which they are defined. However, with the TABINDEX set
the tabbing order goes from the lowest positive TABINDEX value to the highest. Any
elements with a TABINDEX of 0 are selected in the order they are encountered after
the rest of the tabbing controls have been exhausted. Fields with negative TABINDEX
values should be left out of the tabbing order. So, in the next fragment, the last field
gets selected first and then the first, and the second field is completely skipped over.

<INPUT TYPE="TEXT" NAME="First Name" TABINDEX="2">

<INPUT TYPE="TEXT" NAME="Middle Name" TABINDEX="-1">

<INPUT TYPE="TEXT" NAME="Last Name" TABINDEX="1">

442 H T M L : T h e C o m p l e t e R e f e r e n c e

Key Mapping Notes

F File menu

E Edit menu

C Communicator menu Netscape Communicator
only

V View menu

G Go menu

A Favorites menu Internet Explorer only

H Help

LEFT ARROW Back in history

RIGHT ARROW Forward in history

Table 11-1. Reserved Browser Key Bindings

C h a p t e r 1 1 : B a s i c I n t e r a c t i v i t y a n d H T M L : F o r m s 443

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

Be careful when setting the TABINDEX value with radio buttons, as the browser
may use arrow keys to move among a group of radio buttons rather than the TAB key.

Page designers are encouraged to set ACCESSKEY and TABINDEX attributes to
their documents immediately as they will have no harmful side effects in older
browsers and will simply be ignored.

Miscellaneous HTML 4 Form Attributes
The HTML 4.0 specification also adds two other attributes to certain form controls:
DISABLED and READONLY. When the DISABLED attribute is present in a form
control element, it turns off the field. Disabled elements will not be submitted, nor may
they receive any focus from the keyboard or mouse. The browser may also gray out the
disabled form. The point of the DISABLED attribute might not be obvious, but
imagine being able to disable the form submission button until the appropriate fields
have been filled in. Of course, being able to dynamically turn the DISABLED attribute
for a form control on or off implies scripting support that not all browsers have.

When the READONLY attribute is present in a form control element, it prevents
the control’s value from being changed. A form control set to READONLY can be
selected by the user but cannot be changed. Selection may even include the inclusion of
the form control in the tabbing order. Unlike disabled controls, the values of read-only
controls are submitted with the form. In some sense, a read-only form control can be
thought of as a visible form of <INPUT TYPE="HIDDEN">. According to the HTML
4.0 specification, the READONLY attribute is defined for the elements <INPUT
TYPE="TEXT">, <INPUT TYPE="PASSWORD">, and <TEXTAREA>, but some
browser vendors may also support the <SELECT> element or even check boxes. Like
a disabled form control, read-only controls can only be changed through the use of
a script.

Form Presentation
Up to this point, most of the form elements in the HTML 4.0 specification, as well
as those supported by the major browsers, have been presented. Some special
considerations for the WebTV environment will be considered in a moment. However,
let’s first turn our attention to making forms more presentable. Unfortunately, on the
Web, little attention seems to be paid to making logical or even presentable-looking
forms. For example, take a look at the form in Figure 11-6. Notice that nothing is
grouped or lined up.

Form designers are reminded that other HTML markup elements can be used
within forms, so there is no excuse for having a poorly laid-out form. For example, a
form can be vastly improved by using a table, as shown in Figure 11-7.

444 H T M L : T h e C o m p l e t e R e f e r e n c e

The markup for the form using a table in Figure 11-7 is shown here:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>
<HEAD>

<TITLE> Table and Form Example </TITLE>
</HEAD>

<BODY>

<DIV ALIGN="center">

<H2>Contact Form </H2>

<FORM ACTION="mailto: info@bigcompany.com" METHOD=POST>

<TABLE BORDER="1">

Figure 11-6. Example of a poorly laid-out form

C h a p t e r 1 1 : B a s i c I n t e r a c t i v i t y a n d H T M L : F o r m s 445

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

<TR>

<TD>First Name: </TD>
<TD><INPUT NAME="firstname" SIZE="40"></TD>

</TR>

<TR>
<TD>Last Name: </TD>

<TD><INPUT NAME="lastname" SIZE="40"></TD>

</TR>

<TR>

<TD>Company: </TD>
<TD><INPUT NAME="company" SIZE="40"></TD>

</TR>

<TR>
<TD>Address: </TD><TD><INPUT NAME="address" SIZE="40"></TD>

</TR>

<TR>
<TD>City: </TD>
<TD><INPUT NAME="city" SIZE="25"></TD>

</TR>

<TR>

<TD>State: </TD>

<TD><INPUT NAME="state" SIZE="15"></TD>
</TR>

<TR>
<TD>Country: </TD>
<TD><INPUT NAME="country" SIZE="25"></TD>

</TR>

<TR>

<TD>Postal Code: </TD>

<TD><INPUT NAME="zip" SIZE="10"></TD>
</TR>

<TR>
<TD COLSPAN="2">
Enter any comments below:

<TEXTAREA NAME="text" ROWS="5" COLS="50"></TEXTAREA></TD>

</TR>

<TR>

<TD COLSPAN="2" ALIGN="center">

<INPUT TYPE="submit" VALUE="Submit"> <INPUT TYPE="reset">

</TD>
</TR>

</TABLE>

</FORM>

</DIV>
</BODY>

</HTML>

446 H T M L : T h e C o m p l e t e R e f e r e n c e

Figure 11-7. Form layout improved with table

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

C h a p t e r 1 1 : B a s i c I n t e r a c t i v i t y a n d H T M L : F o r m s 447

Besides laying out a form with tables, it might be nice to use the <FIELDSET>
element to group and box form controls. However, until this element is widely
supported, it should not be relied on. Tables should be used instead. Adding a light
background color to the different sections of the table could help improve the
organization of the form as well.

Page authors might wonder if it is possible to improve the look and feel of forms
using style sheets. Under the HTML 4.0 specification, both the <FORM> element and
the form control elements support the CLASS, ID, and STYLE attributes to allow
access from style sheets. For backward compatibility, particularly with scripting
environments, they also support the NAME attribute. One interesting aspect of forms
and style sheets is that style rules applied to the <FORM> element do not seem to be
inherited by controls inside the form. This is contrary to the normal case, in which style
specifications are inherited by contained elements. In other words, the text inside
<INPUT> control in the following example will appear as black, not red, when viewed
in a browser.

<FORM STYLE="{color:red}">

This text is red.

<INPUT TYPE="TEXT" VALUE="but this text is black">

</FORM>

In theory, style sheets should be well supported in forms. In practice, support
varies widely from browser to browser. Under Internet Explorer 4, the CLASS, ID, and
STYLE attributes work for <FORM>, <INPUT>, and <SELECT>. Under Netscape 4
and above, style specifications are not very well supported. The following example
demonstrates some of Netscape 4’s shortcomings.

<FORM STYLE="{color:red}">
This text is red.

<INPUT TYPE="TEXT" VALUE="but this text is blue"

STYLE="font-family: Arial; color: blue;
font-size: 12px; background: lightblue">

<INPUT VALUE="Submit" TYPE="Submit" STYLE="color: white;
background: green; font-style;

bold; font-size: 22px">

</FORM>

Under Internet Explorer 4 and above, all of the style information is displayed,
including blue 12-pixel Arial text against a light blue background in the input field
and large bold white text on a green button. Netscape 4 and above will render the

448 H T M L : T h e C o m p l e t e R e f e r e n c e

font-family and font-size information properly, but all of the color and background
information in this and the previous example are ignored. Many of these problems are
bugs or oversights; but, until these issues are cleared up for commonly used browsers,
page authors should carefully explore the use of style sheets with form elements before
using them.

Special Form Considerations for WebTV
The WebTV browser introduces many attributes to form elements specifically designed
to enhance TV-based interaction. This section covers some of these actions. For the
latest extensions, visit the WebTV developer’s site at http://developer.webtv.net.

While the <FORM> element itself is not modified under WebTV, the <INPUT>
element has many proprietary extensions. Because it is difficult to fill in forms using
the onscreen keyboard, WebTV provides some attributes that can be used to make
form input a little easier. Because it may be difficult to see the text onscreen, you can
set the background color (BGCOLOR) as well as the cursor color (CURSOR) for
individual <INPUT TYPE="TEXT"> elements. WebTV has introduced many other
form extensions. The purpose here is only to illustrate that forms may present issues
unique to the viewing environment. This makes extensions worthwhile. However, for
the future, such presentational controls are better suited to style sheet developments.
Perhaps "tv" will become a valid media type for style sheets.

Forms and Events
As presented here, forms really don’t finish the job. It is easy to create a form that asks
users for their names and the number of gadgets they want to order. It is also easy to
write a CGI program (assuming you’re a programmer) that can take submitted form
data and do something with it. However, it is not easy to make sure that the submitted
data is correct. Why should you let the user enter a quantity of –10 (negative ten)
gadgets in the form and submit it when that is obviously wrong? Sure, the CGI could
catch this, but it’s best to try to catch this at the browser level before submitting the
form for processing. This is one of the main reasons for client-side scripting.

Starting with Netscape 2 and continuing until today, it has been possible to use a
scripting language like JavaScript to associate scripts with user-generated events in a
browser. The way to handle events for a form control is by setting an event handler
using an attribute that corresponds to the name of the event. If you want to trigger a
script when a button is pressed, you could insert some script code associated with the
event attribute, as shown in the following dummy form:

<FORM>

<INPUT TYPE="BUTTON" VALUE="Don't Press Me!"

onclick="alert('Danger! Danger!');">

</FORM>

Events are added to form controls using attribute declarations such as onclick,
onsubmit, onreset, and so on. The number of events has grown significantly and now
applies to elements outside forms. In fact, under Dynamic HTML, the trend is for every
displayed HTML element to have events associated with it. Let’s look at a short
example of how forms may be validated using a small amount of scripting code and
follow with an overview of the form-related events supported in current HTML
dialects. Chapters 13 and 14 provide more details on scripting in general.

Already you have learned that one possible use of form events is to validate form
data before it is sent in. In the following example, a form collects a customer name, a
customer identification value, and the quantity of gadgets requested. In this example,
all values should be entered and a positive number of gadgets ordered. To perform this
check, create a simple validation script that looks at the fields and prompts the user to
fix any errors. The validation is triggered by the click of a generalized button. When
everything checks out, the browser submits the form.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>

<HEAD>

<TITLE> Basic Form Validation </TITLE>
<SCRIPT LANGUAGE="JavaScript">
<!--

function validate ()
{

if (document.forms.order.CustomerName.value == "") {

alert("Please enter your name.")
return false;

}

if (document.forms.order.CustomerID.value == "") {
alert("Please enter your Customer ID.")

return false;
}

if (document.forms.order.Qty.value <= 0) {

alert("Please enter a positive number of gadgets.")
return false;

}

return true;
}

// -->

C h a p t e r 1 1 : B a s i c I n t e r a c t i v i t y a n d H T M L : F o r m s 449

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

</SCRIPT>

</HEAD>

<BODY>

<H1 ALIGN="center"> Gadget Order Form </H1>
<HR>
<FORM NAME="order" METHOD="POST"

ACTION="mailto:order@bigcompany.com"

onsubmit="return validate()">

Customer Name:

<INPUT TYPE="TEXT"
NAME="CustomerName"

SIZE="25"
MAXLENGTH="35">

Customer ID:

<INPUT TYPE="PASSWORD"
NAME="CustomerID"
SIZE="8"

MAXLENGTH="9">

Quantity of Gadgets:

<INPUT TYPE="TEXT"
NAME="Qty"

SIZE="2"
MAXLENGTH="2">

<HR>

<INPUT TYPE="BUTTON"
VALUE="Order"

onclick="validate()">

<INPUT TYPE="RESET" VALUE="Reset">
</FORM>

</BODY>
</HTML>

450 H T M L : T h e C o m p l e t e R e f e r e n c e

There are a few things to point out in this example. First, the form has been
assigned a name. Giving the form a name allows it to be referred to by name in the
validation script. Another thing to notice is the use of the onclick event attribute. This
connects an event the button can respond to with a script to handle the event.

<INPUT TYPE="BUTTON" VALUE="Order" onclick="validate()">

The value for the onclick attribute is the name of the JavaScript function, defined
elsewhere, that validates the form. The validation function is declared in the document
head inside the <SCRIPT> element. Don’t worry if the scripting issues, particularly the
events, don’t make complete sense. They are covered in great detail in Chapters 13
and 14.

Summary
HTML forms provide a basic interface for adding interactivity to a Web site. HTML
supports traditional graphical user interface controls like check boxes, radio buttons,
pull-down menus, scrolled lists, multi- and single-line text areas, and buttons. These
controls can be used to build a form that can be submitted via e-mail to a server-side
program for processing. While making a rudimentary form isn’t terribly difficult,
laying out the form is often overlooked. Using tables and improved grouping
elements like <LABEL>, <FIELDSET>, and <LEGEND> can improve a form
dramatically. Other features new to HTML 4, such as accelerator keys and tabbing
order specification, can also improve how a form may be used. Yet even if a nice form
can be developed, it is missing the spark that makes it go. The logic of the form needs
to be added either by a server-side program or through a client-side technology like
JavaScript. Until then, forms only provide a simple way to collect information.

C h a p t e r 1 1 : B a s i c I n t e r a c t i v i t y a n d H T M L : F o r m s 451

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

This page intentionally left blank.

Chapter 12
Introduction to
Server-Side
Programming

453

Copyright 1999 The McGraw-Hill Companies. Click Here for Terms of Use.

The last chapter hinted at the move from static Web pages to a more dynamic
paradigm. The Web is undergoing a shift from a page-oriented view of the world
to a more program-oriented view. Although there is increased focus on the

programmed elements of a Web page, this doesn’t mean that HTML is going away any
time soon. Knowing how to author well-formed HTML documents may become more
important than ever with the rise of Dynamic HTML. Yet, even before the rise of
client-side technologies, HTML has intersected with programming ideas. Server-side
computing on the Web has often had an HTML flavor to it, particularly when
server-side includes and parsed HTML solutions like Microsoft’s Active Server Pages
(ASP) or Allaire’s ColdFusion are involved. These technologies blur the lines between
HTML and programming, because they appear in the form of special markup tags that
include information or perform programming tasks. These topics may not seem to be
part of HTML and are not official in the standards sense, but they do illustrate how
programming and HTML interact.

This chapter will examine the general concept of the programmed Web site and
some of the technologies that can be used on the server side to add interactivity to
Web pages. The next two chapters will continue the discussion, but with a focus on
client-side scripting technologies and object technologies, respectively.

Overview of Client/Server Programming
on the Web
When it comes right down to it, the Web is just a form of client/server interaction. Web
browsers make requests of Web servers to do some processing or to return a file that is
sent back and displayed in the browser. This basic idea is shown in Figure 12-1.

In this basic printed-page idea of the Web, a Web server acts as a file server that
delivers HTML files to a Web browser. As shown in the last chapter, thinking about the
Web as a digital paper medium is somewhat limiting and does not take advantage of
the potential of interactivity.

The most basic form of interactivity on the Web, beyond link selection, is using
fill-out forms that are handled by programs, typically Common Gateway Interface
(CGI) applications, running on a Web server. The way a user interacts with a
CGI-based Web site is easy to describe. First, the user requests a dynamic page or fills
out a form to perform a task, such as ordering a product. The request is sent to the Web
server, which runs the CGI program, which then outputs information to return to the
Web browser, as shown in Figure 12-2.

In this sense, the Web can be used to run programs on a remote server, which then
returns a result. When described this way, the Web begins to look more and more like a
client/server application environment.

454 H T M L : T h e C o m p l e t e R e f e r e n c e

The diagram in Figure 12-2 suggests two questions. First,where should the computing
happen? And second, using what technology? On the early Web, the browser tended to do
very little computing. It was solely responsible for rendering pages on the screen. Now,
with the rise of client-side technologies like Java, ActiveX, JavaScript, and DHTML, it is
possible to perform a great deal of computation from within the browser. Put all the
pressure on the server, and it might bog down, or the user might get frustrated with
poor responsiveness. Doing most of the computing on the client might cause problems
with compatibility, since it’s difficult to know what kinds of clients are out there.

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

C h a p t e r 1 2 : I n t r o d u c t i o n t o S e r v e r - S i d e P r o g r a m m i n g 455

Figure 12-1. Graphic representation of client/server relationship

Figure 12-2. Overview of basic CGI interactivity

Security may also be a problem. The best solution is a mixture: some things are better
suited for the client; some are better suited for the server.

As discussed in Chapter 11, it makes sense to use JavaScript to check the contents of
a form before it is submitted to a CGI program, rather than have the CGI program
check the data. However, you would still want to check the data at the server side for
users who are running older clients or who have turned off client-side scripting. Things
can go wrong, and users don’t always have the best browser with all the right settings.
And, of course, you would still want to check whether a malicious user has deliberately
sent the CGI bad data. A developer who wants to build a Web-based application must
choose where to host the logic of the program (client side or server side) and which
technology should be used to do it. The decision isn’t always obvious, as illustrated by
the numerous choices in Table 12-1.

What’s interesting about the numerous technologies available for Web
programming is that developers often focus solely on one tool or one side of the
equation (client or server) rather than thinking about how the applications they are
trying to build are going to work. This chapter will look at the server side of the
equation; subsequent chapters will focus on the client side.

456 H T M L : T h e C o m p l e t e R e f e r e n c e

Client Side Server Side

Helpers CGI programs

Plug-ins NSAPI/ISAPI programs

Active-X controls Server-side scripting

Java applets Server-side includes

Scripting languages Active Server pages

JavaScript Server-side JavaScript (LiveWire)

VBScript Database middleware

Dynamic HTML ColdFusion

Table 12-1. Web Programming Technology Choices

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

Server-Side Programming
When adding interactivity to a Web page, it often makes sense to add all functionality
on the server side. There are two basic reasons for doing this. First, the server side is
the only part of the equation that can be completely controlled. If we only rely on the
browser to render HTML pages, life is simple. If we assume users have JavaScript,
Java, or a particular plug-in, things become less predictable. Why is this, given that
most modern browsers come with many of these technologies? There are too many
variables and too many bugs. Users often turn off support for Java, JavaScript, or
ActiveX due to fear of security breaches. Even when turned on, these technologies are
often far from robust. For example, JavaScript comes in two basic flavors, Microsoft
and Netscape, and has more than three versions running on at least four major
operating systems (Mac, Windows 3.1, 95/NT, and UNIX). Each of these
implementations has some subtle and not-so-subtle differences, including feature
disparity and bugs. It is no wonder we would want to move computation to the server,
where these issues are more controllable.

The second reason that server-side computation makes sense is that the server is
where much of the data required actually “lives.” Consider a database. A common
requirement of the Web is to act as a front end to access a database. Imagine a Web site
where the user wants to query a system to see if a particular product is available. A
form could be developed for the user to submit the query. The contents of the form
could be passed to a program on a Web server, which would parse the form data and
produce a database query. Such a program is called middleware, because it sits between
the back-end database server and the client-accessible Web server. A CGI program is
one form of middleware. After the database completes the query, the result is passed
back to the middleware, which formats the result as an HTML page and passes the
result back to the browser. The Web server acts as the coordinator for this whole
process, including interacting with and possibly even starting the middleware. This
process is illustrated in Figure 12-3.

One potential downside to adding interactivity via server-side programs should be
mentioned: too much reliance on the server. In the last examples, the browser was
relatively simple, because the computation took place almost entirely on the server
side. The client browser was only responsible for rendering the entry form and the
resulting pages. Choosing the appropriate approach to deal with a problem like
database access is beyond the scope of this book, but remember that there can be
disadvantages to putting all the computing responsibility on the server—namely,
speed and scalability. For now, our discussion turns to the approaches to server-based
interactivity and how it intersects with HTML.

C h a p t e r 1 2 : I n t r o d u c t i o n t o S e r v e r - S i d e P r o g r a m m i n g 457

Common Gateway Interface (CGI)
Probably the most common way to add interactivity to a Web page is through a CGI
program. Common Gateway Interface (CGI) is a protocol standard that specifies how
information can be passed from a Web page via a Web server, to a program, and back
from the program to a browser in the proper format. Many people confuse the program
that does this with the CGI protocol. In reality, the program is just a program. It just
happens to be a CGI program since it was written to pass information back and forth
using the CGI specification.

The following steps summarize how CGI interacts with a form:

1. The user submits a form.
2. The form is sent to the server and eventually to the CGI program, using the

following steps:

a. The server determines if the request is a document or program request by
examining execution settings and path.

b. The server locates the program (in the cgi-bin directory on the server or
elsewhere) and determines if the program can be executed.

c. The server starts the program and prepares the data, and any extra information
from the environment, to be sent to the program from the form fields.

d. The program runs.

e. The server waits for the program to produce output (optional) and then passes
back the properly formatted result to the client or, potentially, an error message.

3. The CGI program processes the data and responds to the server.
4. The Web server passes the CGI response back to the client.

458 H T M L : T h e C o m p l e t e R e f e r e n c e

Figure 12-3. Database access via the Web

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

Server launching of the program (step 2c) is operating system–dependent and may
require starting a new process.

It is possible to create anything, including games, with CGI; but complex tasks are
often limited by the state problem. The common uses of CGI include

■ Form processing

■ Database access

■ Counters

■ Custom document generation

■ Browser-specific page delivery

■ Banner ad serving

■ Guest book and authentication

■ Threaded discussion

■ Games

Understanding how CGI works requires an understanding of how the HTTP
protocol works. The only magic behind CGI is knowing how to read data in and write
data out to talk to a Web browser. Writing data out is the easiest. The key to writing
data out for Web browsers is understanding the headers so the browser knows what it
is getting, namely, MIME types. MIME stands for Multipurpose Internet Mail Extension.
The MIME content type of a file tells a browser how to process it.

The following example, which shows how a Web browser and a Web server
communicate, should help us better understand exactly what CGI programs do.

You can access a Web server directly by using a telnet program to literally log in to
the TCP service port for HTTP. To do this, use a telnet program to access a Web server
and set the port number to 80. In UNIX, you might type

telnet www.bigcompany.com 80

This could also be performed via Windows 95/NT, which has telnet built into it. Just
make sure to set the port value to 80.

Once connected to the Web server, type in the proper HTTP request. A simple
request would be

GET / HTTP/1.0

Then press ENTER twice to send a blank line, without which the operation won’t work.

C h a p t e r 1 2 : I n t r o d u c t i o n t o S e r v e r - S i d e P r o g r a m m i n g 459

460 H T M L : T h e C o m p l e t e R e f e r e n c e

Once the server processes the request, the result should look something like the
listing shown here:

HTTP/1.0 200 OK

Date: Monday, 01-January-99 09:00:00 GMT
Server: NCSA/1.3.1

MIME-version: 1.0
Content-type: text/html
Content-length: 1200

<HTML>

<HEAD>
<TITLE> Sample HTML Document </TITLE>

</HEAD>

<BODY>

...content...
</BODY>

If a Web browser were reading this data stream, it would read the Content-type line.
The browser would then determine what to do with the data. Browsers have a
mapping that takes a MIME type and then determines what to do with it. Figure 12-4
shows the mapping file from Netscape Navigator 3’s helper application.

Notice in the preceding code that the content-type is text/html. This has the action
of a browser, which would render the HTML within the browser window. Remember
that Web servers can serve just about any type of data and pass that data to a plug-in
or helper, or query the user to save the file.

CGI Output
Given that you have now seen the manual execution of an HTTP request, what is
important to the Web browser? The simple answer is the MIME type and its associated
data. In most cases, the pages being delivered are HTML based, so the MIME type
should be text/html and any HTML you want on your screen. With this idea in mind, it
should be easy to write a CGI program that fakes an HTML page. To do this, you need
to print out the MIME type indication Content-type: text/html, followed by a series of
HTML codes. The following small Perl program shows how this might be done. Any
language, including C, Pascal, or BASIC, could also be used to make such an example.

C h a p t e r 1 2 : I n t r o d u c t i o n t o S e r v e r - S i d e P r o g r a m m i n g 461

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

#!/usr/bin/perl# Note the path to perl may vary.

Really simple CGI program
#

print "Content-type: text/html\n\n"

print "<HTML>\n<HEAD><TITLE>First CGI</TITLE></HEAD>\n"

print "<BODY>\n<H1>I was created by a CGI

program!</H1>\n</BODY>\n</HTML>"

Figure 12-4. Sample MIME mapping dialog box under Netscape 3

If this example were typed and set to run on a Perl-capable Web server, it could be
accessed directly by a user to print out the simple page shown in Figure 12-5. To see
the program in action, try the URL http://www.htmlref.com/cgi-bin/firstcgi.pl.

In summary: To create a document on the fly, you have to print a group of headers.
Make sure to do this in the correct format. Other than that, the rest of the program is
up to you. This section only covers getting information from the server, which is just
half of the CGI equation. The following section discusses getting information to your
program.

Passing Information to a CGI Program:
Environment Variables

In order to get information into a CGI program, you generally need to use a form. The
CGI program itself can actually read some information from the HTTP request and the
local environment. This information can be used in conjunction with form data to
understand the environment the program is running. Environment variables are
actually very valuable. They can be used to help the CGI program decide what kind of
pages to prepare. A list of most of the common CGI environment variables is provided
in Table 12-2.

462 H T M L : T h e C o m p l e t e R e f e r e n c e

Figure 12-5. Output of simple CGI program

C h a p t e r 1 2 : I n t r o d u c t i o n t o S e r v e r - S i d e P r o g r a m m i n g 463

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

Variable Name Description

GATEWAY_INTERFACE The version number of CGI supported by the
server; for example, CGI/1.1.

SERVER_NAME The domain name or IP address of the Web server
running the CGI program.

SERVER_SOFTWARE Information about the Web server, typically the
name and version number of the software—for
example, Netscape-Commerce/1.12.

SERVER_PROTOCOL The version number of the HTTP protocol being
used in the request—for example, HTTP/1.1.

SERVER_PORT The port on which the Web server is running,
typically 80.

REQUEST_METHOD The method by which the information is being
passed, in either GET or POST.

CONTENT_TYPE For queries that have attached information,
because they use the POST or PUT method;
contains the content type of the passed data in
MIME format.

CONTENT_LENGTH The length of any passed content (POST or PUT)
as given by the client, typically as length in bytes.

PATH_INFO Any extra path information passed in with the file
request. This would usually be associated with the
GET request.

SCRIPT_NAME The relative path to the script that is running.

QUERY_STRING Query information passed to the program.

DOCUMENT_ROOT The document root of the Web server.

REMOTE_USER If the server supports user authentication and the
script is protected, this variable holds the user
name that the user has authenticated.

AUTH_TYPE This variable is set to the authentication method
used to validate the user if the script being run is
protected.

Table 12-2. Common CGI Variables

464 H T M L : T h e C o m p l e t e R e f e r e n c e

Figure 12-6 shows the results of a CGI program that prints out the environment
information. Try to execute the program at http://www.htmlref.com/cgi-bin/
printenv.cgi to see if the results are different.

Depending on the Web server and browser, there may be other useful environment
variables. These include HTTPS, which is used to indicate if Secure Sockets Layer (SSL)
security is on; HTTP_CONNECTION, which is used to indicate to the server to keep a
connection open for improved performance; and HTTP_ACCEPT_LANGUAGE, which is
used to indicate what language the server accepts data in. There are other potential values
available, so be certain to check the Web server programming documentation.

The Perl code for the result in Figure 12-6 is shown here:

#!/usr/bin/perl

&print_HTTP_header;
&print_head;

&print_body;
&print_tail;

Variable Name Description

REMOTE_IDENT If the Web server supports RFC 931–based
identification, then this variable will be set to the
remote username retrieved from the server. This is
rarely used.

REMOTE_HOST The remote host name of the browser passing
information to the server—for example,
sun1.bigcompany.com.

REMOTE_ADDR The IP address of the browser making the request.

HTTP_ACCEPT A list of MIME types the browser can accept.

HTTP_USER_AGENT A code indicating the type of browser making the
request.

HTTP_REFERER The URL of the linking document (the document
that linked to the CGI being run). If the user types
in the address of the program directly, the
HTTP_REFERER value will be unset.

Table 12-2. Common CGI Variables (continued)

print the HTTP Content-type header

sub print_HTTP_header {
print "Content-type: text/html\n\n";

}

#Print the start of the HTML file

sub print_head {

print <<END;

<HTML>
<HEAD>

<TITLE> CGI Environment Variables </TITLE>
</HEAD>

<BODY>
<H1 ALIGN="CENTER"> Environment Variables </H1>
<HR>

END

}

#Loop through the environment variable

#associative array and print out its values.

sub print_body {
foreach $variable (sort keys %ENV) {

print " $variable: $ENV{$variable}
\n";

}

}

#Print the close of the HTML file

sub print_tail {
print <<END;

</BODY>
</HTML>

END

}

C h a p t e r 1 2 : I n t r o d u c t i o n t o S e r v e r - S i d e P r o g r a m m i n g 465

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

Notice that the code is written to make the printing of the appropriate headers, the
start of the HTML file, the results, and the close of the file more straightforward.
Code libraries, which do much of the work of CGI, are commonly available.

Browser Sensing with CGI
At first glance, the environment variables might not seem very useful. When used
properly, however, they are indispensable. One of the most important uses of CGI is to
sense the browser being used so that customized pages can be delivered for different
browser types. Using a small program, it would be possible to sense a user’s browser
type and redirect him or her automatically to another page.

466 H T M L : T h e C o m p l e t e R e f e r e n c e

Figure 12-6. CGI environment variables example

To make browser sensing work, the server may have to be configured to run the CGI
program automatically. This may just require putting a file called index.cgi in the root
directory or performing some similar renaming.

Here is how browser sensing works. The CGI environment variable called
HTTP_USER_AGENT is read in by the CGI program using a simple call available
from a Perl CGI library. Once the value is set, a set of conditions determines which
page to send, depending on the browser accessing the page. In the following example,
the file netscapehome.htm is sent if the browser is Netscape 3 or above. If the browser
is Microsoft Internet Explorer 3 or above, the file mshome.htm is sent. Otherwise, the
file home.htm is sent.

#!/usr/local/bin/perl

require '/usr/local/ns-home/cgi-bin/cgi-lib.pl';

pulls in special library for easy reading of

environment variables
&ReadParse;
$agent = $ENV{'HTTP_USER_AGENT'};

if ($agent =~ /Mozilla\/3.0|Mozilla\/4.0/i) {

$file = "netscapehome.htm";
}
if ($agent =~ /MSIE 3.0|MSIE 4.0/i) {

$file = "mshome.htm";
}

else {

$file = "home.htm";
}

print "Location: http://www.bigcompany.com/$file", "\n\n";

What’s interesting is that this file was used to sort out what form of animation could
be used. The people who received the mshome.htm file could read Macromedia Flash
files, Netscape 3 and 4 users could use JavaScript rollover animations, and everyone who
could do neither received a static page. When a site is done well, there isn’t an entrance
page that says “Click here for Netscape” and “Click here for other browsers.” Things just
work, because the site has browser-aware pages. Of course, one huge problem with this
idea is having to keep different files for the same page. Parsed HTML, as discussed later
in the chapter, may offer a better solution to browser-aware pages.

C h a p t e r 1 2 : I n t r o d u c t i o n t o S e r v e r - S i d e P r o g r a m m i n g 467

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

468 H T M L : T h e C o m p l e t e R e f e r e n c e

Passing Information to a CGI Program: Form Data
Forms are a good way to collect user input such as a survey result or a comment. They
can also start database queries or launch programs. Creating HTML forms was
discussed in Chapter 11. For a quick refresher on how HTML forms are used, take a
look at the following example:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Final//EN">

<HTML>
<HEAD>

<TITLE> Meet and Greet </TITLE>
</HEAD>

<BODY>

<H1 ALIGN="CENTER"> Welcome to CGI! </H1>

<HR>

<FORM METHOD="POST"

ACTION="http://www.pint.com/cgi-bin/helloworld.pl">

What's your name ?

<INPUT TYPE="TEXT" NAME="user_name" SIZE="25">

<INPUT TYPE="SUBMIT" VALUE="Hi I am...">

<INPUT TYPE="RESET" VALUE="RESET">

</FORM>
</BODY>

</HTML>

If this example is typed and run, it will greet the user by whatever name he or she
types in. The <FORM> element is the key to this example, because it has an action to
perform (as indicated by the ACTION attribute when the form is submitted). The
action is to launch a CGI program indicated by the URL value of the ACTION
attribute. The <FORM> element also has an attribute, METHOD, which indicates how
information will be passed to the receiving CGI program. There are two basic methods
to pass data in via a form: GET and POST. GET appends information on the end of the
submitting URL, so the URL accessed in the previous example might be something like

http://www.pint.com/cgi-bin/hello.pl?user_name=Joe+Smith

C h a p t e r 1 2 : I n t r o d u c t i o n t o S e r v e r - S i d e P r o g r a m m i n g 469

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

The data sent will be encoded. Long strings may have + or %nn hex-encoded
values. Name/value pairs will be separated by ampersands. (The format of
URL-encoded data is discussed in Chapter 11.) The problem with the GET method is
that, besides being ugly, it is limited to the amount of data that can be easily sent in.
GET does have two advantages: it is easy to understand and provides the possibility
for canned queries. The more common approach for larger forms is to use the POST
method, which sends the form data as a separate data stream—in other words, a
file—to the server. The data stream (essentially a file) consists of many lines, such as
name=Joe%20Smith. These lines can be parsed by the receiving program for later
processing. Given how data is encoded, a skilled programmer could easily determine
how to parse data and access the values. The following simple helloworld.pl example
shows how this might be done in a brute force manner that does no error checking:

#! /usr/bin/perl

Print the HTTP headers

print "Content-type: text/html\n";
print "\n";

read (STDIN, $GN_QUERY, $ENV{CONTENT_LENGTH});

This statement will split data into different fields

@QUERY_LIST = split(/&/, $GN_QUERY);

foreach $item (@QUERY_LIST) {

First convert plus signs into spaces

$item =~ s/\+/ /g;

Now convert $nn encoded data to characters

$item =~ s/%(..)/pack("c",hex($1))/ge;

Now put the result into the QueryArray

$loc=index($item,"=");
$param=substr($item, 0, $loc);
$value=substr($item, $loc+1);

$QUERY_ARRAY{$param} .= $value;

}

Now get the users name

$name = "$QUERY_ARRAY{user_name}";

Print Return HTML

print "<HTML><HEAD><TITLE>Hello</TITLE></HEAD>\n<BODY>\n";
print "<H1>Hello $name. Welcome to CGI!</H1>\n";

print "</BODY></HTML>";

Writing CGI Programs
The previous examples might seem to suggest that writing CGI programs is trivial.
This is true if data is only to be read in and written out. In fact, this part of CGI is so
mechanical that page designers are encouraged not to attempt to parse the data
themselves. There are many scripting libraries available for Perl. These include cgic
(http://www.boutell.com/cgic/) for ANSI programs, cgi++ (http://www.webthing.com/
cgiplusplus/) for C++, and CGI.pm (http://stein.cshl.org/WWW/software/CGI/
cgi_docs.html) for Perl 5. These libraries, and others available on the Internet, make the
reading of environment variables and parsing of encoded form data a simple process.

The difficult part of CGI isn’t the input and output of data. It is the logic of the code
itself. Given that the CGI program can be written in nearly any language, Web
programmers might wonder what language to use. Performance, Web suitability, and
string handling are important criteria for selecting a language for CGI authoring.
Performancewise, compiled CGI programs typically will have better performance than
interpreted programs written in a scripting language like Perl. However, it is probably
easier to write a simple CGI in a scripting language like Perl or AppleScript than to use
C or C++.

Some programming languages may have better interfaces to Web servers and
HTTP than others. For example, Perl has a great number of CGI libraries and operating
system facilities readily available. Because much of CGI is about reading and writing
text data, ease of string handling may also be a big consideration in selecting the
language. The bottom line is that scripting language choice mainly depends on the
server the script must run on and the programmer’s preference. It is even possible to
use an old version of FORTRAN or some obscure language to write a CGI program,
though it would be easier to pick a language that works well with the Web server and
use it to access some other program. CGI lives up to its name as a gateway.

Table 12-3 lists the common languages for CGI coding based on the Web server’s
operating system. Notice that Perl is common to most of the platforms due to its ease of
use and long-standing use on the Web.

470 H T M L : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 2 : I n t r o d u c t i o n t o S e r v e r - S i d e P r o g r a m m i n g 471

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

Don’t rush around and get ready to code your own form handlers. Consider how
many other people in the world need to access a database or e-mail a form. Given these
common needs, it may be better to borrow or buy a canned CGI solution than to build
a new one.

Buying or Borrowing CGI Programs
Most CGI programs are similar to one another. There are a great deal of shareware,
freeware, or commercial packages available to do most of the common Web tasks.
Matt’s Script Archive (http://www.worldwidemart.com/scripts) and the CGI
Resource Index (http://www.cgi-resources.com) are good places to start looking for
these. There are many scripts for form handling, bulletin boards, counters, and
countless other things available for free on the Internet. There are also compiled
commercial CGI programs made to perform a particular task. Site developers are urged
to consider the cost of developing custom solutions versus buying premade solutions,
particularly when time is an important consideration in building the site.

NSAPI/ISAPI
One serious problem with CGI programs is their slowness. There are two reasons why
CGI programs can be slow. The first is that the launch of the CGI program by the Web
server can be slow. Once launched, the program may run relatively slowly, because it
is written in an interpreted language like Perl. Solving the second problem is easy:
simply rewrite the program in a compiled language like C. Performance should quickly
improve. What about the launch problem? One approach would be to prelaunch the
main CGI program so that it is running all the time and have smaller CGI programs
launch when needed. While this would help, the server would still have to

Web Server Operating System Common CGI Languages

UNIX Perl, C, C++, Java, Shell script
languages (csh, ksh, sh), Python

Windows Visual Basic, C, C++, Perl

Macintosh AppleScript, Perl, C, C++

Table 12-3. Common CGI Language Choices

472 H T M L : T h e C o m p l e t e R e f e r e n c e

communicate with an external program, which might be time consuming. If speed is of
the essence, migrating the functionality of the CGI program into the server is required.
This is the idea behind the Netscape Server Application Programming Interface
(NSAPI) and the Internet Server Application Programming Interface (ISAPI).

In short, NSAPI and ISAPI programs are like plug-ins for a server. A program,
typically written in C or C++, that conforms to the NSAPI/ISAPI can be plugged into
the server to add functionality to the system. Obviously, writing such a solution is
much more difficult than writing a simple CGI program. There are other drawbacks as
well. For example, a misbehaving ISAPI/NSAPI program may bring a whole server
down. Developers who write an application programming interface (API)–based
solution may also be stuck using a particular server platform, while CGI programs are
generally portable from server to server. Regardless of their drawbacks, NSAPI/ISAPI
programs have the advantage of speed and the ability to share data across sessions and
users very easily. With this power, many third-party developers have created server
extensions to allow fast and easy database access, threaded discussion capability, and
many other features. While most developers are about as likely to use NSAPI or ISAPI
programs as they are to write browser plug-ins, the technology has enabled the
creation of server-side parsing technology, which is useful to almost every Web page
developer.

Parsed HTML Solutions: Server-Side Scripting
CGI and NSAPI/ISAPI programs are beyond the technical understanding of some Web
page developers. However, adding interactivity to a site does not always have to be
difficult. Another form of server-based programming, generically termed parsed HTML,
provides much of the sophistication of general CGI with the ease of HTML. The idea of
parsed HTML is simple. First, code a page using standard HTML. Then add special
new elements or directives to indicate what to do in particular cases. Imagine if you
wanted to print out different HTML headings for Netscape users, Microsoft Internet
Explorer, and other browser users. Using parsed HTML, you might put statements in a
parsed HTML language in your file, like this:

$if browser = Netscape
<H1><BLINK>Hey Netscape User! </BLINK></H1>

$else if browser = IE

<MARQUEE>Hey Microsoft User! </MARQUEE>
$else

<H1>Hey User! </H1>
$endif

To indicate that the file is a special parsed HTML file, end its name with the extension
.parsedhtml. Next, configure the server to parse and execute the special statements
you have added to the file. In this case, the server will then output only the HTML,
depending on the particular browser being used. An overview of parsed HTML
solutions is shown in Figure 12-7.

While parsed HTML solutions are very easy for people to deal with, they can put
an excessive load on the server. Use them wisely. The next few sections describe three
common parsed HTML technologies used on the Web: server-side includes (SSI),
ColdFusion, and Active Server Pages (ASP).

Server-Side Includes (SSIs)
Server-side includes are the simplest form of parsed HTML. SSIs are short directives
you can embed in an HTML document to indicate files to be read and included in the
final output. This might be useful if the designer wants to make one file with footer
information, such as an address and copyright, and then append it to all pages
dynamically. To do this, create a file called footer.htm and then include it dynamically
using SSI. The contents of footer.htm might look something like this:

<HR NOSHADE>
<CENTER>

Copyright 1997 Big Company

2105 Garnet Ave, Suite E, San Diego, CA 92109

C h a p t e r 1 2 : I n t r o d u c t i o n t o S e r v e r - S i d e P r o g r a m m i n g 473

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

Figure 12-7. Overview of parsed HTML solutions

474 H T M L : T h e C o m p l e t e R e f e r e n c e

To include this file in another file, you would need an SSI directive like this:

<!--#include file="footer.htm" -->

Notice that this is just a special form of an HTML comment with an #include command
and a parameter file, which is set to the file you want to include. To indicate to the
server that the page contains SSI commands, use the .shtml extension. If the server is
properly configured, it should pick up the file and execute it before sending the result.

Besides including external files, SSI can also be used to show the results of
programs, including CGI programs. Thus, it can provide a way to query databases and
make a page counter, among other things. The simple example that follows shows how
the echo SSI command can be used to access the environment variables to which CGI
programs have access.

<HTML>

<HEAD>

<BODY>

<H2 ALIGN="CENTER"> Welcome <!--#echo var="REMOTE_HOST" -->
to my server <!--#echo var="SERVER_NAME" --></H2>
<HR>

You are using <!--#echo var="HTTP_USER_AGENT" --> .

</BODY>
</HTML>

One possible result of this example is shown in Figure 12-8. Remember that your
result will be different since the page is dynamically generated and must be run from a
server with SSI turned on.

The environment variables that are accessible from SSI are similar to those that can
be accessed by any CGI program. They also include the variables listed in Table 12-4.

Besides inserting CGI environment variable values, it is also possible to use SSI to
embed the results of a CGI program into an HTML document by using the EXEC CGI
command. For example, it would be possible to add a simple page counter to an HTML

C h a p t e r 1 2 : I n t r o d u c t i o n t o S e r v e r - S i d e P r o g r a m m i n g 475

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

Figure 12-8. SSI output under Internet Explorer

Variable Name Description

DATE_GMT This value references the current server local date,
same as DATE_LOCAL, but in Greenwich mean time.
This variable is subject to formatting from the
CONFIG SSI command.

DATE_LOCAL The current date, local time zone. Subject to formatting
from the CONFIG SSI command.

Table 12-4. SSI-Available Variables Potentially Outside the CGI Set

476 H T M L : T h e C o m p l e t e R e f e r e n c e

document by using an SSI command to execute the counter program and display its
results in the page. Assuming there were a program called counter.cgi in the cgi-bin
directory on the server, you could use a simple SSI statement like the following to add
the page count:

<!--#exec cgi="cgi-bin/counter.cgi"-->

In general, SSI consists of a special comment form that indicates the SSI command,
as well as any parameters to modify the command in the general format, as follows:

<!-- #command parameter=value -->

Following are some of the common SSI commands and their associated parameters.

ECHO

PARAMETERS VAR

DESCRIPTION Used to insert the values of special SSI variables and environment
variables into the page.

Variable Name Description

DOCUMENT_NAME The variable holds the current filename.

DOCUMENT_URI The variable contains the virtual path to the current
document—for example, /about/bigcompany/
contact.shtml.

LAST_MODIFIED The last modification date of the current document.
This variable is subject to the date formatting set by
the CONFIG SSI command.

QUERY_STRING_
UNESCAPED

This variable contains the “unescaped” version of any
search query (GET) sent by the browser. Any special
characters are escaped using the \ character.

Table 12-4. SSI-Available Variables Potentially Outside the CGI Set (continued)

<!--#ECHO VAR="REMOTE_HOST"-->

INCLUDE

PARAMETERS FILE, VIRTUAL

DESCRIPTION Used to insert the contents of a document into the current file. This
pathname of the file can be either relative or virtual. Relative files paths are relative to
the current directory, while virtual filenames may access other directories using the ../
directory style or an absolute path.

<!--#INCLUDE FILE="footer.htm"-->

<!--#INCLUDE VIRTUAL="../templates/footer.htm"-->

FSIZE

PARAMETERS FILE

DESCRIPTION Inserts the size of a given file.

<!--#FSIZE FILE="index.htm"-->

FLASTMOD

PARAMETERS FILE

DESCRIPTION Inserts the last modification date of a given file.

<!--#FLASTMOD FILE="index.htm"-->

EXEC

PARAMETERS CMD, CGI

DESCRIPTION Allows you to execute external programs, either an application on
the host or a CGI program.

<!--#EXEC CMD="/usr/bin/ls"-->

<!--#EXEC CGIi="cgi-bin/counter.cgi"-->

C h a p t e r 1 2 : I n t r o d u c t i o n t o S e r v e r - S i d e P r o g r a m m i n g 477

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

CONFIG

PARAMETERS ERRMSG= string, SIZEFMT= bytes | abbrev, TIMEFMT= format string

DESCRIPTION Allows you to configure SSI output options for error output, file size
output, and data output. The value for ERRMSG is simply a string value for the error
message. SIZEFMT may be set to bytes or abbrev, while TIMEFMT can be set to a
UNIX date format string in the form compatible with the strftime library.

<!--#CONFIG ERRMSG="[SSI Statement Failed!]"-->

<!--#CONFIG SIZEFMT="bytes"-->

<!--#CONFIG TIMEFM="%A %b %d %j"-->

Depending on the server, there may be more SSI statements, including ODBC and
EMAIL, which are used to access a database and send e-mail, respectively. These
commands are the ones most common across most SSI-capable servers.

While SSI looks appealing, it has two potential problems: security and performance.
SSI’s security problem is mainly due to the EXEC command, which can be used to
execute a program on the server. With this command, security breaches are possible.
For example, it might be possible to insert a command to launch a remote session. Even
if security isn’t a big issue, depending on how SSI and the Web server are configured,
the executing command may have a great deal of permissions and be able to remove
values. Web administrators are advised to limit use of this SSI command.

The other problem with SSI, performance, is typical with any parsed HTML
solution. Because all SSI files have to be parsed, they may cause a performance hit.
If a site has serious performance requirements, parsed HTML solutions may be
inappropriate. Fortunately, it is possible to limit parsed HTML or mix it with standard
HTML by having only certain files, for example those ending in .shtml, parsed by the
server. When used in a limited fashion, SSI can provide powerful features that are
within the technical ability of any HTML writer. However, SSI is limited. Page
designers may find other parsed HTML solutions, such as ColdFusion or ASP, more
appropriate.

ColdFusion
One of the most popular server-parsed HTML solutions is Allaire’s ColdFusion
(http://www.allaire.com). ColdFusion is a complete Web application development
tool that allows developers to create dynamic database-driven Web site applications
with an easy-to-use, server-side markup language similar to HTML. Getting started
with ColdFusion requires learning a few new markup tags that look like HTML but
make up what is called ColdFusion Markup Language (CFML). Since one of its
primary functions is database access, ColdFusion uses the Open Database Connectivity

478 H T M L : T h e C o m p l e t e R e f e r e n c e

(ODBC) standard to connect to popular database servers like Microsoft SQL Server,
Access, Sybase, Oracle, and others. ColdFusion is not dependent on a particular
database or Web server, and it works well on a variety of Windows NT- and
Unix-based servers. While ColdFusion is not a W3C defined standard, it is widely
used. It is presented here to illustrate an example of parsed HTML and to show how
HTML might be used to interact with a database.

Web applications built with ColdFusion use dynamic pages composed of a mixture
of CFML and HTML markup. When the page is requested, the ColdFusion application
running on the server preprocesses the page, interacts with a database or other
server-side technologies, and returns a dynamically generated HTML page. It is
probably better to refer to ColdFusion–enabled pages as templates since the actual
page output varies.

Using CFML
Here is how to use CFML to select and output data in a dynamic Web page. This
section will show how to use a number of CFML tags to query data from a database,
take the results of the query, and populate a Web page.

Database Overview
A database is simply a collection of data that is organized in a regular fashion, typically
in the form of a table. Imagine you want to create a Web site to post the various job
openings in your company. The first thing you need to do is to decide what
information is relevant: position number, job title, location, brief description, hiring
manager, and posting date. This information could be organized in the form of a
database table, called Positions, as shown in Table 12-5.

C h a p t e r 1 2 : I n t r o d u c t i o n t o S e r v e r - S i d e P r o g r a m m i n g 479

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

Position-Num JobTitle Location Description
Hiring
Manager PostDate

343 Gadget Sales Austin Requires an
aggressive sales
person to sell
gadgets to guys
and gals

M. Spacely 01/20/99

525 Office Manager San Jose Responsible for
running the entire
office
single-handedly

P. Mohta 01/24/99

Table 12-5. Simple Database Table Called Positions

The example is populated with some simple data, but how can the data be retrieved
to be displayed in a Web page automatically?

Selecting the Data
The first step is to define a database query using Structured Query Language (SQL).
SQL is the language used to retrieve or modify data from the tables in a database. The
language is relatively simple, at least as far as mastering the basics. If you were
interested in making a query to the database table called Positions, you would use a
SQL statement like

SELECT * FROM Positions

480 H T M L : T h e C o m p l e t e R e f e r e n c e

Position-Num JobTitle Location Description
Hiring
Manager PostDate

2585 President San
Diego

Figurehead
position requiring
daily golf games
and nightly poker
parties

T. Powell 01/30/99

3950 Groundskeeper San
Diego

Must like outdoor
work and long
hours in the sun
with no sunscreen

J. Tam 01/30/99

1275 HTML Hacker Seattle Must be able to
recite HTML
specifications by
heart and code
HTML by hand;
long hours, low
pay

D.
Whitworth

01/27/99

2015 Game Tester Los
Angeles

Must be able to
play games all
day long; poor
posture and junk
food diet essential

J. Daffyd 01/18/99

Table 12-5. Simple Database Table Called Positions (continued)

This query simply says to select all items indicated by the wildcard (*) in the table
called Positions. If you just want to list all the positions in Austin, you could qualify the
query by adding a WHERE modifier, indicating you only want entries for which the
location is Austin.

SELECT * FROM Positions WHERE Location="Austin"

Using the WHERE modifier, it is possible to create complex queries. For example,
you could query all jobs in Austin, or in Los Angeles, for which the position is
Game Tester.

SELECT *

FROM Positions
WHERE ((Location="Austin" OR

(Location="Los Angeles") AND
(Position="Game Tester"))

This brief discussion should reveal the flavor of SQL. While the basic language is
simple, queries can be more complicated. A full discussion of SQL is well beyond the
scope of this book. For sake of this discussion, only simple queries are used in the
examples.

In order to pull data out of the database, write a SQL query, and then place it
within a <CFQUERY> element. The following example illustrates the use of
<CFQUERY>. A select SQL query called ListJobs, as specified by the NAME attribute,
will query a database and retrieve all the records in the Positions table. The syntax for
this example is shown here.

<CFQUERY NAME="ListJobs"

DATASOURCE="CompanyDataBase">

SELECT * FROM Positions

</CFQUERY>

Notice that the DATASOURCE attribute is set equal to CompanyDataBase, which is
the ODBC data source that contains a database called Company, which contains the
Positions table from which data is pulled.

C h a p t e r 1 2 : I n t r o d u c t i o n t o S e r v e r - S i d e P r o g r a m m i n g 481

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

Open Database Connectivity (ODBC) is a standardized way to access data from a
variety of different databases. ODBC provides a layer of abstraction that protects the
developer from having to learn the particulars of a specific database system. To query the
Positions table, your server might connect to a simple Microsoft Access database or a
powerful Oracle system. In order to access a database, a developer needs to set up an
ODBC data source. This requires that developer to select an ODBC driver, name the
data source, and configure any specific settings for the database. A complete discussion
of how to set up ODBC drivers and configure data sources can be found in the
documentation for ColdFusion.

Besides NAME and DATASOURCE, the <CFQUERY> element has a variety of
attributes, as described in Table 12-6.

482 H T M L : T h e C o m p l e t e R e f e r e n c e

Attribute Description

NAME Required. This attribute is used to assign a name to the
SQL query. The name is used later in the template to
reference the query results.

DATASOURCE Required. This attribute is used to specify the name of the
ODBC data source that will be used to access the
database.

MAXROWS Optional. This attribute is used to specify the maximum
number of rows as a positive integer number that should
be returned by the query. More output rows beyond this
value will be dropped.

USERNAME Optional. Since many databases have login features, this
attribute is used to set the username to access the data
source. This attribute overrides the default settings in the
ColdFusion Administrator.

PASSWORD Optional. This attribute is used to set the password
associated for the username that will access the database.
This value overrides the default settings in the
ColdFusion Administrator.

TIMEOUT Optional. This attribute can be set to a time, in
milliseconds, for a query to successfully execute. Queries
that take longer than this value will fail.

DEBUG Optional. When present, this attribute turns on the
tracing and debugging features for the file.

Table 12-6. <CFQUERY> Attribute Summary

Outputing the Data
Using the <CFOUTPUT> element, it is possible to display the data retrieved from a
previously defined <CFQUERY> element. For example, in order to output the query
called ListJobs, you would use a code fragment, as shown here:

<CFOUPUT QUERY="ListJobs">

<HR NOSHADE>

Position Number: #PostionNum#

Title: #JobTitle#

Location: #Location#

Description: #Description#

</CFOUPUT>

Notice the use of the # symbols throughout this code fragment. These values are used
to delimit the areas in which you wish to place the data from the database. For
example, #PositionNum# will be populated with data from the column PositionNum,
while #JobTitle# will get the values for the JobTitle column in the database. Notice
also that normal HTML markup can be used within the query.

The primary attribute for the <CFOUTPUT> element is QUERY, but there are
numerous other attributes, as shown in Table 12-7.

C h a p t e r 1 2 : I n t r o d u c t i o n t o S e r v e r - S i d e P r o g r a m m i n g 483

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

Attribute Description

QUERY Required. This is set to the name of the <CFQUERY> that
will be used to query the database.

MAXROWS Optional. This attribute is used to specify the maximum
number of rows in the query: a positive integer, which
should be displayed.

GROUP Optional. This attribute is used to group output and is
useful for nested reporting.

STARTROW Optional. This attribute is used to specify an integer row
from which to start output; for example, setting this
attribute to 5 would start the output with the fifth row
returned by the query.

Table 12-7. <CFOUTPUT> Attribute Summary

484 H T M L : T h e C o m p l e t e R e f e r e n c e

By putting both the <CFQUERY> and the <CFOUTPUT> elements together in a
complete CFML template file, which you could call example1.cfm, and putting this on
a server that understands ColdFusion, you could create a dynamically generated page.
A complete listing showing the two primary ColdFusion elements is shown here:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<!-- SQL statement to select jobs available from the database-->

<CFQUERY NAME="ListJobs" DATASOURCE="CompanyDataBase">

SELECT * FROM Positions
</CFQUERY>

<HTML>

<HEAD>

<TITLE> Big Company Job Listings </TITLE>
</HEAD>

<BODY>
<H2 ALIGN="center"> Big Company Job Listings </H2>

<HR>

<CFOUTPUT QUERY="ListJobs">
<HR NOSHADE>

Position Number: #PositionNum#

Title: #JobTitle#

Location: #Location#

Description: #Description#

</CFOUTPUT>
<HR>

<ADDRESS>

Big Company, Inc.
</ADDRESS>

</BODY>
</HTML>

Figure 12-9 shows a dynamically generated ColdFusion page under Netscape. Note
that there are no browser-side requirements for ColdFusion. In other words, this
application would work equally well under Internet Explorer, Lynx, WebTV, or any
other browser.

Conditional Statements
When creating dynamic pages, things don’t always work out as expected. What
happens, for example, if there are no jobs in the database to print out? Should the user
get a blank page or one that says “Sorry, no jobs available?” ColdFusion provides a
number of facilities to take care of just such problems. Using the <CFIF> element,
simple comparison conditions can be added to the page and simple applications can be
built. The basic syntax for the <CFIF> element is shown here.

C h a p t e r 1 2 : I n t r o d u c t i o n t o S e r v e r - S i d e P r o g r a m m i n g 485

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

Figure 12-9. ColdFusion output under Navigator 3

<CFIF expression >

HTML and CFML tags

<CFELSE>

HTML and FML tags

</CFIF>

An expression is a comparison condition. For example, IS NOT "" would be an
expression to see if something is not set. So

<CFIF ListJobs.PostionNum IS NOT "">

Print the query here.

</CFIF>

would only do the section “Print the query here.” if the PostionNum field were not
empty. Note that, as shown in this example, the <CFELSE> element is optional.

The expression used in the <CFIF> element can be complex and may consist of one
or many of the operators shown in Table 12-8.

486 H T M L : T h e C o m p l e t e R e f e r e n c e

Operator Description

IS Performs a case-insensitive comparison of two
values and returns TRUE if the values are identical

IS NOT or NEQ Performs the opposite function of the IS operator
returning TRUE only if the values are not equal

CONTAINS Performs a check to determine if the value on the left
of the operator is contained in the value on the right
of the operator and returns TRUE if it is

DOES NOT CONTAIN Opposite of the CONTAINS operator

Table 12-8. <CFIF> Operators Summary

Using the conditional capabilities provided by the <CFIF> element, it is possible to
create an improved example that checks whether the table has open positions. If not, it
prints out a statement indicating that no jobs are available, as shown here:

<!-- SQL statement to select jobs available from the database-->

<CFQUERY NAME="ListJobs" DATASOURCE="CompanyDataBase">
SELECT * FROM Positions

</CFQUERY>

<CFIF ListJobs.PositionNumber IS NOT "">

<HTML>

<HEAD>

<TITLE> Big Company Job Listings </TITLE>
</HEAD>

<BODY>
<H2 ALIGN="CENTER"> Big Company Job Listings </H2>

<HR>

C h a p t e r 1 2 : I n t r o d u c t i o n t o S e r v e r - S i d e P r o g r a m m i n g 487

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

Operator Description

GREATER THAN or GT Checks whether the value on the left is greater than
the value on the right and returns TRUE if it is

LESS THAN or LT Checks whether the value on the left is less than the
value on the right and returns TRUE if it is

GREATER THAN OR
EQUAL TO or GTE

Checks whether the value on the left is greater than
or equal to the value on the right and returns TRUE
if it is

LESS THAN OR EQUAL
TO or LTE

Checks whether the value on the left is less than or
equal to the value on the right and returns TRUE if
it is

Table 12-8. <CFIF> Operators Summary (continued)

488 H T M L : T h e C o m p l e t e R e f e r e n c e

<CFOUTPUT QUERY="ListJobs">

<HR NOSHADE>

Position Number: #PositionNum#

Title: #JobTitle#

Location: #Location#

Description: #Description#

</CFOUTPUT>

<HR>
<ADDRESS>

Big Company, Inc.
</ADDRESS>
</BODY>

</HTML>

<CFELSE>
<CFLOCATION URL="nojobs.htm">

</CFIF>

The <CFIF> statement in this example checks to see if the PositionNum field is
empty in the database. If the field is not empty, then it proceeds to populate the Web
page. If the field is empty, it redirects to a page called nojobs.htm, which indicates that
there are no positions currently available at the company.

CFML Summary
It should be obvious from the examples presented that ColdFusion can be used to
create dynamic Web pages. When using conditional operators, as well as other CFML
elements that can be used to loop or set variables, it is even possible to create
full-fledged applications with ColdFusion. ColdFusion and other HTML-like,
server-parsed languages are great, because they are relatively easy to get started with.
There are fewer than two dozen CFML elements to learn. Some of these provide very
powerful features like file upload, cookie manipulation, file inclusion, automatic
HTML table creation, and mailing. A brief summary of the CFML elements available in
ColdFusion is presented in Table 12-9.

The previous discussion is just a sample of what ColdFusion can do. It is only
meant to illustrate what a server-side HTML language can do. For more detailed

C h a p t e r 1 2 : I n t r o d u c t i o n t o S e r v e r - S i d e P r o g r a m m i n g 489

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

Element Description

<CFABORT> Aborts the processing of the CFML application or
template at the specified location

<CFAPPLICATION> Defines the CFML application name and activates the
client variables

<CFCOL> Defines a table column header, including setting width
and alignment of the column

<CFCONTENT> Defines the content type and the name of the file to be
uploaded from the application

<CFCOOKIE> Defines and sets a cookie, which can be used to
preserve state information

<CFERROR> Customizes HTML error pages

<CFFILE> Allows the developer to define file-handling tasks
within the CFML application

<CFHEADER> Generates HTTP headers in the application, which may
be useful to avoid having the page be cached

<CFIF> Creates a conditional expression that is useful for
catching error conditions or setting up more output
logic

<CFINCLUDE> Includes a ColdFusion template file in the application
(useful for keeping routines in separate files)

<CFINSERT> Inserts records into an ODBC database.

<CFLOCATION> Opens a ColdFusion template or HTML file (most often
used for redirection of output)

<CFLOOP> “Loops” or repeats a set of instructions or displays
conditional output

<CFMAIL> Sends SMTP e-mail from the CFML application

<CFOUTPUT> Displays the results of a database query as specified by
the <CFQUERY> element

<CFPARAM> Assigns a parameter an initial value

Table 12-9. CFML Language Summary

490 H T M L : T h e C o m p l e t e R e f e r e n c e

information on the syntax of ColdFusion, as well as examples of its use, see the
ColdFusion Language Reference at Allaire’s Web site (http://www.allaire.com). While
ColdFusion is somewhat tag oriented, there are other server-side parsed HTML
solutions, such as Microsoft’s ASP, that may provide more scripting style functionality.

Active Server Pages (ASP)
Microsoft’s ASP is a server-side scripting environment primarily for the Microsoft
Internet Information Server (IIS) Web server, although third-party vendors have
recently ported ASP to other Web servers, such as the Netscape Enterprise server.
Using ASP, it is possible to combine HTML, scripting code, and server-side ActiveX
components to create dynamic Web applications. The ability to write scripts in
standard scripting languages such as VBScript, JavaScript, and other scripting
languages such as Perl, enables developers to create applications with almost any type
of functionality. This makes the ASP approach to server-side scripting very generalized
for a broad range of applications. Server-side scripts can also access server-side objects
in the form of ActiveX controls for a variety of functions, such as database access via
ODBC. Like other parsed HTML solutions, an ASP-enabled page is parsed by the Web
server to generate the dynamic HTML that is sent to the Web browser. This means that
ASP-enabled pages work equally well on every browser.

Element Description

<CFQUERY> Passes a SQL statement, typically a query to an
ODBC-connected database

<CFREPORT> Embeds a report from Crystal Reports into the page

<CFSET> Defines a variable within the CFML application that can
be accessed later using a <CFIF> or similar construct

<CFTABLE> Builds a quick HTML table to hold the output of a
query

<CFUPDATE> Updates records in an ODBC data source

Table 12-9. CFML Language Summary (continued)

C h a p t e r 1 2 : I n t r o d u c t i o n t o S e r v e r - S i d e P r o g r a m m i n g 491

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

Creating ASP Pages
To get started using ASP, the developer needs to have a working knowledge of HTML,
as well as knowledge of a scripting language like VBScript or JavaScript. Files created
for ASP have an .asp file extension. When an ASP-enabled server sees a file with such
an extension, it will execute it before delivering it to the user. For example, the simple
VBScript embedded into the file shown here is used to display the current date on a
Web page dynamically:

<SCRIPT LANGUAGE="VBScript" RUNAT="Server">
</SCRIPT>

<HTML>

<HEAD>
<TITLE> ASP Display Date Example </TITLE>

<HEAD>

<BODY>

<H1>Welcome to News of the Day </H1>
<% = date %>

<P>

Today the stock of a major software company
 reached an all time

high, making the bigcompany.com's CEO
 the world's first and
only trillionaire.

</BODY>

</HTML>

The <SCRIPT> element is used to indicate the primary scripting language being
employed. This element also tells the Web server to execute the script code on the
server rather than the client with the RUNAT attribute. This can be abbreviated as
<@ LANGUAGE = script_language>. Notice how the <% %> is used to delimit the
script code that is run. ASP is a generalized technology. It can be used to do whatever a
user dreams up. Since people commonly want to do things on the Web like access a
database, it has been enhanced to do this well.

DATABASE ACCESS IN ASP In the following discussion, ASP will be used to
access the Positions database described earlier in the chapter. While this could
probably be done more easily using ColdFusion, the point here is to introduce the idea
of object access from ASP. The first step in this example is to create an instance of the

492 H T M L : T h e C o m p l e t e R e f e r e n c e

database component by adding the following line to an ASP file, which might be
named example.asp.

<OBJECT RUNAT="Server" ID="Conn"

PROGID="ADODB.Connection"></OBJECT>

This statement creates an instance of a database access object called Conn that can be
used with a server-side script.

Later on, the file will open a connection to the database and execute a SQL
command to select job positions and return a set of records. The small code fragment
shown next does this. The code is enclosed within <% and %> so that the server knows
to execute this rather than display it on the screen.

<%
Conn.Open Session("ConnectionString")

SQL = "SELECT * FROM Positions"

Set RS = Conn.Execute(SQL)
Do While Not RS.EOF

%>

The code between the <% %> statements is VBScript, which is interpreted by
the Web server when this page is requested. The Do While statement is a standard
VBScript looping statement, which is used here to loop through the record set until an
end of file (EOF) marker is reached, signifying the end of the records. While looping
through each record, the output is displayed in the context of regular HTML code, such
as displaying the Job Department field in a table cell:

<TD>

<%= RS("JobDepartment")%>

</TD>

Putting this all together in a file called example.asp provides a complete ASP
database access example:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<OBJECT RUNAT="Server" ID="Conn"

PROGID="ADODB.Connection"></OBJECT>

<%@ LANGUAGE = VBScript %>
<HTML>
<HEAD>

<TITLE> Open Positions </TITLE>

</HEAD>

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

C h a p t e r 1 2 : I n t r o d u c t i o n t o S e r v e r - S i d e P r o g r a m m i n g 493

<BODY>

<H2 ALIGN="CENTER"> Open Positions </H2>

<TABLE WIDTH="100%" BORDER="1" CELLSPACING="0" CELLPADDING="4">
<TR>

<TH>Position Number </TH>

<TH>Location </TH>

<TH>Description </TH>
<TH>Hiring Manager </TH>

<TH>Data Posted </TH>
</TR>

<!-- Open Database Connection
Execute SQL query statement
Set RS variable to store results of query

Loop through records while still records to process

-->

<%
Conn.Open Session("ConnectionString")

SQL = "SELECT JobTitle, Location, Description, HiringManager,
PostDate FROM Positions"

Set RS = Conn.Execute(SQL)

Do While Not RS.EOF
%>

<!-- Display database fields in table cells -->
<TR>

<TD>

<%= RS("JobTitle") %>
</TD>

<TD>

<%= RS("Location")%>
</TD>

<TD>
<%= RS("Description")%>

</TD>

494 H T M L : T h e C o m p l e t e R e f e r e n c e

<TD>

<%= RS("HiringManager")%>
</TD>

<TD>
<%= RS("PostDate") d%>
</TD>

</TR>

<!-- Move to next record and continue loop -->

<%

RS.MoveNext
Loop

%>
</TABLE>
</BODY>

</HTML>

From this example, you can see the advantages of ASP for generating dynamic pages. The
actual data to be displayed is a database that the server can access with an ASP script using
a database access object. The dynamically created page is built from a combination of
VBScript that uses a small amount of programming and HTML. The result can be served to
different browsers without any client-side compatibility problems, because the pages are
generated on the server. While this example showed a more complicated way to access
data from a database, it hints at the generalized power of ASP. Active Server Pages are
useful for creating applications rather than just dynamic pages. With ASP, it is possible to
determine the user’s browser, keep track of the user’s progress through a set of pages, and
manage all the data that is passed back and forth from the user (including cookies and form
fields). The key to this power is the server-side objects provided with ASP.

Built-In ASP Objects
What makes ASP so powerful is that the technology includes five built-in objects for
global use:

■ Application

■ Request

■ Response

■ Server

■ Session

C h a p t e r 1 2 : I n t r o d u c t i o n t o S e r v e r - S i d e P r o g r a m m i n g 495

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

The application object is used to share common information within an application.
An example would be a page counter. You can store the number of times a page has
been accessed and use this object to display it on the page. The application object
supports locking, since multiple users may be using the Web application at the same
time and could possibly corrupt data.

The request object is used to get information from the user, including form data,
cookies, or standard HTTP request variables such as browser type (user agent). The
request object contains collections of information that can be used in scripts. The
request object supports the following collections:

■ ClientCertificate The values of fields stored in the client certificate that
is sent in the HTTP request

■ Cookies The values of cookies sent in the HTTP request

■ Form The values of the fields sent from a form submission

■ QueryString The values of the variables sent in an HTTP query string

■ ServerVariables HTTP server information, such as server name, type,
and version

The response object is used to send information to the user. It could be used to set
the type of content to be sent to a browser, such as HTML; Word files; or other formats,
such as graphics. It could also send and retrieve cookie values to a client to determine
user preferences for creating customized pages.

The server object provides access to server methods and properties, including
setting how long a script should run and asking for server-side objects, such as
database objects.

The session object, one of the most useful objects, is used to store information for a
particular user session. This means that information is maintained as the user jumps
from page to page, thus preserving state. The basic property for this object sets an ID
for the session while the events deal with the start or end of a session.

A generalized language like VBScript or JavaScript, combined with server-side
objects to do common tasks like maintaining user state, makes complex server-side
applications possible. Many other technologies, such as Netscape’s LiveWire with its
server-side JavaScript, take a similar approach. When it comes right down to it, the
differences between ColdFusion and ASP are somewhat cosmetic. Programmers may
find ASP comfortable, while skilled HTML authors may find ColdFusion more
suitable. The choice of any server-side technology should be a logical process rather
than a blind acceptance of a single vendor’s solution.

This discussion introduces ASP and is by no means complete. It illustrates a
much-generalized method of parsed HTML that utilizes the power of popular scripting
languages and access to server-side objects with common and powerful functions, such
as database access and session tracking. Complete information on ASP can be found on
the Microsoft Internet Information Server Web site (http://www.microsoft.com/iis/)
or in the ASP Roadmap documentation that is included when ASP is installed on a
Web server.

Summary
Server-side programming is one way to add interactivity to a Web page. CGI is the
traditional way to do this. Writing a CGI program isn’t difficult if you use libraries,
but the price to pay for ease is often speed. Because so many CGI programs are
very similar, some are rewritten as faster server-side plug-ins called NSAPI or ISAPI
programs. While these types of server modules tend to be beyond most developers, it is
easy to buy one to solve a common problem like database access. Some server engines
now support a form of server-side scripting known generically as parsed HTML.
Parsed HTML solutions such as SSIs, ColdFusion, and ASP provide an easy way for
HTML authors to add functionality to Web pages. While server-side technologies
provide a great deal of power for the Web developer, they are only half the picture. It is
also possible to add interactivity using a client-side technology like JavaScript or Java.
The next two chapters discuss these technologies and their intersection with HTML.

496 H T M L : T h e C o m p l e t e R e f e r e n c e

Chapter 13
Introduction to
Scripting and HTML

497

Copyright 1999 The McGraw-Hill Companies. Click Here for Terms of Use.

Adding interactivity to a Web site is not limited to server-side programs. The
client side of the Web, the browser, can generally execute code in the form of
scripting or embedded programmed objects. For HTML writers, the easiest way

to begin adding dynamic aspects to a Web page is through client-side scripting, using
JavaScript or VBScript. This chapter discusses the intersection between scripting and
HTML, but does not attempt to teach scripting techniques in depth. The idea of
scripting requires the page designer to think more carefully about how the user will
interact with the page. If scripting is not used carefully, errors may creep in and cause
problems for the viewer.

As it stands now, scripting languages such as JavaScript are often relegated to small
embellishments such as the ubiquitous rollover button. However, Dynamic HTML
(DHTML) and the Document Object Model (DOM) show how the idea of a page may
change forever because of client-side scripting (discussed in Chapter 14). Beyond these
new dynamic features, scripting has an even bigger role to play on a Web page.
Whereas HTML may provide the structure, scripting may act as the glue, providing a
link between static content and user actions, and between various embedded objects
(discussed in Chapter 15).

The Purpose of Scripting
How do Web scripting languages relate to full-fledged Web programming languages
such as Java? In general, scripting languages are used in small doses, for specific tasks.
Scripting has a very limited domain. Some people use scripting languages for tasks
such as loan calculators. Such simple tasks illustrate basic features of the scripting
language. The basic uses of scripting include

■ Form validation

■ Page embellishment, including rollover buttons and animation

■ Dynamic page generation

■ Interobject communication “glue”

HTML developers tend to be comfortable with scripting languages, because they
can simply enter script commands into the HTML file along with the text markup. In
fact, some developers simply cut and paste scripts to add scrolling marquees, dialog
boxes, and other customized features to their pages. This form of quick embellishment
comes at a cost. If testing is not rigorous, serious problems—even crashes—may creep
in. With the rise of so many scripting languages, such as JavaScript versions 1, 1.1, 1.2,
1.3, and various versions of JScript (Microsoft's interpretation of JavaScript), bugs are
becoming more common. Hopefully, the rise of ECMAScript, a standardized form of
JavaScript, may help solve some of these problems. Beyond compatibility issues,
scripting occasionally has some security problems, mostly related to browser
implementation bugs. Some more cautious users may even turn off script

498 H T M L : T h e C o m p l e t e R e f e r e n c e

interpretation in their browsers, potentially causing the page to render improperly. If
scripting makes sense for your site, you must choose between JavaScript and VBScript.

JavaScript
JavaScript is a scripting language developed by Netscape. Microsoft also supports
JavaScript in the form of JScript, a clone language used in Internet Explorer. The
language was turned over to the international standards body European Computer
Manufacturers Association (ECMA), which announced during the summer of 1997 the
approval of ECMA-262, or ECMAScript, as a cross-platform Internet standard for
scripting. Browser vendors will comply with the specification but will still use the
commonly recognized JavaScript name.

At the time of this writing, neither Netscape nor Internet Explorer fully support
ECMAScript—quite a few “gaps” in implementation still exist. Opera is the only
browser currently supporting ECMAScript in full.

As a scripting language, JavaScript is meant to be easy to use, noncompiled
(interpreted), and useful in small chunks. This sets it apart from Java and other
languages that might be used on the Internet, which tend to be compiled and relatively
hard to master for the nonprogrammer. The syntax of JavaScript is somewhat like C or
Java with Perl-style regular expression handling, and the language has basic object-
oriented capabilities. JavaScript is not, however, a true object-oriented programming
language, and it retains features (such as weak typing) that are common to simple
scripting languages.

JavaScript is useful for small jobs, such as checking form data; adding small bits of
HTML code to a page on-the-fly; and performing browser-, time-, and user-specific
computation. JavaScript is also a powerful means of controlling events in browsers
and accessing the DOM for programming DHTML, which is discussed in the next
chapter. An important potential function of JavaScript is to act as the glue between
different technologies, such as plug-ins, Java applets, and HTML pages. An example
of JavaScript code being used to greet the user is shown here; a rendering of the script
in action is shown in Figure 13-1:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>

<HEAD>
<TITLE> First JavaScript Example </TITLE>

<SCRIPT LANGUAGE="JavaScript">

<!--

C h a p t e r 1 3 : I n t r o d u c t i o n t o S c r i p t i n g a n d H T M L 499

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

500 H T M L : T h e C o m p l e t e R e f e r e n c e

function Greet()

{
alert("Hello user! Welcome to JavaScript.");

}
//-->
</SCRIPT>

</HEAD>

<BODY>
<H1 ALIGN="CENTER"> First JavaScript Example </H1>

<DIV ALIGN="CENTER">

<FORM>

<INPUT TYPE="BUTTON" VALUE="Press Me" onclick="Greet()">
</FORM>

</DIV>

</BODY>

</HTML>

This is a simple example of how JavaScript may be included in an HTML file. The
form button triggers the function called Greet(), which greets the user. The event
handler attribute onclick is used to tie the HTML to the JavaScript that is contained in
the head of the document within the <SCRIPT> element. While this example is very
easy, remember that it is also a trivial example; this is a real programming language
that has many nuances. During its short lifetime, JavaScript has undergone many
changes. Not all browsers support it to the same degree, if at all. JavaScript has a few
major dialects, including JavaScript 1 (Netscape 2.x), JavaScript 1.1 (Netscape 3.x), and
JavaScript 1.2 (Netscape 4.x). JScript in Internet Explorer 3 is approximately equivalent
to JavaScript 1; it doesn’t support JavaScript 1.1 features, such as dynamic image
replacement. Internet Explorer 4 appears to support JavaScript 1.1, but with a richer
object model. Finally, there is the ECMAScript standard, the latest variation of JavaScript.

Table 13-1 shows the JavaScript versions supported by different browsers.
For more information on JavaScript, visit Netscape's developer site, located at

http://developer.netscape.com/. Information about Microsoft's implementation of
JavaScript, called JScript, can be found at http://msdn.microsoft.com/scripting/.

C h a p t e r 1 3 : I n t r o d u c t i o n t o S c r i p t i n g a n d H T M L 501

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
LFigure 13-1. JavaScript says Hello

Browser JavaScript Support

Netscape Navigator 2.x JavaScript 1

Netscape Navigator 3.x JavaScript 1.1

Netscape Navigator 4–4.05 JavaScript 1.2

Netscape Navigator 4.06, 4.5x JavaScript 1.3

Internet Explorer 2.x None

Internet Explorer 3.x JScript (JavaScript 1)

Internet Explorer 4.x JScript (JavaScript 1.1), ECMAScript-compliant

Table 13-1. JavaScript Support by Browser Release

502 H T M L : T h e C o m p l e t e R e f e r e n c e

VBScript
Visual Basic Scripting Edition, generally called VBScript, is a subset of the popular
Visual Basic language. Because of its Visual Basic heritage, VBScript is somewhat more
well defined and seems to have a more stable specification than JavaScript. VBScript is
less prevalent than JavaScript on the Internet, largely because VBScript is fully
supported only in Internet Explorer 3 and above. The language can be used to provide
the same functionality as JavaScript and is just as capable as accessing the various
objects that compose a Web page (termed a browser's Document Object Model). Avoid
trying to use VBScript as a cross-platform scripting solution. Used with ActiveX
controls in a more controllable environment, such as an intranet, VBScript might just be
what the Microsoft-oriented developer needs. When dealing with ActiveX controls
(discussed in Chapter 14), VBScript may provide more functionality. The following is a
sample of VBScript to give you a flavor of its syntax; this example has the same
functionality as the JavaScript example given previously:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>

<HEAD>

<TITLE> VBSscript Example </TITLE>

<SCRIPT LANGUAGE="VBScript">
<!--

Sub Greet_onclick
MsgBox "Hello user! Welcome to VBScript."

End Sub

'-->
</SCRIPT>

</HEAD>

<BODY>
<H1 ALIGN="CENTER"> First VBScript Example </H1>

<DIV ALIGN="CENTER">

<FORM>

<INPUT TYPE="BUTTON" VALUE="Press Me" NAME="Greet">

</FORM>

</DIV>

</BODY>
</HTML>

This is a simple example of how VBScript may be included in an HTML file. It
produces a rendering similar to the one shown in Figure 13-2.

As in the first example, the form button named Greet triggers an alert box that
greets the user. Notice that rather than using an explicit HTML attribute such as
onclick, as was used in the JavaScript example, the VBScript example names the
subroutine in a certain way to associate it with the button event, in this case
Greet_onclick.

Other subtle differences in VBScript include the use of the MsgBox function to
create the alert window, as well as other syntactical differences, such as use of
parentheses. Readers familiar with Visual Basic should find this example very easy,
because this language is just a subset of Visual Basic proper. Unfortunately, as a
client-side technology, VBScript is not very useful, other than for use on an intranet.
Because it is limited to Internet Explorer, relying on VBScript locks out all Netscape
users, which is unacceptable for a public Web site. Because of this, VBScript is often
limited to being used within a Microsoft-oriented intranet or on the server side, in the
form of Active Server Page code (as discussed in Chapter 12). No significant discussion
of VBScript occurs during this client-side discussion. However, readers interested in

C h a p t e r 1 3 : I n t r o d u c t i o n t o S c r i p t i n g a n d H T M L 503

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

Figure 13-2. VBScript says Hello

504 H T M L : T h e C o m p l e t e R e f e r e n c e

more information about the syntax of VBScript, as well as examples, are encouraged to
visit Microsoft's VBScript site (http://msdn.microsoft.com/scripting/).

Including Scripts in an HTML Document
As suggested by the last two examples, the main way to include in a Web page scripts
written in any language is primarily with the <SCRIPT> element. The <SCRIPT>
element is used to delimit the script code; anything that is found within this element is
treated as a script, not HTML, by a scripting-capable browser. This is an important
statement for HTML writers to ponder. Script code tends to be sensitive to returns and
capitalization, whereas HTML is not. The HTML rules that you know and love may not
be valid once you are within the <SCRIPT> element.

While the contents of the <SCRIPT> element may be very complex, the syntax of
the element is relatively simple. The <SCRIPT> element has only three major
attributes, as shown in Table 13-2.

Attribute Name Possible Value(s) Description

LANGUAGE JavaScript
Jscript
VBS
VBScript

The value of this attribute is
used to specify the scripting
language being used. The two
major possibilities are
JavaScript or VBScript.

SRC A URL This attribute is used to
indicate the URL of a file that
contains an external script
to load.

TYPE application/x-javascript*
text/javascript
text/vbscript

Indicates the MIME type of the
script to run.

*The TYPE value of application/x-javascript is not encouraged, although it is common
for older browsers that support JavaScript.

Table 13-2. <SCRIPT> Element Attributes

C h a p t e r 1 3 : I n t r o d u c t i o n t o S c r i p t i n g a n d H T M L 505

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

The actual script to execute should be placed between the <SCRIPT> and
</SCRIPT> tags, as shown here:

<SCRIPT LANGUAGE="JavaScript">

Script goes here.

</SCRIPT>

Remember that what is between these tags is script, not HTML markup. A very
different syntax may be involved, depending on the scripting language used.

The <SCRIPT> element can be used multiple times in the <HEAD>, as well as in
the <BODY> element. Because HTML pages are read sequentially, a lot of scripting
code may appear in the head section of a document. Much of this script code could be
termed deferred script, because it may be read in the head but not executed until later in
the script. This script code can be called later by immediate scripts or by user-action
scripts within the body of the HTML document. The type of script that tends to go into
the <HEAD> element is similar to a function or procedure definition, as shown in the
following example:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>
<HEAD>

<SCRIPT LANGUAGE="JavaScript">
<!--
function AlertTest(){

alert("Danger JavaScript ahead!");

}
// -->
</SCRIPT>

</HEAD>

<BODY>

HTML tags that eventually may trigger JavaScript code in head

</BODY>
</HTML>

As previously stated, the <SCRIPT> element may also occur in the <BODY>
element. Generally, it is used to create immediate scripts that are executed as soon as

506 H T M L : T h e C o m p l e t e R e f e r e n c e

the browser reads them. For example, the following markup includes JavaScript code
that adds the document modification time automatically to the end of the document:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>
<HEAD>

<TITLE> Immediate Script </TITLE>
</HEAD>

<BODY>

<H1 ALIGN="CENTER"> Big Company, Inc. </H1>

<HR>

<P>Interesting text goes here. </P>

<HR>

<SCRIPT LANGUAGE="JavaScript">

<!--
document.write("Last updated on: "+document.lastModified);
//-->

</SCRIPT>

</BODY>
</HTML>

Besides using the <SCRIPT> element, you can also embed script code directly into
HTML tags. Typically, scripts for handling user-triggered events are the common way
that scripts are referenced outside the <SCRIPT> element. HTML elements generally
have special attributes, called script handlers, for particular user events. For example, a
click event to a button is handled by a special onclick event. While HTML attributes
tend to be written in uppercase, event handlers are often written in mixed case or
lowercase, to distinguish the fact that the handler is concerned with scripting, as shown
in the following example using the <INPUT> element:

<FORM>

<INPUT TYPE="BUTTON" NAME="TestButton" VALUE="Don't push me!"

onclick="AlertTest()">

</FORM>

By combining deferred scripts with user-triggered events, you can make dynamic
documents. The following example presents a button that, when clicked, opens a small

C h a p t e r 1 3 : I n t r o d u c t i o n t o S c r i p t i n g a n d H T M L 507

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

alert dialog box by using JavaScript (which is the same as the first example presented
in the chapter):

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>
<HEAD>

<SCRIPT LANGUAGE="JavaScript">
<!--
Function AlertTest() {

alert("Danger! JavaScript ahead! ");

}
// -->

</SCRIPT>
</HEAD>

<BODY>
<DIV ALIGN="CENTER">

<FORM>

<INPUT TYPE="BUTTON" NAME="TestButton"

VALUE="Don't push me!" onclick="AlertTest()">
</FORM>

</DIV>

</BODY>

</HTML>

In summary, the following are the primary ways that you can add JavaScript code
to an HTML document:

■ To the head of the document, within the <SCRIPT> element

■ To the body of a document, within the <SCRIPT> element

■ Within the elements themselves, as values of event handler attributes such as
onclick

Two more ways exist to add JavaScript code to an HTML document. The first way
involves a URL scripting pseudoprotocol. Netscape browsers introduced the use of a
new URL style in the form of javascript:, which can be used with links. For example,

 Script

me!

creates a link that, when clicked, executes the specified JavaScript code. Internet
Explorer also supports this style. The other, very uncommon way to add JavaScript
code to a Web page is with a character entity. (Remember that using © would
include a copyright symbol.) JavaScript code can be inserted inside of a special entity of
the form &{javascript code};. The JavaScript code must be included within braces; it
may even call functions or perform numerous statements. This entity form can only be
used as an attribute value. This style could be used as a form of macro in Netscape 4 or
Internet Explorer 4 pages. Imagine inserting in the head of the document a bunch of
identifiers for colors and font style, and then referencing them by name later, as shown
in the following example:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>
<HEAD>

<TITLE> Entity Script </TITLE>

<SCRIPT LANGUAGE="JavaScript">
<!--

textColor='green';

//-->
</SCRIPT>
</HEAD>

<BODY>
 This should be green.

</BODY>

</HTML>

This example would probably be better handled by a style sheet, but it is presented
here solely to show how the entity script style works. The entity and pseudo-URL style
for adding JavaScript is specific to this particular scripting language. As more scripting
languages are used online, other ways to add script to a page may very well arise. For
now, the two standard ways are in the form of the <SCRIPT> element and as values of
the attribute event handlers for individual elements such as onclick, which is discussed
in greater detail later in the chapter (see “Script Events and HTML”).

Specifying the Scripting Language
By default, most browsers assume that the script language being used is JavaScript.
The LANGUAGE attribute can be used to specify other languages, including VBScript

508 H T M L : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 3 : I n t r o d u c t i o n t o S c r i p t i n g a n d H T M L 509

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

and many others. The HTML 4.0 specification deprecates the LANGUAGE attribute in
favor of the TYPE attribute. The TYPE attribute is used to indicate the MIME type of
the script to run; for example, text/javascript. This indication of scripting dialect is not
often used; it may not provide the flexibility of LANGUAGE.

Not all versions of JavaScript support the same features. The object relied upon by
animated buttons wasn’t available until JavaScript 1.1; it causes errors in older
browsers if it isn’t accounted for. The LANGUAGE attribute can be used to indicate
the version of JavaScript being used. The attribute can be set to JavaScript1.1 or
JavaScript1.2, rather than simply JavaScript. Only browsers that understand the
particular dialect of JavaScript will execute the enclosed script code. With this
idea, you can make a fall-through situation with multiple versions of similar code,
as shown here:

<SCRIPT LANGUAGE="JavaScript">

Simple version
</SCRIPT>

<SCRIPT LANGUAGE="JavaScript1.1">

Netscape 3

</SCRIPT>

<SCRIPT LANGUAGE="JavaScript1.2">
Netscape 4

</SCRIPT>

One final way exists to indicate a scripting language: use the <META> element in
the <HEAD>. For example,

<META http-equivv="Content-Script-Type" content="text/javascript">

sets the default scripting language for the whole document to JavaScript, unless
overridden by a local occurrence of the LANGUAGE attribute. A Web server may also
be configured to issue such a header.

External Scripts
You also can place the script code in a separate file and specify that file by using the
SRC attribute that specifies the URL of the script to include. For example,

<SCRIPT SRC="http://www.bigcompany.com/scripts/myscript.js">

</SCRIPT>

loads a script called myscript.js, specified by the URL for the SRC attribute.

When including an external script in a page by setting the SRC attribute, the
LANGUAGE attribute may not be used. While JavaScript is assumed anyway, the file
extension of the file is used by the Web server to specify the scripting language. The
Web server should map the extension to the appropriate MIME type—in this case,
application/x-javascript—so that the browser receiving the file knows what to do with
it. Older servers may require a MIME type that is configured to allow remote inclusion
of script files.

One major advantage of external scripts is that a browser may cache the script file
locally. If the same script code is used over and over again, the files that reference it
would require only the simple <SCRIPT> statement and would be able to reuse the
cached copy. Considering how much script code is inserted in many pages, this could
improve site efficiency.

Scripting and Non-Script-Aware Browsers
One advantage to referencing external script files is that it provides compatibility for
older, non-JavaScript-aware browsers. A browser simply ignores any tags that it
doesn’t understand, so nothing happens when an older browser reads a <SCRIPT>
element that uses an SRC attribute. If the script is used inline, as shown here, older
browsers that don't understand JavaScript will display the statement alert ("I am a
Script."); onscreen instead of executing it:

<SCRIPT LANGUAGE="JavaScript">

alert("I am a script.");

</SCRIPT>

To improve compatibility with non-JavaScript-aware browsers, scripting code
should be commented out. In JavaScript, this would be accomplished as shown here:

<SCRIPT LANGUAGE="JavaScript">

<!--
alert("I am a script.");
//-->

</SCRIPT>

Notice how the HTML comment starts the exclusion of JavaScript, but //- -> is used to
close the comment. This is because JavaScript interprets lines with // as comments and
does not attempt to run a command - -> as a command.

Commenting out VBScript code is similar, requiring only a simple comment, as
shown here:

510 H T M L : T h e C o m p l e t e R e f e r e n c e

<SCRIPT LANGUAGE="VBScript">

<!--
MsgBox "Hello World!", 0, ""

' -->
</SCRIPT>

Other languages may have different commenting styles for hiding the script code
from the non-script-aware browser.

<NOSCRIPT>
Like other extensions to HTML, the <SCRIPT> element supports a special element to
deal with browsers that don't execute a script. The <NOSCRIPT> element is used to
enclose alternative text and markup for browsers that don't interpret a script.
Furthermore, users can turn off support for a scripting language in their browsers.
The <NOSCRIPT> content renders onscreen, as shown in the following example,
if the user has turned off scripting support or is using a browser that doesn't
understand JavaScript:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>
<HEAD>
<TITLE> JavaScript and NOSCRIPT </TITLE>

</HEAD>

<BODY>

<SCRIPT LANGUAGE="JavaScript">
<!--

document.write('<H1 ALIGN="CENTER"> JavaScript is ON </H1>');
//-->

</SCRIPT>

<NOSCRIPT>
Please turn on JavaScript if you have it and reload this

page!
</NOSCRIPT>

</BODY>

</HTML>

C h a p t e r 1 3 : I n t r o d u c t i o n t o S c r i p t i n g a n d H T M L 511

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

Although this example works, some confusion currently exists between the
specification and current browser actions in relation to <NOSCRIPT> when the
language is not understood. According to the HTML 4.0 specification, browsers should
evaluate the content in <NOSCRIPT> when the scripting language used earlier in the
<SCRIPT> statement is not understood. In the case of the imaginary language named
BozoScript, the browser should evaluate the content in <NOSCRIPT> in the markup
shown here:

<SCRIPT LANGUAGE="BozoScript">

This is bozo language.
</SCRIPT>

<NOSCRIPT>
I don't understand BozoScript.

</NOSCRIPT>

Unfortunately, this is not how browsers act in all cases. In fact, browsers may
ignore the <NOSCRIPT> statement in this case. Furthermore, <NOSCRIPT> has a
major problem when you consider that multiple occurrences of the <SCRIPT> element
can occur in a document. This raises an important question: which <NOSCRIPT>
occurrence matches which <SCRIPT>? The natural assumption is that the first
<NOSCRIPT> element following a particular <SCRIPT> element would match that
<SCRIPT> element; but is this, or should this, be the way things work?

Script Events and HTML
Earlier in this chapter, the section “Including Scripts in an HTML Document”
mentioned that script code could be added to HTML documents through special
attributes called event handlers. What are events? Events occur as the result of a user
action or, potentially, an external event, such as a page loading. Examples of events
include a user clicking a button, pressing a key, moving a window, or even simply
moving the mouse around the screen. HTML provides a way to bind a script to the
occurrence of a particular event, through an event handler attribute. This is the name
of the event, prefixed by the word on; for example, onclick. The following code shows
how the onclick event handler attribute is used to bind some script to a button click
occurrence:

<FORM>

<BUTTON onclick='alert("Hey this is JavaScript")' VALUE="Press Me">

</FORM>

512 H T M L : T h e C o m p l e t e R e f e r e n c e

Under HTML 4, event handler attributes can be added to quite a number of HTML
elements. In practice, event handler attributes are most commonly associated with
form controls specified by the <INPUT>, <SELECT>, <TEXTAREA>, and
<BUTTON> elements, though this is changing with the rise of DHTML. As Table 13-3
shows, HTML 4 defines a wide range of events for nearly all the elements.

C h a p t e r 1 3 : I n t r o d u c t i o n t o S c r i p t i n g a n d H T M L 513

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

Event Attribute Event Description
Elements Allowed
Under HTML 4

onblur Occurs when a form element loses
focus, meaning that a user has entered
into another form field, either
typically—by clicking the mouse on
it—or by tabbing to it

<A>
<AREA>
<BUTTON>
<INPUT>
<LABEL>
<SELECT>
<TEXTAREA>

onchange Signals both that the form control has
lost user focus and that its value has
been modified during its last access

<INPUT>
<SELECT>
<TEXTAREA>

onclick Indicates the element has been clicked Most elements

ondblclick Indicates the element has been
double-clicked

Most elements

onfocus Describes when a form control has
received focus, namely that it has been
selected for manipulation or data entry

<A>
<AREA>
<BUTTON>
<INPUT>
<LABEL>
<SELECT>
<TEXTAREA>

onkeydown Indicates a key is being pressed Most elements

onkeypress Describes a key being pressed and
released

Most elements

onkeyup Indicates a key is being released Most elements

onload Indicates when a window or frame
finishes loading a document

<BODY>
<FRAMESET>

Table 13-3. Events defined in HTML 4

514 H T M L : T h e C o m p l e t e R e f e r e n c e

The core event model according to HTML 4 includes onclick, ondblclick,
onkeydown, onkeypress, onkeyup, onmousedown, onmousemove, onmouseout,
onmouseover, and onmouseup. These core events are defined for nearly all HTML
elements in which the element is displayed onscreen. As used in Table 13-3, the
expression “Most elements” is meant to include the following:

<A>
<ACRONYM>
<ADDRESS>
<AREA>

<BIG>
<BLOCKQUOTE>
<BODY>
<BUTTON>

<CAPTION>
<CENTER>
<CITE>
<CODE>
<COL>
<COLGROUP>
<DD>

<DFN>

<DIR>
<DIV>
<DL>
<DT>

<FIELDSET>
<FORM>
<H1>
<H2>

Event Attribute Event Description
Elements Allowed
Under HTML 4

onmousedown Indicates the press of a mouse button Most elements

onmousemove Indicates the mouse has moved Most elements

onmouseout Indicates the mouse has moved away
from an element

Most elements

onmouseover Indicates the mouse has moved over
an element

Most elements

onmouseup Indicates the release of a mouse button Most elements

onreset Indicates the form is being reset,
possibly by the click of a reset button

<FORM>

onselect Indicates the selection of text by a user,
typically by highlighting the text

<INPUT>
<TEXTAREA>

onsubmit Indicates a form submission, generally
by clicking a submit button

<FORM>

onunload Indicates that the browser is leaving
the current document and unloading it
from the window or frame

<BODY>
<FRAMESET>

Table 13-3. Events defined in HTML 4 (continued)

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

C h a p t e r 1 3 : I n t r o d u c t i o n t o S c r i p t i n g a n d H T M L 515

<H3>
<H4>
<H5>
<H6>
<HR>
<I>

<INPUT>
<INS>
<KBD>
<LABEL>
<LEGEND>

<LINK>
<MAP>

<MENU>
<NOFRAMES>
<NOSCRIPT>
<OBJECT>

<OPTION>
<P>
<PRE>
<Q>
<S>
<SAMP>
<SELECT>
<SMALL>

<STRIKE>

<SUB>
<SUP>
<TABLE>
<TBODY>
<TD>
<TEXTAREA>
<TFOOT>
<TH>
<THEAD>
<TR>
<TT>
<U>

<VAR>

Obviously, certain structuring or miscellaneous elements do not make any sense for
events. Under the HTML 4.0 specification, these include the following elements:

<APPLET>
<BASE>
<BASEFONT>
<BDO>

<FRAME>
<FRAMESET>
<HEAD>

<HTML>
<IFRAME>
<ISINDEX>
<META>
<PARAM>
<SCRIPT>
<STYLE>
<TITLE>

The HTML 4.0 specification indicates that <APPLET> and do not take the
core events. However, some browsers do define events for them.

Certain elements under HTML 4 have their own special events outside this core
event model. For example, the <BODY> and <FRAMESET> elements have an event
for loading and unloading pages, so both elements also have the onload and onunload
event attributes. In the case of the <FRAMESET> element, the load and unload events
don't fire until all the frames have been loaded or unloaded, respectively. The
<FORM> element itself also has two special events that are typically triggered when
the user clicks the submit or reset button. These events are onsubmit and onreset. Of
course, with scripting, these events may fire for other reasons. Last, the primary form

element types under HTML 4 are <BUTTON>, <INPUT>, <LABEL>, <SELECT>, and
<TEXTAREA>. For text fields set with the <INPUT> element, you can catch the focus
and blur events with onfocus and onblur. These events fire when the user accesses the
field and moves on to another one. You can also watch for the select event with
onselect, which is triggered when a user selects some text, as well as the change event
(onchange), which is triggered when a field's value changes and loses focus.

The following markup illustrates simple use of the HTML 4 event attributes with
form elements and links:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>
<HEAD>

<TITLE> HTML 4.0 Events </TITLE>
</HEAD>

<BODY onload='alert("Event demo loaded")'
onunload='alert("Leaving demo")'>

<H1 ALIGN="CENTER">HTML 4.0 Events </H1>

<FORM onreset='alert("Form reset")'

onsubmit='alert("Form submit");return false;'>

 onblur: <INPUT TYPE="TEXT" VALUE="Click into field and then leave"

SIZE="40" onblur='alert("Lost focus")'>

 onclick: <INPUT TYPE="BUTTON" VALUE="Click Me"

onclick='alert("Button click")'>

 onchange: <INPUT TYPE="TEXT" VALUE="Change this text then leave"
SIZE="40" onchange='alert("Changed")'>

 ondblclick: <INPUT TYPE="BUTTON" VALUE="Double-click Me"
ondblclick='alert("Button double-clicked")'>

 onfocus: <INPUT TYPE="TEXT" VALUE="Click into field"

onfocus='alert("Gained focus")'>

516 H T M L : T h e C o m p l e t e R e f e r e n c e

 onkeydown: <INPUT TYPE="TEXT"

VALUE="Press key and release slowly here"
SIZE="40"

onkeydown='alert("Key down")'>

 onkeypress: <INPUT TYPE="TEXT" VALUE="Type here" SIZE="40"
onkeypress='alert("Key pressed")'>

 onkeyup: <INPUT TYPE="TEXT" VALUE="Type and release" SIZE="40 "

onkeyup='alert("Key up")'>

 onload: Alert presented on initial document load.

 onmousedown: <INPUT TYPE="BUTTON" VALUE="Click and hold"
onmousedown='alert("Mouse down")'>

 onmousemove: Move mouse over this
 link

 onmouseout: Position mouse

 here and now leave.

 onmouseover: Position mouse over this
 link

 onmouseup: <INPUT TYPE="BUTTON" VALUE="Click and release"

onmouseup='alert("Mouse up")'>

 onreset: <INPUT TYPE="RESET" VALUE="Reset Demo">

 onselect: <INPUT TYPE="TEXT" VALUE="Select this text" SIZE="40"

onselect='alert("Selected")'>

 onsubmit: <INPUT TYPE="Submit" VALUE="Test Submit">

 onunload: Try to leave document by following this
 link .

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

C h a p t e r 1 3 : I n t r o d u c t i o n t o S c r i p t i n g a n d H T M L 517

518 H T M L : T h e C o m p l e t e R e f e r e n c e

</FORM>

</BODY>

</HTML>

You may encounter problems with the onfocus demo under some versions of Netscape,
because it may not release the focus event. This does not occur under all versions of the
browser and, hopefully, will be fixed in the version that you are testing under.

While the example events should work equally well under Internet Explorer 4 and
Netscape 4 browsers, the extent to which the events can be used in various elements
varies from browser to browser. For example, the onclick handler is defined for nearly
all elements, including , , and even <HR>. However, only Internet
Explorer 4 and above currently support markup such as the following:

<B onclick='alert("You clicked the bold text")'> Click here

As of the time of this writing, Netscape does not provide as rich an event or object
model as the HTML 4.0 specification defines, but future versions such as 5 promise to
support the full HTML 4 event model. Interestingly, both the browsers do support
other events not in the current specification.

Extended Event Models
While HTML 4 specifies numerous events, Netscape and Internet Explorer support
many more events. Some of the events, such as onabort, have been around since
Netscape 3 and are well understood. The onabort handler fires when a download
of an image is not completed:

<IMG SRC="reallybigimportantimage.gif"

onabort='alert("Please reload page")'>

Other events, such as the numerous data binding events, are not nearly as well
understood, and are supported only in Internet Explorer 4. Table 13-4 lists these
extended events, as well as their compatibility.

C h a p t e r 1 3 : I n t r o d u c t i o n t o S c r i p t i n g a n d H T M L 519

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

Event Attribute Description
Associated
Elements Compatibility

onabort Fires when user aborts
image load with stop
button or similar effect

 Netscape 3
Netscape 4
Internet
Explorer 4

onafterupdate Fires after the transfer of
data from the element to a
data provider, namely, a
data update

<APPLET>
<BODY>
<BUTTON>
<CAPTION>
<DIV>
<EMBED>

<INPUT>
<MARQUEE>
<OBJECT>
<SELECT>
<TABLE>
<TD>
<TEXTAREA>
<TR>

Internet
Explorer 4

onbeforeunload Fires just prior to a
document being
unloaded from a window

<BODY> Internet
Explorer 4

onbeforeupdate Fires before the transfer of
data from the element to
the data provider; may
fire explicitly or by loss
of focus or page unload,
forcing data update

<APPLET>
<BODY>
<BUTTON>
<CAPTION>
<DIV>
<EMBED>
<HR>

<INPUT>
<OBJECT>
<SELECT>
<TABLE>
<TD>
<TEXTAREA>
<TR>

Internet
Explorer 4

Table 13-4. Extended Event Model

520 H T M L : T h e C o m p l e t e R e f e r e n c e

Event Attribute Description
Associated
Elements Compatibility

onbounce Fires when bouncing
contents of a marquee
touch one side or another

<MARQUEE> Internet
Explorer 4

ondataavailable Fires when data arrives
from data sources that
transmit information
asynchronously

<APPLET>
<OBJECT>

Internet
Explorer 4

ondatasetchanged Fires when the initial data
is made available from
data source or when the
data changes

<APPLET>
<OBJECT>

Internet
Explorer 4

ondatasetcomplete Fires when all data is
available from the data
source

<APPLET>
<OBJECT>

Internet
Explorer 4

ondragstart Fires when a user begins
to drag a highlighted
selection

<A>
<APPLET>
<AREA>
<BODY>
<BUTTON>
<DIV>
<EMBED>
<HR>

<INPUT>
<MARQUEE>
<OBJECT>
<SELECT>
<TABLE>
<TD>
<TEXTAREA>
<TR>

Internet
Explorer 4

Table 13-4. Extended Event Model (continued)

C h a p t e r 1 3 : I n t r o d u c t i o n t o S c r i p t i n g a n d H T M L 521

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

Event Attribute Description
Associated
Elements Compatibility

ondragdrop Fires when a user drags
an object onto the
browser window to
attempt to load it

<BODY>
(window)

Netscape 4

onerror Fires when the loading of
a document, particularly
the execution of a script,
causes an error; used to
trap syntax errors

<BODY>
(window)

Netscape 3
Netscape 4
Internet
Explorer 4

onerrorupdate Fires if a data transfer has
been canceled by the
onbeforeupdate event
handler

<A>
<APPLET>
<OBJECT>
<SELECT>
<TEXTAREA>

Internet
Explorer 4

onfilterchange Fires when a page filter
changes state or finishes

Nearly all
elements

Internet
Explorer 4

onfinish Fires when a looping
marquee finishes

<MARQUEE> Internet
Explorer 4

onhelp Fires when a user presses
F1 key or similar help
button in user agent

Nearly all
elements

Internet
Explorer 4

onmove Fires when a user moves
a window

<BODY> Netscape 4

onreadystatechange Similar to onload; fires
whenever the ready state
for an object has changed

<APPLET>
<BODY>
<EMBED>
<FRAME>
<FRAMESET>

<LINK>
<OBJECT>
<SCRIPT>
<STYLE>

Internet
Explorer 4

Table 13-4. Extended Event Model (continued)

522 H T M L : T h e C o m p l e t e R e f e r e n c e

Event Attribute Description
Associated
Elements Compatibility

onresize Fires whenever an object
is resized; can only be
bound to the window
under Netscape, as set via
the <BODY> element

<BODY>*
<APPLET>
<BUTTON>
<CAPTION>
<DIV>
<EMBED>
<HR>

<MARQUEE>
<OBJECT>
<SELECT>
<TABLE>
<TD>
<TEXTAREA>
<TR>

Netscape 4*
Internet
Explorer 4

onrowenter Fires when a bound data
row has changed and new
data values are available

<APPLET>
<BODY>
<BUTTON>
<CAPTION>
<DIV>
<EMBED>
<HR>

<MARQUEE>
<OBJECT>
<SELECT>
<TABLE>
<TD>
<TEXTAREA>
<TR>

Internet
Explorer 4

Table 13-4. Extended Event Model (continued)

The following markup demonstrates a few of the extended events for Netscape 4
and Internet Explorer 4.

C h a p t e r 1 3 : I n t r o d u c t i o n t o S c r i p t i n g a n d H T M L 523

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

Event Attribute Description
Associated
Elements Compatibility

onrowexit Fires just before a bound
data source control
changes the current row

<APPLET>
<BODY>
<BUTTON>
<CAPTION>
<DIV>
<EMBED>
<HR>

<MARQUEE>
<OBJECT>
<SELECT>
<TABLE>
<TD>
<TEXTAREA>
<TR>

Internet
Explorer 4

onscroll Fires when a scrolling
element is repositioned

<BODY>
<DIV>
<FIELDSET>

<MARQUEE>

<TEXTAREA>

Internet
Explorer 4

onselectstart Fires when a user begins
to select information by
highlighting

Nearly all
elements

Internet
Explorer 4

onstart Fires when a looped
marquee begins or starts
over

<MARQUEE> Internet
Explorer 4

Table 13-4. Extended Event Model (continued)

<HTML>

<HEAD>
<TITLE> Extended Events </TITLE>

</HEAD>

<BODY onhelp='alert("Going to help now")'
ondragdrop='alert("Drag and drop.")'

onmove='alert("Moving")'

onresize='alert("Resizing")'>

<H1 ALIGN="CENTER"> Extended Events Example </H1>

 onbounce, onfinish, onstart: Watch marquee events fire.

(IE4 Only)

<MARQUEE BEHAVIOR="ALTERNATE"
BGCOLOR="yellow" LOOP="2" WIDTH="400"

onstart='alert("Marquee start!")'

onbounce='alert("Bounced!")'
onfinish='alert("Marquee done!")'>

Bouncing message

</MARQUEE>

 ondragdrop: Try dragging a file onto the browser window.

(N4 Only)

 ondragstart: Try selecting text and dragging. (IE4 Only)

<FORM>
<TEXTAREA ROWS="1" COLS="80"

ondragstart='alert("Going to drag")'>

Select this text and attempt to drag
</TEXTAREA>

</FORM>

 onhelp: Click in window and press F1 key for help. (IE4 Only)

 onmove: Try moving the browser window. (N4 Only)

524 H T M L : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 3 : I n t r o d u c t i o n t o S c r i p t i n g a n d H T M L 525

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

 onresize: Try resizing the window.

 onscroll: Scroll the textarea. (IE4 Only)

<FORM>

<TEXTAREA ROWS="1" COLS="80" onscroll='alert("Scrolled")'>
Type some text in here and scroll this.
</TEXTAREA>

</FORM>

 onselectstart:

Try selecting this text. (IE4 Only)

</BODY>
</HTML>

As shown here, events currently vary from browser to browser. How these events
can be captured also varies. Netscape currently supports a concept called event
capturing, while Microsoft supports event bubbling. The basic idea of event bubbling is
that an event “bubbles up” through the document structure, starting from where it
occurred. If a user clicks a element, it may be passed up to an enclosing <P>
element, and then to the <BODY> element, and then disappear. Netscape takes the
opposite approach, offering the event first to the highest-level structure and then on
down. Such differences make coding cross-platform scripts somewhat difficult.
Furthermore, the extent of elements that support particular events is changing rapidly.
Only some elements under Netscape can respond to events, but this will probably
change quickly.

Internet Explorer 5 Event Preview
At the time of this writing, Internet Explorer 5 is nearing release stage. This browser
introduces even more events for JavaScript. Notably, IE 5 introduces events dealing
with the transfer of data within a page and from other applications by using the cut,
copy, and paste functions of a browser or application. These event handlers, which are
fairly self-explanatory, include oncopy, onbeforecopy, oncut, onbeforecut, onpaste,
and onbeforepaste. IE 5 also provides a rich model for drag and drop, with event
handlers for ondrag, ondragend, ondragenter, ondragleave, ondragover, and ondrop.

Internet Explorer 5 also introduces the ability to sense printing using the event
handlers onafterprint and onbeforeprint. These may be useful to change the style of a
page or its content before printing.

One potentially useful new event handler for Internet Explorer 5 is oncontextmenu,
which can be triggered when a user trys to bring up the context menu for an object.
This is generally invoked by a right mouse click by the user. Imagine having a Web
interface in which the user could right click objects to trigger pop-up menus. With the
addition of these events to the existing proprietary and standard events, Web interfaces
are nearly as rich as any modern graphical user interface environment. However, to
guarantee compatibility, page authors should consider staying with events associated
with form controls, as defined in the HTML 4.0 specification.

Error Handlers
One interesting event handler that warrants special consideration is onerror. An
onerror event handler executes scripting code when an error (typically a scripting
error) occurs while loading a document. The benefit to the onerror handler is that you
can use it to turn off the annoying and often numerous error messages that may pester
a user when reading a misbehaving script. When used properly, you might even
provide the user with a simple feedback message, instructing the user what to do to
rectify the problem, or even how to report the bug. To display the entire error message
in JavaScript and replace it, set window.onerror to the name of your special error
handler. Make sure to return true to suppress any normal scripting alerts. The
following example shows this idea in use:

<HTML>
<HEAD>

<TITLE> Error Handler </TITLE>

<SCRIPT Language="JavaScript">
<!--

window.onerror=displaySorry

function displaySorry(message, url, line)
{

var msg="There has been a scripting error.\n"
msg +="Please contact bugs@bigcompany.com\n";

msg +="Reference file: " + url

alert(msg);
return true;

}
//-->

526 H T M L : T h e C o m p l e t e R e f e r e n c e

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

</SCRIPT>

</HEAD>

<BODY>

<SCRIPT>
bad script code;
</SCRIPT>

</BODY>

</HTML>

The preceding “bad script code” will invoke a dialog box, as shown here:

Many sites would benefit from adding such facilities to their pages to suppress and
help clean up the numerous scripting errors that occur.

Because of the confusion of JavaScript error messages, starting with version 4.5, the
Netscape browser suppresses most messages to a separate console.

Microsoft Event-Handling Extensions
Typically, event handlers are specified as attributes for the particular element with
which the event is associated. For example,

<INPUT TYPE="BUTTON" onclick="script">

However, Microsoft also supports a different form of event handler, first in the
form of an extension to the <SCRIPT> element, and second as a naming convention for
VBScript. Under Internet Explorer, the <SCRIPT> element also has an EVENT and a
FOR attribute. The EVENT attribute is used to define a particular event that should be

C h a p t e r 1 3 : I n t r o d u c t i o n t o S c r i p t i n g a n d H T M L 527

reacted to. The FOR attribute is used to define the name or ID of the element that the
event is tied to. Notice in the following example how the FOR attribute is associated
with the particular button named myButton, and the EVENT attribute is used to
specify the event to respond to—in this case, onclick:

<HTML>

<HEAD>
<TITLE> Microsoft Alternate Event Form </TITLE>

<SCRIPT FOR="myButton" EVENT="onclick" LANGUAGE="JavaScript">
<!--

alert("I've been clicked!");

//-->

</SCRIPT>
</HEAD>

<BODY>
<FORM>

<INPUT TYPE="BUTTON" NAME="myButton" VALUE="Click me">
</FORM>
</BODY>

</HTML>

This form of <SCRIPT> handler is specific to Microsoft and will either run
incorrectly or even cause errors with Netscape browsers. Using VBScript, this style is
very common. VBScript also supports a naming convention style for event handling:

<HTML>

<HEAD>
<TITLE> Microsoft Alternate Event Form </TITLE>

<SCRIPT LANGUAGE="VBScript">

<!--
Sub myButton_onclick

msgBox "I've been clicked!"

End Sub
'-->

</SCRIPT>
</HEAD>

528 H T M L : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 3 : I n t r o d u c t i o n t o S c r i p t i n g a n d H T M L 529

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

<BODY>

<FORM>
<INPUT TYPE="BUTTON" NAME="myButton" VALUE="Click me">

</FORM>
</BODY>

</HTML>

Notice that the name of the subroutine has the event handler name in it and requires
no hooks into HTML. In some sense, this is the cleanest way to integrate scripts with
HTML, but JavaScript does not support this style of event handling. The extensions
introduced by Microsoft for event handling should be avoided, except when trying to
access ActiveX controls, which tend to require the FOR/EVENT style for JScript or the
VBScript naming idea.

Form Validation in JavaScript
So far, this chapter has looked at very simple changes to pages, such as writing out the
last modification date of a page dynamically or creating a button that greets the user.
The basic examples are meant only to show the intersection of JavaScript with HTML.
However, before moving on to more advanced forms of scripting, it is important to
look at a very useful application of JavaScript—form validation.

Form validation is the process of checking the validity of user-supplied data in an
HTML form before it is submitted to a server-side program, such as a CGI program. By
prevalidating data before it is sent to a server, you can avoid a lot of user frustration
and reduce communication time between the Web browser and the server.

The key to checking form data is naming the various form fields. Take a look at the
example HTML markup shown here:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>

<HEAD>

<TITLE> Reading a Form Field </TITLE>
</HEAD>

<BODY>
<FORM NAME="myform" ACTION="cgi-bin/dosomething.pl" METHOD="POST">

Name:

<INPUT TYPE="TEXT" NAME="username" SIZE="25" MAXLENGTH="25">

<INPUT TYPE="BUTTON" VALUE="CHECK NAME"
onclick="alert('You entered '+document.myform.username.value)">

</FORM>
</BODY>

</HTML>

This example has a form named myform and a text field named username inside
the form. In both cases, the names were set by using the NAME attribute, which is
being phased out in HTML 4 in favor of ID. For backward compatibility, NAME will
always be used in this book for form validation. Next, notice that the onclick event
handler creates an alert that references document.myform.username.value. This small
piece of JavaScript references the form named myform in the current document; its
field called username; and, finally, that object’s value property. So, if you run the
simple example, you can see that reading the contents of any field that a user may fill
out is easy.

Under newer browsers, you may be able to use simply username.value or
myform.username.value. Be very careful, because although this will work under the
latest browsers, older JavaScript-aware browsers such as Netscape Navigator 2 and 3
will fail. It would be ironic if your code to keep the user from making errors ended up
causing a different form of frustration. Remember, it is always best to reference your
object explicitly so it will work in all situations.

Suppose that you want to make sure that the user enters something in each text
field before submitting a form. Checking the contents of the field, as shown in this
example, is fairly easy.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>
<HEAD>

<TITLE> Reading a Form Field </TITLE>

<SCRIPT>
<!--

function validate()
{

if (document.myform.username.value == "")

alert('Please enter your name');

530 H T M L : T h e C o m p l e t e R e f e r e n c e

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

else

alert('You entered '+document.myform.username.value)
}

// -->
</SCRIPT>
</HEAD>

<BODY>

<FORM NAME="myform" ACTION="cgi-bin/dosomething.pl" METHOD="POST">
Name:

<INPUT TYPE="TEXT" NAME="username" SIZE="25"
MAXLENGTH="25">

<INPUT TYPE="BUTTON"
VALUE="CHECK NAME"
onclick="validate()">

</FORM>

</BODY>
</HTML>

In this example, the function validate() is called and the contents of the field
username is checked to see whether it is blank or contains information. If the field
is left blank when the user clicks the button, the user is told to complete the field;
otherwise, the data entered is printed in the alert box. By making some simple
modifications to the preceding example, you can change the button to a submit
button and have the validation function validate() return a true or false value to
indicate whether the form submission is allowed to continue, as shown here:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>
<HEAD>
<TITLE> Reading a Form Field </TITLE>

<SCRIPT>
<!--

function validate()

{
if (document.myform.username.value == "")

{

C h a p t e r 1 3 : I n t r o d u c t i o n t o S c r i p t i n g a n d H T M L 531

532 H T M L : T h e C o m p l e t e R e f e r e n c e

alert('Please enter your name');

return false;
}

else
{
alert('Thanks for your submission '+document.myform.username.value);

return true;

}
}

// -->
</SCRIPT>

</HEAD>

<BODY>
<FORM NAME="myform" ACTION="cgi-bin/dosomething.pl"

METHOD="POST" onSubmit="return validate()">

Name:
<INPUT TYPE="TEXT" NAME="username" SIZE="25"

MAXLENGTH="25">

<INPUT TYPE="SUBMIT" VALUE="CHECK NAME">
</FORM>

</BODY>

</HTML>

This example uses the HTML event handler attribute onsubmit, which is triggered
when the user clicks the submit button. The submission will occur unless the event
returns a false value. Notice how the validation function validate() returns a true or
false value, based upon the user's input. Expanding this example to check more fields
is not difficult, as was shown in the larger example at the end of Chapter 11.

Another approach to form field validation is to catch errors as users move from field to
field. By using the onblur attribute, you can sense when a user has deselected a field
and is trying to select another field. Be careful: many users may be annoyed by form
validation using onblur, and it may not even always work, because of bugs in
JavaScript implementations.

The previous discussion is meant to serve only as a basic introduction to the
concept of form validation. Even if you are an experienced programmer, it is not
suggested that you go out and attempt to create your own validation scripts for

e-mail addresses, credit card numbers, ZIP codes, and so on. Many libraries already
exist that perform these tasks; these libraries are available from JavaScript archive sites
such as http://www.javascripts.com; http://javascript.internet.com; and Netscape's
original form validation library, located at the following address:

http://developer.netscape.com/docs/examples/javascript/formval/overview.html

Form validation is only one example of how JavaScript may be useful in a Web
page. The next chapter looks at how to embellish pages by using JavaScript and
focuses on the idea of DHTML, which enables you to manipulate the very elements
of your page.

Summary
Client-side technologies have their place in a Web site. The evolution of scripting
technologies has off-loaded some of the processing that traditionally occurred on the
server. For example, validating form field entries by using JavaScript or VBScript on
the client makes more sense than relegating this processing to the server. Integrating
scripts into a Web page comes in two major forms: within the <SCRIPT> element and
as event handlers in the form of HTML attributes. By using JavaScript or VBScript,
you can create simple interface changes or even perform useful tasks such as form
validation. The intersection between HTML and scripting was originally very distinct;
but, as the next chapter explains, a script now can be used to modify the very elements
in a page by accessing the Document Object Model. When combining this approach to
scripting Web pages with improved page layout facilities, such as style sheets, you can
make your pages come alive with interaction and movement: thus, DHTML is born.

C h a p t e r 1 3 : I n t r o d u c t i o n t o S c r i p t i n g a n d H T M L 533

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

This page intentionally left blank.

Chapter 14
Dynamic HTML (DHTML)

535

Copyright 1999 The McGraw-Hill Companies. Click Here for Terms of Use.

536 H T M L : T h e C o m p l e t e R e f e r e n c e

The previous chapter discussed how scripting languages such as JavaScript could
be added to HTML documents. One of the only reasonable applications
discussed was form validation. However, many Web developers are more

interested in making their buttons light up or making their pages come alive with
movement. This chapter discusses the idea of Dynamic HTML, or DHTML, which is
the popular expression to describe interactive HTML pages. We’ll look at how to make
rollover buttons and even how to animate positioned layers on a page. However,
before diving into the effects, it is important to understand what DHTML is all about.
You’ll see that entire Web pages, right down to the individual HTML elements and
their content, soon will become changeable through a scripting language. True
Dynamic HTML won’t just be about moving the content around the screen, but
changing it dynamically based on user desires.

Dynamic HTML and the Document
Object Model
Dynamic HTML (DHTML) is not about new tags or attributes that can animate pages.
Dynamic HTML actually extends the current set of HTML elements, and a few other things
like style sheet properties, by allowing them to be accessed and modified by a scripting
language like JavaScript or VBScript. Dynamic facilities can be added by exposing tags to a
scripting language; this allows pages to come alive with movement and interactivity. The
tags in a page are accessed through the Document Object Model (DOM).

Every Web document is made up of a variety of elements like , , and
<FORM>. Browsers read pages in a regular fashion because they understand the
extent of the objects that are possible in a page. A page might be composed of three
image elements, two paragraphs, an unordered list, and the text within these elements.
The DOM describes each document as a collection of individual objects like images,
paragraphs, and forms, all the way down to the individual characters. Each particular
object may have properties associated with it, typically in the form of HTML attributes.
For example, the paragraph element has an alignment attribute that may be set to left,
right, or center. In the object model, this attribute is called a property of the object. An
object may have methods that are associated with it, and events that may occur and
affect it. An image tag may have an onmouseover event that is triggered when a user
places the cursor over the image. A form may have a submit method that can be used
to trigger the submission of the form and its contents to a server-based CGI program.

The best way to explain the DOM is with an example. Look at this simple HTML file:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>
<HEAD>

<TITLE> Big Company </TITLE>
</HEAD>

<BODY BGCOLOR="white">

<H1 ALIGN="CENTER"> Big Company </H1>
<HR>

<P ID="para1"> This is a paragraph of text. </P>

 About

 Products

</BODY>

</HTML>

This file could be modeled as a parse tree, as shown in Figure 14-1. The structured
breakdown of HTML elements and how they enclose one another should be familiar
even from the first chapter of this book.

The concept of the Document Object Model is that there is a rigid structure defined
to access the various HTML elements and text items that make up a document. This
model starts from the browser window itself. A typical window contains either a
document or a collection of frames (basically windows) that in turn contain documents.
Within a document is a collection of HTML elements. Some of these HTML elements,
particularly forms, contain even more HTML elements, and some may contain text.
The key to accessing the elements in a document is to understand the hierarchy and
make sure to name the various elements in the page using either the ID or the NAME

C h a p t e r 1 4 : D y n a m i c H T M L (D H T M L) 537

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

Figure 14-1. Parse tree for example HTML file

538 H T M L : T h e C o m p l e t e R e f e r e n c e

attribute. In the previous example, you may want to address the first paragraph of
text, which happens to have the ID of para1. It could be referenced under Internet
Explorer 4 or above using a JavaScript identifier like window.document.all['para1'],
document.all['para1'], or simply para1. Since para1 refers to a <P> element, you may
want to manipulate its attributes (for example, the ALIGN attribute). Adding the word
align to any of the object references previously mentioned, in the form para1.align,
should give us access to the value of this attribute. The following example, which
works currently only under Internet Explorer 4 or above, shows how you could
manipulate the alignment of the paragraph dynamically.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>
<HEAD>

<TITLE> The Dynamic Paragraph </TITLE>
</HEAD>

<BODY BGCOLOR="white">

<H1 ALIGN="CENTER"> The Dynamic Paragraph </H1>

<HR>

<P ID="para1"> I am a dynamic paragraph. Watch me dance! </P>
<HR>

 [Shift Right]
 [Shift Left]

 [Shift Center]

</BODY>
</HTML>

In the previous example, every time the user clicks on the spanned text, the actual value
of the ALIGN attribute for the <P> tag is manipulated. Of course, if you view the source of
the page you won’t notice anything, but this is basically what is happening. Note that the
last example will not work under Netscape 4.x–generation browsers. The differences
between the two browsers’ approach to Dynamic HTML will be discussed shortly.

The DOM can be complex, but what it can do is impressive—without always
requiring a great deal of work. Developers may use the object model to find an image
on a page and replace it with another image when a user rolls a cursor over it. Such
rollovers, or animated buttons, are already common on the Web. In conjunction with
scripting, the DOM can also animate a page by moving objects around, set up an
expanding tree structure to navigate a site, or create a complex application like a game
or database front end. To seasoned JavaScript programmers, many of these ideas might
not sound so new. They’ve been around in a limited form since Netscape 2. Beginning

with that release, JavaScript provided an object model that allowed access to many
parts of a Web page, including anchors, form elements, and images. True Dynamic
HTML, however, takes the idea much further. It gets right down to the actual text,
styles, tags, and scripts within a page, making the whole page modifiable.

The DOM is the core component of both browser vendors’ idea of Dynamic HTML.
As defined by the World Wide Web Consortium (http://www.w3.org/pub/WWW/
MarkUp/DOM/), DOM is a “platform- and language-neutral interface that will allow
programs and scripts to dynamically access and update the content, structure, and style
of documents.” The Web standards body has already released the Level 1 specification of
the DOM that includes the syntax for accessing page elements. At the time of the writing
of this book, the browser vendors have gone far beyond the definition of the current
DOM in some areas but still lack support for some of its basic features.

The definition of Dynamic HTML as a DOM isn’t precisely what is meant by
DHTML in the commercial arena. There, DHTML can include style sheets, absolute
positioning, multimedia effects, database access facilities, dynamic fonts, and
potentially any other thing that can make a page dynamic. This is where the confusion
about Dynamic HTML arises. Netscape and Microsoft have the same basic idea about
the DOM, and both companies are working jointly with the W3C to develop a
standard; but when it comes down to specific details, DHTML varies (often
significantly) between the two leading browser vendors. This can cause trouble for
designers looking to create cross-platform dynamic pages.

Object Models
Since Netscape 2, the browser, window, document, and document contents—forms,
images, links, and so on—have been modeled as a collection of objects. This is
generically referred to as an object model or, more precisely, the Document Object Model
(DOM). Both of the major browsers support the DOM idea, but each has different
naming conventions and a different degree of exposure. For example, in Netscape 3,
only particular items—form elements—are accessible for scripting. Figure 14-2
illustrates the object model for Netscape 3 and Internet Explorer 3.

Objects in the Netscape 3 object hierarchy provide access not only to page elements
like links, anchors, frames, and forms, but to things like the browser’s name, history,
plug-ins, and Java classes associated with the current window.

With the introduction of Netscape 4, more elements, such as layers, are accessible.
Under Internet Explorer 4, all page elements are scriptable, and it is obvious that
Netscape will soon follow suit, making the entire page modifiable. Figure 14-3 shows
an expanded object model. Note that many of the items in this model are available only
under one browser or another.

Once the objects that make up a page are accessible, there are certain changes that
must be made to HTML documents, particularly concerning correct markup and
naming of elements.

C h a p t e r 1 4 : D y n a m i c H T M L (D H T M L) 539

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

540 H T M L : T h e C o m p l e t e R e f e r e n c e

Figure 14-2. Object model for Netscape 3–generation browsers

C h a p t e r 1 4 : D y n a m i c H T M L (D H T M L) 541

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

Figure 14-3. Expanded object model for Netscape 4–generation browsers

HTML and Scripting Access
While the DOM specifies a model for all the objects and HTML elements that make a
Web page, they need to be named properly to allow scripting languages to easily read
and manipulate them. The basic way to attach a unique identifier to an HTML element
under HTML 4 is by using the ID attribute. The ID attribute is associated with nearly
every element.

The point of the ID attribute is to bind a unique identifier to the element. To name a
particular enclosed bolded piece of text SuperImportant, you could use the markup
shown here:

<B ID="SuperImportant"> This is very important.

Naming is very important. Authors are encouraged to adopt a consistent naming
style and to avoid using potentially confusing names that include the names of HTML
elements themselves. For example, button does not make a very good name, and may
interfere with scripting language access.

NAME Attribute
Before HTML 4, the NAME attribute was often used to expose items to scripting. For
backward compatibility, the NAME attribute is commonly defined for <A>,
<APPLET>, <BUTTON>, <EMBED>, <FORM>, <FRAME>, <IFRAME>, ,
<INPUT>, <OBJECT>, <MAP>, <SELECT>, and <TEXTAREA>. The HTML 4.0
specification does not support all of these. In particular, <FORM> and are
missing, and <OBJECT> has a different meaning. Notice that the occurrence of the
NAME attribute corresponds closely to the Netscape 3 object model.

Both <META> and <PARAM> support attributes called NAME, but these have totally
different meanings than script access.

Page developers must be careful to use NAME where necessary to ensure
backward compatibility with older browsers. Earlier browsers will not recognize the
ID attribute, so use NAME as well. However, as NAME and ID share the same
namespace, you must not use the same value for both. As ID is not case-sensitive,
values differentiated only by case are not allowed. For example, <A NAME="link1"
ID="LINK1"> is not legal. If the names clash, what happens remains unclear; some
browsers may ignore the second occurrence, while others may disable script access.

Another consideration when adding scripting to a page is whether the HTML is
well formed. Simple things such as crossed elements, as shown here,

<I> Test </I>

542 H T M L : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 4 : D y n a m i c H T M L (D H T M L) 543

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

may cause a problem with a scripting language. This has to do with the manipulation
of the text within the elements. Page authors should consider it dangerous to
manipulate poorly formed markup with scripts; according to the HTML 4.0
specification, the results are unpredictable.

When HTML documents are well formed, scripting languages such as JavaScript
and VBScript can be used to read and manipulate the various objects in a page. DOM
defines a special set of reserved names that use this notation to allow scripting
languages like JavaScript to refer to entities in the browser and the document,
including form elements. The basic notation uses a series of object and property names
separated by dots. To access the form defined by

<FORM NAME="myform">

<INPUT TYPE="TEXT" NAME="username">

</FORM>

with a scripting language, use either window.document.myform or simply
document.myform. The field and its value can be accessed in a similar fashion. To
access the text field, use document.myform.username. To access the actual value of the
username field, access the value property using document.myform.username.value.
Note that, as shown previously, it may also be possible to use a shorthand notation
such as myform.username.value, as supported under Internet Explorer.

This simple naming style can be used to access the properties of the various objects
that make up the document. The following example, similar to those in the last chapter,
shows the concept in action as the contents of a form field are accessed and displayed
dynamically in an alert window:

<HTML>
<HEAD>

<TITLE> Meet and Greet </TITLE>
<SCRIPT LANGUAGE="JavaScript">

<!--

function sayHello()
{

theirname=document.myform.username.value;
if (theirname !="")

alert("Hello "+theirname+"!");

else
alert("Don't be shy.");

}

// -->
</SCRIPT>

</HEAD>

544 H T M L : T h e C o m p l e t e R e f e r e n c e

<BODY>

<FORM ACTION="mailto: info@bigcompany.com"
METHOD="POST" NAME="myform">

What's your name?
<INPUT TYPE="TEXT" NAME="username" SIZE="20">

<INPUT TYPE="BUTTON" VALUE="Greet" onclick='sayHello()'>

</BODY>

</HTML>

One potential problem to overcome with naming document objects is the NAME
and ID namespace conflict. Older browsers only understand NAME, while the
specification encourages ID. A likely approach would be simply to set the NAME and
ID attributes to be the same values as those shown here:

<INPUT TYPE="TEXT" NAME="username" ID="username">

According to the specification, this approach is not supposed to work because
NAME and ID share the namespace, creating a conflict. In practice, browsers don’t
seem to care. Scripting could be used to deal with different names for the same object,
but that introduces needless complexity. The simple solution is to use NAME on all
elements that support it and ID on the new elements.

Besides accessing the properties of various document objects, it is also occasionally
possible to trigger actions called methods. An example of a method would be to submit
a form. In the last example, document.myform.submit() would submit the form to the
address specified by the ACTION attribute for the <FORM> element.

The previous example only scratches the surface of the DOM. It is possible to refer
to forms and form elements without assigning them a name using an array notation.
Forms can be referred to with a forms array that includes a number beginning at 0.
Elements within a form can be referred to with an elements array that includes a
number beginning at 0. The previous example contains only one form and one
field, so the syntax document.forms[0].elements[0].value is the same as
document.myform.username.value. Note that it is better to name elements rather
than to access them via their position in a page, since any additions or movement
of the HTML elements within the page may potentially break the script.

It is also possible, in some cases, to update the contents of certain elements such as
form fields. The following example code shows how this might be done:

<HTML>

<HEAD>

<TITLE> Meet and Greet 2 </TITLE>

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

<SCRIPT LANGUAGE="JavaScript">

<!--
function sayHello()

{
theirname = document.myform.username.value;

if (theirname != "")

document.myform.response.value="Hello "+theirname+"!";

else
document.myform.response.value="Don't be shy.";

}
// -->

</SCRIPT>
</HEAD>

<BODY>

<FORM NAME="myform">

What's your name?
<INPUT TYPE="TEXT" NAME="username" SIZE="20">

Greeting:

<INPUT TYPE="TEXT" NAME="response" SIZE="40">

<INPUT TYPE="BUTTON" VALUE="Greet" onclick='sayHello()'>

</BODY>

</HTML>

You may have noted the use of NAME rather than ID in this example. Unfortunately,
with form elements, browser support is inconsistent with the ID attribute and may
cause errors. Try switching out NAME for ID if you are using a 5.x–generation
browser, and you should get the same result.

Under Netscape 3 and 4 and Internet Explorer 3, only some objects in a page are
changeable, notably form elements. Starting with Internet Explorer 4, everything in a
page can be modified right down to the very text and markup itself. This is the real
idea of Dynamic HTML. Look at the following markup:

<HTML>

<HEAD>

<TITLE> Simple DHTML for IE4 </TITLE>

</HEAD>

C h a p t e r 1 4 : D y n a m i c H T M L (D H T M L) 545

<BODY>

<B ID="bold1" onclick='this.innerText="The text has changed"'>
Click me

 [Change text back]
</BODY>

</HTML>

Notice that the element is named bold1. This is later referenced by the
element. Furthermore, notice that the actual text is changed when the user clicks on the
text regions. It is obvious that this form of DHTML is very powerful, particularly when
you consider that it can also be used to control style sheets.

Script Interaction with Style Sheets
Both Netscape and Microsoft support scripting access for style sheets. Of course, the
variations between the two browsers are significant. Currently, Microsoft and Netscape
differ on how style sheets can be accessed and the degree to which they can be
manipulated. For example, under Netscape 4 the only style sheet properties that can be
changed after the document has loaded are the absolute positioning properties left,
top, z-index, and visibility.

Microsoft has shown the extent to which style sheets can be manipulated via
scripting language. It is assumed that Netscape 5.x–generation browsers will support
such manipulation as well. The following code fragment shows how events can be tied
with style changes to make text that changes to red when the mouse is over it:

<A HREF="http://www.yahoo.com"

onmouseover='this.style.color="#FF0000"'

onmouseout='this.style.color="#0000FF"'> Yahoo!

The special scripting keyword this is a shortcut reference to the current element, but an
ID attribute could be used just as well, as shown here:

<A HREF="http://www. yahoo.com"

ID="yahoolink"

onmouseover='yahoolink.style.color="red";

yahoolink.style.fontSize="larger"'

546 H T M L : T h e C o m p l e t e R e f e r e n c e

onmouseout='yahoolink.style.color="blue";

yahoolink.style.fontSize="smaller"'

STYLE="color: blue">

Yahoo!

It is also possible to use multiple style sheet rules, as presented in Chapter 10. In the
last example, the size and color of the text are changed when the mouse rolls over it.
Using positioning, style sheets, and scripting, it is possible to make some very dynamic
pages with little effort, as you will see in the next two sections.

Rollover Buttons
The preceding examples demonstrate how scripting can be used to manipulate the look
of a link as a user rolls over it. A feature available since Netscape called dynamic
buttons, commonly called rollover buttons, is one of the first common examples of
dynamic page manipulation using JavaScript, although it predates DHTML. We will
first explore traditional JavaScript rollovers and then take a look at their more
advanced DHTML cousins.

A rollover button is a button that becomes active when the user positions the mouse
over it. The button may also have a special activation state when it is pressed. To create
a rollover button, you will first need at least two, perhaps even three images, to
represent each of the button’s states—inactive, active, and unavailable. A sample set of
rollover images is shown here:

In order to add this rollover image to the page, simply use the tag like
another image. The idea is to swap the image out when the mouse passes over the
image and switch back to the original image when the mouse leaves the image. By
literally swapping the value of the SRC attribute, you can achieve the rollover effect.
This is in essence what the following script, which should work in Netscape 3 and
Internet Explorer 4, would do:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE> Rollover </TITLE>

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

C h a p t e r 1 4 : D y n a m i c H T M L (D H T M L) 547

<SCRIPT LANGUAGE="JavaScript">

<!--
/* Check to ensure rollovers work */

if (document.images)
{

/* preload the images */

buttonoff = new Image();

buttonoff.src = "buttonoff.gif";
buttonon = new Image();

buttonon.src = "buttonon.gif";
}

function On(imageName)
{

if (document.images)

{

document[imageName].src = eval(imageName+"on.src");
}

}

function Off(imageName)
{

if (document.images)

{
document[imageName].src = eval(imageName+"off.src");

}
}
// -->

</SCRIPT>
</HEAD>

<BODY>

<H1 ALIGN="CENTER"> Rollover Fun </H1>
<HR>

<A HREF="http://www.yahoo.com" onmouseover="On('button')"
onmouseout = "Off('button')">

<IMG SRC="buttonoff.gif" NAME="button" WIDTH="90" HEIGHT="20"

BORDER="0">

</BODY>
</HTML>

548 H T M L : T h e C o m p l e t e R e f e r e n c e

Let’s take a look at how the code works. The first section of the JavaScript checks to
make sure the browser supports the images part of the Document Object Model. This
capability is necessary to make the rollover buttons work. If the browser supports this
feature, the images are loaded in and assigned names. Once the page is loaded, the
user can move the mouse over the image. The link, as indicated by the <A> element,
has two event handlers: one for the mouse passing over the image (onmouseover) and
one for the mouse leaving the image (onmouseout). These handlers call the On() and
Off() functions, respectively. The On() function simply sets the SRC of the
element to the name of the image passed to it and appends on.src, which changes the
image to the on state. The Off() function does the opposite by setting the SRC equal to
the image name with off.src appended to it. The key to adding more images is the
names. For example, if you wanted to add another button called button1.gif, you
would add the following code to the <SCRIPT> element within the first if statement,

button1off = new Image();

button1off.src = "button1off.gif";

button1on = new Image();

buttonon1.src = "button1on.gif";

and the following code later on in the document:

<A HREF="URL to load " onmouseover="On('button1')"

onmouseout = "Off('button1')">

<IMG SRC="buttonoff1.gif" NAME="button1" WIDTH="90"

HEIGHT="20" BORDER="0">

Because rollovers are so common on Web sites, there are many sites, such as
http://www.webreference.com/javascript, that offer rollover tutorials. Tools such as
Macromedia’s Dreamweaver can create the code instantly when they are provided
with two images.

Style Sheet–Based Rollovers
One potential downside to image-based rollovers is that you need numerous images
for every single button on a page. If you have a menu with nine choices, you may find
you are downloading 18 images for a two-state button or even 27 images for a
three-state button. The number of images can certainly affect download time, so you
may desire to find a way to create interesting text buttons without graphics using style
sheets. The following code illustrates how we can set the color and size of a link as a
mouse rolls on and off the link under Internet Explorer. It is possible to create a clunky
version of this that works in Netscape, but they should eventually support this form of
rollover in a future browser.

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

C h a p t e r 1 4 : D y n a m i c H T M L (D H T M L) 549

550 H T M L : T h e C o m p l e t e R e f e r e n c e

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>
<HEAD>

<TITLE> CSS Rollover 1 </TITLE>
<STYLE TYPE="text/css">
<!--

A {color: blue;}

.over {color: red; font-size: larger}
-->

</STYLE>
</HEAD>

<BODY>
<A HREF="http://www.yahoo.com" onmouseover="this.className='over'"

onmouseout="this.className=''"> Visit Yahoo!

<A HREF="http://www.excite.com" onmouseover="this.className='over'"
onmouseout="this.className=''"> Visit Excite

</BODY>

</HTML>

Because text rollovers on links are so common, Microsoft even introduced a special
pseudoclass for the <A> element called hover. This pseudoclass, as well as the active
class, is now part of the CSS2 specification and is illustrated in this simple example,
which works in Internet Explorer 4 and beyond:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>

<HEAD>

<TITLE> CSS2 Text Rollovers </TITLE>
<STYLE TYPE="text/css">

<!--
A:link {color: blue} /* unvisited link */
A:visited {color: purple} /* visited link */

A:hover {color: red} /* mouse hovers */
A:active {color: yellow} /* active link */

-->

</STYLE>
</HEAD>

C h a p t e r 1 4 : D y n a m i c H T M L (D H T M L) 551

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

<BODY>

 Visit Yahoo !

</BODY>

</HTML>

There are many other forms of rollovers that are possible using DHTML and style
sheets. One interesting approach is the use of image map rollovers. The concept here is
to make a solid button bar of all off-state and a solid button bar of all on-state, and
place the on-state bar behind the off-state bar using style sheet positioning. Then you
can write JavaScript code to reveal a portion of the covered image as the user rolls over
the button bar. The advantage to this approach is that it avoids having to download
multiple images for every state of every button. This low-bandwidth rollover approach
and others are detailed at many sites about DHTML and JavaScript, including this one:

http://www.webreference.com/dhtml and http://www.webreference.com/js

Moving Objects with DHTML
One of the unfortunate aspects of DHTML is that it is not supported in the same way
across browsers. Many of the preceding examples work only under Internet Explorer 4
or above. However, one area in which the browsers are very similar in their support is
in the positioning of regions using style sheets and in the visibility of these regions.
Both browsers support the movement of regions after load time as well as setting
visibility of regions. With these rudimentary features, it is possible to create a variety of
interesting animation and page effects, as illustrated in the following simple example.

As discussed in Chapter 10, objects can be positioned using style sheets. To position
a simple graphic with an explosion and the word DHTML on it, use some markup like
this:

<DIV ID="dhtml" STYLE="position:absolute; width:200px;

height:115px; z-index:1; left: 100px; top: 50px">

</DIV>

Moving the object is a little more difficult. The basic idea is to change the left and
top properties of the <DIV> element by a set number of pixels every so often. The basic
problem is that Netscape and Microsoft reference the object in their object models

differently. It is easy enough to detect what browser object model is in effect by using
some JavaScript code such as this:

var NS4 = (document.layers) ? 1 : 0;

var IE4 = (document.all) ? 1 : 0;

Basically, this code sets a variable called NS4 to 1 (true) if the document.layers object
exists, as this is something unique to Netscape, and 0 (false) otherwise. The variable
IE4 is set to true (1) or false (0) based on the existence of the document.all structure.
Once the browser is determined, you can then execute different code based on which
browser is being used. This code can be messy, so it is nicer to abstract away the
difference by creating yet another way to reference the various properties of a
positioned region. Many libraries for doing this exist on the Web.

The following example modifies code from the Web Reference animation library
and provides a simple animation; the code has been simplified for readability and to
provide only the necessary features.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>
<HEAD>

<TITLE> DHTML Animation </TITLE>
<SCRIPT LANGUAGE="JavaScript">
<!--

var NS4 = (document.layers) ? 1 : 0;

var IE4 = (document.all) ? 1 : 0;

function AnimationObject(elementid)
{

this.element = (NS4) ? document[elementid] :
document.all[elementid].style;

this.active = 0;

this.timer = null;
this.path = null;

this.num = null;
this.name = elementid + "Var";
eval(this.name + " = this");

this.animate = Animate;
this.step = Step;

this.left = Left;

this.top = Top;
this.MoveTo = MoveTo;

this.SlideBy = SlideBy;

552 H T M L : T h e C o m p l e t e R e f e r e n c e

this.SlideTo = SlideTo;

}

function Animate(interval)

{
if (this.active)
return;

this.num = 0;

this.active = 1;
this.timer = setInterval(this.name + ".step()", interval);

}

function Step()

{
this.MoveTo(this.path[this.num].x, this.path[this.num].y);
if (this.num >= this.path.length - 1)

{

clearInterval(this.timer);
this.active = 0;
if (this.statement)

eval (this.statement);
}

else

{
this.num++;

}
}

/* Returns the left coordinate */

function Left()
{

return (NS4) ? this.element.left : this.element.pixelLeft;

}

/* Returns the top coordinate */

function Top()
{

return (NS4) ? this.element.top : this.element.pixelTop;

}

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

C h a p t e r 1 4 : D y n a m i c H T M L (D H T M L) 553

554 H T M L : T h e C o m p l e t e R e f e r e n c e

/* Move element to x,y position */

function MoveTo(x, y)
{

this.element.left = x;
this.element.top = y;

}

/* Slide the element by changex pixels on x axis, changey pixels on

y axis, using a time interval specified by interval in pixel steps
specified by steps */

function SlideBy(changex, changey, steps, interval)
{

var startx = this.left();
var starty = this.top();
var finalx = startx + changex;

var finaly = starty + changey;

this.SlideTo(finalx, finaly, steps, interval);
}

/* Slide the element to a particular point set by finalx and finaly in

increments of steps pixels with an interval specified by interval */

function SlideTo(finalx, finaly, steps, interval)

{

var startx = this.left();
var starty = this.top();

var changex = finalx - startx;
var changey = finaly - starty;
var stepx = changex / steps;

var stepy = changey / steps;
var steparray = new Array();

for (var i = 0; i < steps; i++)

{

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

startx += stepx;

starty += stepy;
steparray[i] = new position(startx, starty);

}

this.path = steparray;
this.animate(interval);

}

/* Return the position as an integer value */
function position(x, y)

{
this.x = Math.round(x);

this.y = Math.round(y);
}
//-->

</SCRIPT>

</HEAD>

<BODY BGCOLOR="#FFFFFF" >
<DIV ID="dhtml" STYLE="position:absolute; width:200px; height:115px;

z-index:1; left: 100px; top: 50px">

</DIV>

<SCRIPT LANGUAGE="JavaScript">
<!--

dhtmllayer = new AnimationObject("dhtml");
dhtmllayer.SlideBy(100, 150, 99, 50);
// -->

</SCRIPT>
</BODY>

</HTML>

Before and after renderings of this example are shown in Figure 14-4.

C h a p t e r 1 4 : D y n a m i c H T M L (D H T M L) 555

If you are an experienced programmer, this code won’t seem that difficult, but
others might find it impossible to understand. It turns out that even using code
libraries isn’t the best way to animate a page. Many companies have already released
products that can be used to create DHTML animation easily. Probably the most
popular of these is Macromedia’s Dreamweaver, shown in Figure 14-5.

Dreamweaver can generate the JavaScript to make your animation run with little
fuss and is even good at rollover buttons. Unless you plan to learn to program, using a
tool is a good idea.

556 H T M L : T h e C o m p l e t e R e f e r e n c e

Figure 14-4. Rendering of DHTML animation example

Final position

Initial position

C h a p t e r 1 4 : D y n a m i c H T M L (D H T M L) 557

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

Ramifications of DHTML
DHTML raises the requirements for Web developers significantly. First, to use
DHTML, you need to make sure your pages are coded properly in HTML. Since you
have been reading this book, you have a huge head start, because you have been
quoting attributes, naming elements, and generating your HTML in a structured
fashion. Second, you need to understand style sheets. This isn’t terribly difficult either.
Third, you need to understand JavaScript very well. JavaScript isn’t a difficult
language; but when all is said and done, those who know fundamental programming
produce much better code than those who learn programming for the first time with

Figure 14-5. Dreamweaver, a popular DHTML editor

JavaScript. It is sad to see just how many Web scripts don’t exhibit fundamental coding
techniques, such as variable hiding, modularity, and even simple commenting and
logical variable naming. It’s no wonder script code breaks all the time. Finally, you
need to understand the Document Object Model. This isn’t difficult either, particularly
if you think about HTML in a structured manner. If you consider all of the things you
need to know to create a DHTML page, you realize that creating a DHTML page is
much more complicated than creating a static HTML page. With DHTML, we have
definitely moved from a page paradigm to a program paradigm, and with that comes
new complications. For example, testing becomes paramount. You can’t assume your
page is correct just because it looks correct; the page has to be tested under numerous
conditions, including displaying it under different browsers and other conditions. The
bottom line is that DHTML changes Web design so that there is much more emphasis
on JavaScript, and you need to be sure you understand this technology just as well as
you understand HTML.

Summary
Script code can be used to modify elements within a page by accessing the Document
Object Model (DOM), particularly when the HTML is well formed and named using
the ID attribute. Modeling the document as a collection of objects has been done since
Netscape 2; but under DHTML, modeling has been taken to a new extreme. Now
browsers such as Internet Explorer 4 can be used to manipulate anything on a Web
page from simple text elements, such as , to style sheets, to even the very text of the
page itself. DHTML shows where client-side computing is headed, but this power
comes at a price. For the moment, the standard DOM as specified by the W3C isn’t
consistently supported by browser vendors, so defensive programming techniques and
major amounts of testing are required when building script-filled Web pages. If the
page designer takes proper steps, client scripting does not have to be relegated to
simple embellishments. It should be considered the “glue” that is used to bind
elements of a Web page together, including embedded binary objects.

558 H T M L : T h e C o m p l e t e R e f e r e n c e

Chapter 15
Client-Side
Programming and HTML

559

Copyright 1999 The McGraw-Hill Companies. Click Here for Terms of Use.

560 H T M L : T h e C o m p l e t e R e f e r e n c e

The last chapter discussed how scripting elements can be added to HTML pages.
Scripts can manipulate a variety of form elements, and, in the case of Dynamic
HTML, the page elements themselves. Scripts are also used to access embedded

binary objects. As discussed in Chapter 9, embedded objects can be used to bring new
media types, such as sounds and movies, to the Web. They can also be used to add
small executable programs to a page. Binary objects come in many forms, including
Netscape plug-ins, Java applets, and ActiveX controls. Each of these requires special
HTML elements. In the future, all included media types will eventually be added with
the <OBJECT> element. Until objects are standardized, however, it is useful to
understand each individual technology and how it might intersect with HTML.

Scripting, Programming, and Objects
You might wonder why this chapter is separate from the last two. With both scripts
and embedded objects, the interactivity takes place on the client side. What’s the
difference? Why distinguish between scripting and objects? Remember the point of
Web client-side scripting—small bits of interpreted code used to add a bit of
functionality to a page or fill the gaps in an application. Scripting is not necessarily as
complex or general as programming, though it often seems like it is. Programming is
more generalized than scripting; programming enables you to create just about
anything that you can imagine, though it tends to be more complex in some sense than
scripting. Think about checking the data fields of a form; you need only a few lines of
code to make sure the fields are filled. Now consider trying to create something
sophisticated, such as a Web-based, résumé-handling system that can sort through
thousands of submissions a day. This takes more than a few lines of code, and should
probably be programmed in a language such as Java, C/C++, or Visual Basic.

Scripting generally isn’t powerful enough to build full applications, but it can be
useful in tying things together. As you build your Web application, you may decide to
build the logic entirely on the server, in the form of a Common Gateway Interface
(CGI) program, or you may use a client-side technology (Java applets or ActiveX
controls). If you choose a client-side technology, you’ll probably build the Web pages
with a combination of HTML, scripting, and embedded programming objects such as
ActiveX controls, Netscape plug-ins, or Java applets. Building objects is not trivial. It
can require significant knowledge of programming. You may be able to string together
premade objects, generically called components, by using HTML and either JavaScript
or VBScript. Consequently, for most casual Web page designers, putting together a
custom object probably isn’t necessary. This chapter discusses each of the object
technologies, as well as how such objects can be inserted into a Web page.

Plug-Ins
Plug-ins were introduced by Netscape in Navigator 2 and above and supported by
Internet Explorer 3. They address the communication and integration issues that
plagued helper applications. Plug-ins are small helper programs (components) that run
within the context of the browser itself. The plug-in approach of extending a browser’s
features has its drawbacks, however. Users must locate and download plug-ins, install
them, and even restart their browsers. Many users find this rather complicated.
Netscape 4 offers some installation relief with somewhat self-installing plug-ins and
other features, but plug-ins remain troublesome. To further combat this problem, many
of the most commonly requested plug-ins, such as Macromedia’s Flash, are being
included as a standard feature with Netscape browsers. However, even if installation
were not such a problem, unfortunately, plug-ins are not available on every machine;
an executable program, or binary, must be created for each particular operating system.
Because of this machine-specific approach, many plug-ins only work on Windows 95
and NT. A decreasing number of plug-ins work on Windows 3.1, Macintosh, or UNIX.
Finally, each plug-in installed on a system is a persistent extension to the browser, and
takes up memory and disk space.

The benefit of plug-ins is that they can be well integrated into Web pages. They may
be included by using the HTML elements <EMBED> or <OBJECT>. Typically, the
<EMBED> syntax is used, but the <OBJECT> syntax is the preferred method and will
eventually supplant <EMBED> completely. In general, the <EMBED> element takes an
SRC attribute to specify the URL of the included binary object. HEIGHT and WIDTH
attributes often are used to indicate the pixel dimensions of the included object, if
it is visible. To embed a short Audio Video Interleaved (AVI) format movie called
welcome.avi that can be viewed by the Netscape LiveVideo plug-in (generally installed
with Netscape 3.x– and 4.x–generation browsers), use the following HTML fragment:

<EMBED SRC="welcome.avi" HEIGHT="100" WIDTH="100">

The <EMBED> element displays the plug-in (in this case a movie) as part of the
HTML document in a rectangular area of the page (shown in Figure 15-1).

Although plug-ins can appear anywhere in a Web page, special limitations apply to
plug-ins within a <LAYER> element. Plug-ins use the main window, and usually
appear on top of all other content.

A browser may have many plug-ins installed. To check which plug-ins are installed
in Netscape, the user may enter a strange URL, such as about:plugins, or look under
the browser’s Help menu for an entry that reads “About Plug-ins.” The browser will
show a list of plug-ins that are installed, the associated MIME type that will invoke
each plug-in, and information as to whether that plug-in is enabled. Figure 15-2 shows
an example of the plug-ins information page.

C h a p t e r 1 5 : C l i e n t - S i d e P r o g r a m m i n g a n d H T M L 561

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

562 H T M L : T h e C o m p l e t e R e f e r e n c e

Figure 15-1. Plug-in example for LiveVideo

Figure 15-2. Plug-ins information page

C h a p t e r 1 5 : C l i e n t - S i d e P r o g r a m m i n g a n d H T M L 563

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

<EMBED> Syntax
The primary way to load plug-ins for Netscape 2 and 3 and Internet Explorer 3 and is
to use the HTML element <EMBED>, which is not part of the HTML 4.0 specification.
It would be preferable to use the <OBJECT> element, which is part of the specification,
but <OBJECT> works only under Internet Explorer 3 and above, and Netscape 4 and
above. For backward compatibility, you may have to use both forms, as shown later in
this chapter. The general syntax of the <EMBED> element can be found in the element
reference in Appendix A.

The most important attribute for the <EMBED> element is probably SRC, which is
set to the URL of the data object that is to be passed to the plug-in and embedded in the
page. The browser generally determines the MIME type of the file—and thus the
plug-in to pass the data to—by the filename suffix. For example, a file such as test1.dcr
would be mapped to a MIME type of application/x-director and passed to a
Shockwave for Director plug-in. In some cases, however, the plug-in to use with a
particular <EMBED> tag is not obvious. The plug-in may not need to use an SRC
attribute if it reads all of its data at run time or doesn’t need any external data; if no
SRC attribute exists, how do you determine the proper plug-in? The best way to
indicate the plug-in is to use the TYPE attribute and set it to the MIME type, which
then uses the appropriate plug-in. Don’t use the TYPE attribute to override a MIME
type or avoid using file extensions. In the following markup fragment, the file named
mysteryfile has no filename suffix:

<EMBED SRC="mysteryfile" TYPE="application/x-director">

Although a TYPE attribute is used, this won’t work, because the server will send
the file with a content-type indication of plain/text or application/octet-stream, and
the browser will attempt to handle it accordingly. Instead, the file should be named
correctly. In general, you shouldn’t need the TYPE attribute if the SRC attribute can be
used to infer the type. The use of TYPE is mandatory if the SRC is not set.

Because plug-ins are rectangular, embedded objects, similar to images, the
<EMBED> element has many of the same attributes as the element:

■ ALIGN Use to align the object relative to the page and allow text to flow
around the object. To achieve the desired text layout, you may have to use the

 element with the CLEAR attribute.

■ HSPACE and VSPACE Use to set the buffer region, in pixels, between the
embedded object and the surrounding text.

■ BORDER Use to set a border for the plug-in, in pixels. As with images, setting
this attribute to zero may be useful when using the embedded object as a link.

■ HEIGHT and WIDTH Use to set the vertical and horizontal size of the
embedded object, typically in pixels, although you may express them as
percentage values. The UNITS attribute also can be used to define the unit of

measurement for these attributes. UNITS has a pixel value, by default, but a value
of EN can be used to indicate that half the point size should be used as the
measurement unit. Values for HEIGHT and WIDTH should always be set, unless
the HIDDEN attribute is used. Setting the HIDDEN attribute to TRUE in the
<EMBED> element causes the plug-in to be hidden and overrides any HEIGHT
and WIDTH settings, as well as any effect the object may have on layout.

Another interesting attribute for the <EMBED> element is PALETTE, which
indicates the color palette for the plug-in to use. By default, the plug-in uses the
background palette, but you can alternatively use the foreground color palette by
setting the attribute to FOREGROUND. Setting this value properly may avoid the
annoying color shifting that occurs under Windows environments with limited color
support when switching between applications that use different color palettes.

Custom Plug-in Attributes
In addition to the standard attributes for the <EMBED> element, plug-ins may have
custom attributes to communicate specialized information between the HTML page and
the plug-in code. A movie-playing plug-in may have a LOOP attribute to indicate how
many times to loop the movie. Remember that, under HTML, the browser ignores all
nonstandard attributes when parsing the HTML. All other attributes are passed to the
plug-in, allowing the plug-in to examine the list for any custom attributes that could
modify its behavior. Enumerating all of the possible custom attributes isn’t possible. Each
particular plug-in used may have a variety of custom attributes. You should be certain to
look at the documentation for whatever plug-in you are going to use.

Attributes for Installation of Plug-ins
Users often have a difficult time installing plug-ins. Under Netscape 2, plug-ins often
had to be found and installed manually. Users could visit the Plug-in Plaza at
Browserwatch (http://www.browserwatch.com), for example, and install the plug-ins
that interested them. These plug-ins often came with installation scripts; a few required
users to copy the plug-in manually to the appropriate directory. The directory, usually
found in the same directory as the browser application itself, was named plug-ins. On
the UNIX system, however, the directory could be set by using the environment
variable NPX_PLUGIN_PATH, which defaulted to /usr/local/netscape/plugins,
~/netscape/plugins. This path could be different than where the browser application
was installed.

Having users figure out for themselves which plug-in to install manually isn’t the
best solution. You can set the PLUGINSPAGE attribute equal to a URL that indicates
the instructions for installing the plug-in. This way, if the browser encounters an
<EMBED> element that it can’t handle, it visits the specified page and provides
information on how to download and install the plug-in. Starting with Netscape 4,
however, this attribute automatically points to a special Netscape plug-in finder page.

564 H T M L : T h e C o m p l e t e R e f e r e n c e

The Netscape 4 browser release also simplifies the plug-in installation process by
introducing the JAR Installation Manager (JIM), which is used to install Java Archive
files (JARs). JAR files are a collection of files, including plug-ins, that can be
automatically downloaded and installed. Set the PLUGINURL attribute for the
<EMBED> element to the URL of a JAR file containing the plug-in that is needed. If the
user doesn’t have the appropriate plug-in already installed, the browser invokes JIM
with the specified JAR file and begins the download and installation process. The user
has control over this process. The downloaded objects may be signed—a type of
authentication—to help users avoid downloading malicious code. Figure 15-3 shows a
sample JIM window under Netscape 4.

In Netscape 4 and above, the PLUGINURL attribute takes precedence over
PLUGINSPAGE. Using PLUGINURL rather than PLUGINSPAGE is recommended.
If neither attribute is used, the Netscape browser defaults to a plug-in finder page.
Although the JIM provides a great deal of help in dealing with plug-ins, it is very
specific to Netscape. Microsoft’s Internet Explorer does support the <EMBED>
element, so any benefits of the JIM will not be experienced by Internet Explorer users.

<NOEMBED>
One important aspect of plug-ins is the idea of <NOEMBED>. Some browsers don’t
understand Netscape’s plug-in architecture, or even the <EMBED> element. Rather
than lock out these browsers from a Web page, the <NOEMBED> element enables

C h a p t e r 1 5 : C l i e n t - S i d e P r o g r a m m i n g a n d H T M L 565

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

Figure 15-3. JIM window under Netscape 4

you to provide some alternative text or marked-up content. In the following short
example, an AVI video is embedded in the page. The <NOEMBED> element
contains an image, which in turn has an alternative text reading set with the ALT
attribute. Note how the example degrades from a very sophisticated setting all the
way down to a text-only environment:

<EMBED SRC="welcome.avi" HEIGHT="100" WIDTH="100">

<NOEMBED>

</NOEMBED>

One potential problem with the <NOEMBED> approach occurs when a browser
supports plug-ins but lacks the specific plug-in to deal with the included binary object.
In this case, the user is presented with a broken puzzle-piece icon or a similar icon, and
then is directed to a page to download the missing plug-in. You should set the
PLUGINURL or PLUGINSPAGE attribute to start the user on the process of getting
the plug-in needed to view the content.

<OBJECT> Syntax for Plug-Ins
Starting with Netscape 4, the <OBJECT> element can be used to include a variety of
object types in a Web page, including Netscape plug-ins. Like the <EMBED> element,
the <OBJECT> element’s attributes determine the type of object to include, as well as
the type and location of the plug-in. The <OBJECT> element supports alternative
representations, if the browser isn’t capable of supporting the object. The <EMBED>
element that currently is used for plug-ins does not handle this well, although it does
provide the <NOEMBED> syntax. The following is the syntax of <OBJECT> as it
relates to the <EMBED> element (a more generalized discussion of the <OBJECT>
element is presented in “ActiveX Controls,” later in this chapter):

<OBJECT
DATA="URL of Object's Data"

ALIGN="LEFT | RIGHT | TOP | BOTTOM | MIDDLE"
CODEBASE="URL"

CLASSID="URL of plug-in to download"

HEIGHT="pixels"
ID="Unique Identifier"

TYPE="MIME Type"
WIDTH="pixels">

Alternative HTML representation here

</OBJECT>

566 H T M L : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 5 : C l i e n t - S i d e P r o g r a m m i n g a n d H T M L 567

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

For the complete syntax of the <OBJECT> element, refer to the element reference in
Appendix A.

The DATA attribute represents the URL of the object’s data and is equivalent to the
SRC attribute of <EMBED>. Like the <EMBED> element, the TYPE attribute represents
the MIME type of the object’s data. This may sometimes be inferred from the value of
the DATA attribute. The CODEBASE attribute, which is similar to the PLUGINSPAGE
attribute, represents the URL of the plug-in. The CLASSID attribute is used to specify
the URL to use to install the plug-in, by using the JIM. If no CLASSID attribute is
specified and the object can’t be handled, the object is ignored, and any nested HTML is
displayed. The ID attribute is used to set the name of the object for scripting. If the
browser can’t handle the type, or can’t determine the type, it can’t embed the object.
Subsequent HTML is parsed as normal. The following is an example of using the
LiveAudio plug-in under Netscape 4 with the <OBJECT> syntax:

<OBJECT DATA="click.wav" TYPE="audio/wav" HEIGHT="60" WIDTH="144 "

AUTOSTART="FALSE">

Sorry, no LiveAudio installed...

</OBJECT>

Page authors should avoid referencing plug-ins with the <OBJECT> element,
because compatibility issues with Microsoft Internet Explorer may arise.

Scripting and Plug-Ins
Plug-ins can be accessed from a scripting language. Each plug-in in a document can be
referenced in Netscape’s version of JavaScript as an element of the embeds[] collection,
which is part of the document object. The NAME attribute should be set to a unique
identifier, so that the plug-in can be accessed easily by name from a scripting language.
Internet Explorer and Netscape 4 prefer the use of the ID attribute; the plug-in may not
work well with the NAME attribute. For backward compatibility with Netscape 3.x–
generation browsers, the NAME attribute should be used whenever possible. An
example of how a plug-in is named is shown here:

<EMBED SRC="welcome.avi" NAME="WelcomeMovie" HEIGHT="100"

WIDTH="100">

This example gives the LiveVideo plug-in the name WelcomeMovie. After the plug-in is
named, it can be accessed from JavaScript as document.WelcomeMovie. If it is the
second plug-in on the page, it could also be referenced as document.embeds[1]. Why
not document.embeds[2]? Ordered arrays in JavaScript start numbering at zero; so
document.embeds[0] references the first plug-in, document.embeds[1] references the
second plug-in, and so on.

Under Netscape 3 and 4 and Internet Explorer 4, you can determine which plug-ins
are available in the browser by using the plugins[] collection, which is part of the
navigator object in JavaScript. The following markup displays the plug-ins that are
installed in a Netscape browser:

<HTML>

<HEAD>
<TITLE> Print Plug-ins </TITLE>

</HEAD>

<BODY>
<H2 ALIGN="CENTER"> Plug-ins Installed </H2>

<HR>

<SCRIPT LANGUAGE="JavaScript">
if (navigator.appName == "Microsoft Internet Explorer")

document.write("Plug-ins[] collection not supported under IE");
else

{
num_plugins = navigator.plugins.length;
for (count=0; count < num_plugins; count++)

document.write(navigator.plugins[count].name + "
");

}
</SCRIPT>
</BODY>

</HTML>

Note that this example will not display the plug-ins under Internet Explorer,
because that browser doesn’t support the same plugins[] collection. Under Netscape,
however, you can use some simple if-then logic to determine which HTML to use if a
particular plug-in is loaded in the browser.

After you name an occurrence of a plug-in in a page, you may be able to
manipulate the plug-in’s actions even after you load the page. Netscape browsers,
starting with the 3.x generation, include a technology called LiveConnect that enables
JavaScript to communicate with Java applets and plug-ins. However, only those
plug-ins written to support LiveConnect can be manipulated by using LiveConnect.
Netscape’s LiveAudio, as presented in Chapter 9, does support LiveConnect. Using
LiveAudio in conjunction with LiveConnect, audio-enhanced buttons can be created.
The next simple example shows how the link could play a short sound when the
mouse passes over it. This example could easily be extended to create animated
buttons with synchronized sounds by using LiveConnect.

568 H T M L : T h e C o m p l e t e R e f e r e n c e

<HTML>

<HEAD>
<TITLE> Audio Link </TITLE>

</HEAD>

<BODY>
<EMBED SRC="click.wav" HIDDEN="TRUE" AUTOSTART="FALSE">

<A HREF="http://www.yahoo.com"

onmouseover="document.embeds[0].play(false)"> Yahoo!
</BODY>

</HTML>

The preceding example is very specific to Netscape. The implementation of LiveConnect
is buggy and may not work under all versions of Navigator.

Tying together plug-ins by using a scripting language in conjunction with
LiveConnect hints at the power of such component models as Netscape’s plug-ins.
However, Netscape plug-ins are often passed over in favor of Java or ActiveX for general
programming tasks, and plug-ins are often regulated to handling new media forms.

Java Applets
Sun Microsystems’ Java technology (http://www.javasoft.com) is an attractive,
revolutionary approach to cross-platform, Internet-based development. Java promises
a platform-neutral development language that allows programs to be written once and
deployed on any machine, browser, or operating system that supports the Java virtual
machine (JVM). Java uses small Java programs, called applets, that were first introduced
by Sun’s HotJava browser. Also used by Netscape, Microsoft, and others, applets are
downloaded and run directly within a browser to provide new functionality.

Applets are written in the Java language and compiled to a machine-independent
byte code, which is downloaded automatically to the Java-capable browser and run
within the browser environment. But even with a fast processor, the end system may
appear to run the byte code slowly compared to a natively compiled application,
because the byte code must be interpreted by the JVM. Even with recent Just-In-Time
(JIT) compilers in newer browsers, Java often doesn’t deliver performance equal to
natively compiled applications. Even if compilation weren’t an issue, current Java
applets generally aren’t persistent; they may have to be downloaded again in the
future. Java-enabled browsers act like thin-client applications, because they add code
only when they need it. In this sense, the browser doesn’t become bloated with added
features, but expands and contracts upon use.

Security in Java has been a serious concern from the outset. Because programs are
downloaded and run automatically, a malicious program could be downloaded and

C h a p t e r 1 5 : C l i e n t - S i d e P r o g r a m m i n g a n d H T M L 569

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

run without the user being able to stop it. Under the first implementation of the
technology, Java applets had little access to resources outside the browser’s
environment. Within Web pages, applets can’t write to local disks or perform other
harmful functions. This framework has been referred to as the Java sandbox. Developers
who want to provide Java functions outside of the sandbox must write Java
applications, which run as separate applications from browsers. Other Internet
programming technologies (plug-ins and ActiveX) provide little or no safety from
damaging programs.

Oddly, Java developers often want to add just these types of insecure features, as
well as such powerful features as persistence and interobject communication. In fact,
under new browsers, extended access can be requested for signed Java applets. (A
signed applet enables users to determine who authored its code and to accept or reject
the applet accordingly.) Java applets can securely request limited disk access, limited
disk access and network usage, limited disk read access and unlimited disk write
access, and unrestricted access. Users downloading an applet that is requesting any
enhanced privileges are presented with a dialog box that outlines the requested access
and presents the applet’s credentials in the form of its digital signature. The user can
then approve or reject the applet’s request. If the user doesn’t approve the request, the
applet may continue to run, but it can’t perform the denied actions.

Java looks very much like C++. The following code fragment shows a simple
example of a Java applet:

import java.applet.Applet;

import java.awt.Graphics;

public class helloworld extends Applet {

public void paint(Graphics g)
{

g.drawString("Hello World", 50, 25);

}

}

Sending this code through a Java compiler (such as JavaSoft’s javac) should
produce a class file called helloworld.class, which can be used on a Web page to
display the phrase “Hello World.” You can use the <APPLET> element to add a Java
applet to a Web page. As with the <EMBED> element, you must indicate the object to
add. In this case, use the CODE attribute to indicate the URL of the Java class file to
load. Because this is an included object, the HEIGHT and WIDTH attributes should
also be set. The following example includes the HelloWorld applet in a Web page.
Figure 15-4 shows the rendering of the Java example under Netscape 4 with Java
turned on. Figure 15-5 shows the same example rendered with Java turned off.

570 H T M L : T h e C o m p l e t e R e f e r e n c e

<HTML>

<HEAD>
<TITLE> Java Hello World </TITLE>

</HEAD>

<BODY>
<H1 ALIGN="CENTER"> Java Applet Demo </H1>

<HR>

<APPLET CODE="helloworld.class"
HEIGHT="50"

WIDTH="175">
<H1>Hello World for you non-Java-aware browsers </H1>

</APPLET>
</BODY>

</HTML>

In the preceding code example, between <APPLET> and </APPLET> is an
alternative rendering for browsers that don’t support Java or the <APPLET> element,
or that have Java support disabled.

C h a p t e r 1 5 : C l i e n t - S i d e P r o g r a m m i n g a n d H T M L 571

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

Figure 15-4. Java example under Netscape 4 with Java turned on

<APPLET> Syntax
Because Java applets are included objects, just like Netscape plug-ins, the syntax for the
<APPLET> element is similar to the <EMBED> element, particularly for things such as
alignment and sizing. The general syntax for <APPLET> is shown in the element
reference in Appendix A.

The most important attribute for the <APPLET> element is probably CODE, which
is set to the URL of the Java class to load into the page. The CODEBASE attribute can
be set to the URL of the directory that contains the Java classes; otherwise, the current
document’s URL is used for any relative URLs.

Because Java applets are rectangular, embedded objects (similar to images or
plug-ins), the <APPLET> element has many of the same attributes as images and
plug-ins, including ALIGN, HEIGHT, WIDTH, HSPACE, and VSPACE.

The ARCHIVE attribute can be used to include many classes into a single archive
file, which can then be downloaded to the local disk. The file specified by the
ARCHIVE attribute may be a compressed PKZIP file (.zip) or a Java Archive (.jar),
which can be made with a JAR packaging utility. For example,

572 H T M L : T h e C o m p l e t e R e f e r e n c e

Figure 15-5. Java example under Netscape 4 with Java turned off

<APPLET ARCHIVE="bunchofclasses.zip"

CODE="sampleApp.class"
WIDTH="560"

HEIGHT="270">
</APPLET>

downloads all the classes in bunchofclasses.zip. After the file is downloaded, the CODE
attribute is examined and the archive is checked to see whether sampleApp.class exists
there. If not, it is fetched from the network. Due to the expense of downloading many
class files by using HTTP, ideally you should attempt to archive all potentially used
classes and send them simultaneously. You may also derive some caching benefit by
using the ARCHIVE attribute, because it keeps class files in the user’s cache or a
temporary directory. According to the HTML 4.0 specification, the ARCHIVE attribute
may take a comma-separated list of archive files. So far, however, no browsers support
more than one archive file per <APPLET> occurrence. The ARCHIVE attribute is
currently only supported by Netscape 3 and above.

Passing Data to Java Applets
Unlike plug-ins, Java applets don’t use special attributes to pass data. Instead, they use
a different element called <PARAM>, which is enclosed within the <APPLET>
element as the way to pass in information. You could extend the HelloWorld applet to
allow the message output to be modified by using <PARAM> elements to pass in a
message, as shown here:

<APPLET CODE="helloworld.class"
WIDTH="50"

HEIGHT="175">
<PARAM NAME="Message" VALUE="Hello World in Java!">

<H1>Hello World for you non-Java-aware browsers </H1>

</APPLET>

The following is the HTML 4 syntax for <PARAM>; it is the same for Java applets
and ActiveX controls:

<PARAM

NAME="Object property name"
VALUE="Value to pass in with object name"

VALUETYPE="DATA | REF | OBJECT"
TYPE="MIME Type"
ID="document-wide unique id">

</PARAM>

C h a p t e r 1 5 : C l i e n t - S i d e P r o g r a m m i n g a n d H T M L 573

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

The NAME attribute for <PARAM> is used to specify the name of the object
property that is being set; in the previous example, the name is Message. If you are
using a premade Java applet, the various property names should be specified in the
documentation for the applet. The actual value to be assigned to the property is set by
the VALUE attribute. The VALUETYPE attribute specifies the meaning of the VALUE
attribute. The data passed to an attribute typically takes the form of a string. Setting the
VALUETYPE attribute to DATA results in the default action. Setting VALUETYPE to
REF indicates that the data assigned to the VALUE attribute is a URL that references
an external file to load for the attribute. The last value for VALUETYPE is OBJECT,
which indicates that VALUE is set to the name of an applet or object located
somewhere else within the document. The data in the applet or object can be
referenced to allow objects to “talk” to each other.

The <PARAM> elements for a particular Java applet occur within the <APPLET>
tag; a Java applet may have many <PARAM> elements. The <APPLET> element may
also enclose regular HTML markup that provides an alternative rendering for
non-Java-capable browsers. When alternative content is found within the <APPLET>
element, the <PARAM> elements should be placed before the other content. Note that
you also can set the ALT attribute for the <APPLET> element, to provide a short
description. Authors should use the text contained within the element as the
alternative text, and not the ALT attribute.

Java and Scripting
Java applets may control scripts in a Web page. Inclusion of the MAYSCRIPT attribute
in the <APPLET> element permits the applet to access JavaScript. When dealing with
applets retrieved from other sources, you can use the MAYSCRIPT attribute to prevent
the applet from accessing JavaScript without the user’s knowledge. If an applet
attempts to access JavaScript when this attribute has not been specified, a run-time
exception should occur.

Probably more interesting for page designers is the fact that scripts can control, or
even modify, Java applets that are embedded in a page. For the applet to be accessed, it
should be named by using the NAME attribute for the <APPLET> element. Microsoft
also supports the ID attribute, which has the same functionality as NAME. For
compatibility purposes, NAME should be used.

Providing a unique name for the applet allows scripts to access the applet and its
public interfaces. The name can also be used by other applets to allow the applets to
communicate with each other. JavaScript in Netscape 3 and above, as well as in
Internet Explorer 4 and above, allows access to the applets in a page via the applets[]
collection, which is a property of the document object. When an applet is named, it can
be accessed via JavaScript as document.appletname (document.myApplet) or
document.applets["myApplet"]. If the Java applet has public properties exposed, they
can be modified from a script in a Web page. The following simple Java code takes the

574 H T M L : T h e C o m p l e t e R e f e r e n c e

Hello World example from earlier in the chapter and expands it with a setMessage
method, which can be used to change the message displayed in the applet:

import java.applet.Applet;

import java.awt.Graphics;
public class newhelloworld extends Applet {

String theMessage;

public void init()
{

theMessage = new String("Hello World");

}
public void paint(Graphics g)

{
g.drawString(theMessage, 50, 25);

}
public void setMessage(String message)

{

theMessage = message;

repaint();
}

}

If this Java code is compiled into a class file, it can be included in a Web page and
accessed via JavaScript, as shown next. The following example markup shows how a
form could be used to collect data from the user and update the applet in real time:

<HTML>
<HEAD>

<TITLE> LiveConnect Java Hello World </TITLE>
</HEAD>

<BODY>

<H1 ALIGN="CENTER"> LiveConnect Java Applet Demo </H1>
<HR>

<APPLET CODE="newhelloworld.class"
NAME="NewHello"
HEIGHT="50"

WIDTH="175">

C h a p t e r 1 5 : C l i e n t - S i d e P r o g r a m m i n g a n d H T M L 575

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

576 H T M L : T h e C o m p l e t e R e f e r e n c e

<H1>Hello World for you non-Java-aware browsers </H1>

</APPLET>

<FORM NAME="TestForm">

<INPUT TYPE="TEXT" SIZE="15" MAXLENGTH="15" NAME="NewMessage">
<INPUT TYPE="BUTTON" VALUE="Set Message"

onclick="document.NewHello.setMessage(NewMessage.value)">

</BODY>

</HTML>

Netscape initially called this technology LiveConnect. Using this technology is
similar to how you may communicate with plug-ins embedded in a Web page. Microsoft
also supports the same form of applet access under Internet Explorer, so it is unclear
whether LiveConnect will continue to be the name used to describe using JavaScript to
communicate with Java applets. The bottom line is that this technology is not unique to
Netscape.

<OBJECT> Syntax for Java Applets
The HTML 4.0 specification indicates that the <APPLET> element has been deprecated
and that <OBJECT> should be used instead. Although this may be the decree, using
<OBJECT> for Java applets has some serious problems. The following is the most basic
HTML 4 syntax for inserting an object, such as a Java applet:

<OBJECT

CLASSID="URL of Object to include"

HEIGHT="pixels"

WIDTH="pixels">

Parameters and alternative text

</OBJECT>

For the complete <OBJECT> syntax, see the element reference in Appendix A.
Notice that the CLASSID attribute is used to specify the URL of the object to

include. In the case of Java applets, you should use java:. For ActiveX controls, use
clsid:. To rewrite a simple Java example, use the following code:

C h a p t e r 1 5 : C l i e n t - S i d e P r o g r a m m i n g a n d H T M L 577

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

<OBJECT CLASSID="java:Blink.class" WIDTH="300" HEIGHT="100">

<PARAM NAME="LBL" VALUE="Java, is, fun, exciting, and new.">
<PARAM NAME="SPEED" VALUE="2">

This will display in non-Java-aware or non-Java-enabled browsers.
</OBJECT>

Because of the fragmentation of the Java community, JavaSoft has made some
attempts to bring together the syntax of Java applets via a Java plug-in. The syntax for
this plug-in under Netscape and Internet Explorer includes both <OBJECT> and
<EMBED> forms. Readers interested in this syntax for applet inclusion are directed
straight to JavaSoft for the latest syntax (http://www.javasoft.com), because the syntax
is changing quite rapidly.

Using Java Without Programming
The broad functionality of Java can cost both time and money. Java programming
assumes that you have a familiarity with an advanced programming language as well
as object-oriented design. Web professionals lacking programming skills or budgets
can find many free, premade applets available for reuse or sale at directories such as
Gamelan (http://www.gamelan.com). Commercial vendors actively sell a variety of
premade Java applets, as well as Java components called JavaBeans, which can be used
to create powerful Web applications.

JavaBeans is a portable, platform-independent component model written in Java.
Like other components, such as ActiveX controls, JavaBeans components (called Beans
for short) are reusable software components that can be strung together to form
complex applications. In one sense, Beans are just a special form of applet that are
written in such a manner that tools can inspect and manipulate the Beans and the
Beans can intercommunicate in a predictable manner. Beans generally are self-
contained and persistent. You can analogize components such as Beans as bricks that
form larger structures, like buildings. Tools such as Netscape’s Visual JavaScript
(see Figure 15-6) already provide some basic drag-and-drop programming capabilities
by tying together JavaBeans components with JavaScript code.

While Java provides a relatively secure and powerful cross-platform development
environment, it does so at the expense of speed and local operating system integration.
Because of this, many Web developers, particularly those building intranet
applications, have explored using ActiveX controls as Web page components.

578 H T M L : T h e C o m p l e t e R e f e r e n c e

ActiveX Controls
ActiveX (http://www.microsoft.com/activex), which is the Internet portion of the
Component Object Model (COM), is Microsoft’s component technology for creating
small components, or controls, within a Web page. ActiveX is intended for distributing
these controls via the Internet in order to add new functionality to browsers such as
Internet Explorer. Microsoft maintains that ActiveX controls are more similar to
generalized components than they are to plug-ins, because ActiveX controls can reside
beyond the browser, within container programs such as Microsoft Office. ActiveX
controls are similar to Netscape plug-ins insofar as they are persistent and

Figure 15-6. Netscape’s Visual JavaScript uses Beans

machine-specific. Although this makes resource use a problem, installation is not an
issue: the components download and install automatically.

Security is a big concern for ActiveX controls. Because these small pieces of code
could potentially have full access to a user’s system, they could cause serious damage.
This capability, combined with automatic installation, creates a serious problem with
ActiveX. End users may be quick to click a button to install new functionality, only to
accidentally get their hard drives erased. This unlimited functionality of ActiveX
controls creates a gaping security hole. To address this problem, Microsoft provides
authentication information to indicate who wrote a control, in the form of code signed
by a certificate, as shown in Figure 15-7.

Certificates only provide some indication that the control creator is reputable;
they do nothing to prevent a control from actually doing something malicious. Safe
Web browsing should be practiced by accepting controls only from reputable
sources.

C h a p t e r 1 5 : C l i e n t - S i d e P r o g r a m m i n g a n d H T M L 579

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

Figure 15-7. ActiveX signed-code certificate

580 H T M L : T h e C o m p l e t e R e f e r e n c e

Adding Controls to Web Pages
Adding an ActiveX control to a Web page requires the use of the <OBJECT> element.
The basic form of the <OBJECT> element for an ActiveX control is as follows:

<OBJECT

CLASSID="CLSID:class-identifier"
HEIGHT="pixels"

WIDTH="pixels"
ID="unique identifier>"

Parameters and alternative text rendering

</OBJECT>

CLASSID is the most important attribute for the <OBJECT> element when you
insert ActiveX controls. The value of CLASSID identifies the object to include. Each
ActiveX control has a class identifier of the form CLSID:class-identifier, where the
value for class-identifier is a complex string, such as the following, that uniquely
identifies the control:

99B42120-6EC7-11CF-A6C7-00AA00A47DD2

This string is the identifier for the ActiveX label control.
The other important attributes for the basic form of <OBJECT> when used with

ActiveX controls include HEIGHT and WIDTH, which are set to the pixel dimensions
of the included control, and ID, which associates a unique identifier with the control
for scripting purposes. Between the <OBJECT> and </OBJECT> tags are various
<PARAM> elements that specify information to pass to the control, and alternative
HTML markup that displays in non-ActiveX-aware browsers. The following is a
complete example that uses the <OBJECT> element to insert an ActiveX control into a
Web page. The markup shown specifies a simple label control. Figure 15-8 shows the
rendering of the control under Internet Explorer 4 and Netscape 4.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>

<HEAD>
<TITLE> ActiveX Label Test </TITLE>

</HEAD>

<BODY>
<H1 ALIGN="CENTER"> ActiveX Demo </H1>

<HR>

<OBJECT CLASSID="CLSID:99B42120-6EC7-11CF-A6C7-00AA00A47DD2"

ID="IeLabel1" HEIGHT="65" WIDTH="325">
<PARAM NAME="_ExtentX" VALUE="6879">

<PARAM NAME="_ExtentY" VALUE="1376">
<PARAM NAME="Caption" VALUE="Hello World">
<PARAM NAME="Alignment" VALUE="4">

<PARAM NAME="Mode" VALUE="1">

<PARAM NAME="ForeColor" VALUE="#FF0000">
<PARAM NAME="FontName" VALUE="Arial">

<PARAM NAME="FontSize" VALUE="36">
Hello World for you non-ActiveX users!

</OBJECT>
</BODY>

</HTML>

After you look at the ActiveX Label Test code in Figure 15-8, you may have
questions about how to determine the CLASSID value for the control and the
associated <PARAM> values that can be set. However, providing a chart for all of the
controls and their associated identifiers isn’t necessary. Many Web page tools,
including Microsoft Control Pad (http://www.microsoft.com/workshop/misc/cpad),

C h a p t e r 1 5 : C l i e n t - S i d e P r o g r a m m i n g a n d H T M L 581

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

Figure 15-8. Rendering of ActiveX control under Internet Explorer and under
Netscape

support the automated insertion of controls into a page, as well as configuration of the
various control properties. Figure 15-9 shows an example of the Control Pad and the
configuration of controls.

Installing ActiveX Controls
As mentioned earlier, the most important attribute in the <OBJECT> syntax is
probably CLASSID, which is used to identify the particular object to include. For
example, the syntax CLSID:class-identifier is for registered ActiveX controls. Generally,
however, when the <OBJECT> element supports other included items well, CLASSID
might be set to other forms, such as java:Blink.class, as shown earlier in the chapter in
the section “<OBJECT> Syntax for Java Applets.” Microsoft also allows the use of the
CODE attribute for the <OBJECT> element. CODE is used to set the URL of the Java
class file to include.

ActiveX and plug-ins are similar in the sense that both are persistent, platform-
specific components. ActiveX controls, however, are easy to download and install. This

582 H T M L : T h e C o m p l e t e R e f e r e n c e

Figure 15-9. Using Control Pad to insert and configure ActiveX controls

C h a p t e r 1 5 : C l i e n t - S i d e P r o g r a m m i n g a n d H T M L 583

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

installation, or running of ActiveX controls, can be described as a series of steps,
as follows:

1. The browser loads an HTML page that references an ActiveX control with the
<OBJECT> element and its associated CLASSID attribute.

2. The browser checks the system registry to see whether the control specified
by the CLASSID value is installed; this control takes the following form:
CLSID:some-id-number.

3. If the control is installed, the browser compares the CODEBASE version attribute
stored in the registry against the CODEBASE version attribute in the HTML
page. If a newer version is specified in the page, a newer control is needed.

4. If the control is not installed, the value of the CODEBASE attribute is used to
determine the location of the control to download. The CODETYPE attribute
might also be used to set the MIME type of the object to download. Most
inclusions of ActiveX controls avoid this, because it tends to default to the
MIME type application/octet-stream.

For security reasons, the browser checks to see whether the code is signed, before
the download and installation begins. If the code is not signed, the user is warned. If
the code is signed, the user is presented with an Authenticode certificate bearing the
identity of the author of the control. Based on these criteria, the user can allow or
deny the installation of the control on his or her system. If the user accepts the
control, it is automatically downloaded, installed, and invoked in the page for its
specific function. Finally, the control is stored persistently on the client machine for
further invocation. This process may be avoided when the DECLARE attribute is
present. The DELCARE attribute is used to indicate whether the <OBJECT> is being
defined only and not actually instantiated until later <OBJECT> occurrences, which
will start the installation process.

The W3C HTML 4.0 specification also indicates use of the STANDBY attribute, which
can be used to specify a message to display as the object is being downloaded. This is not
currently supported by any browsers.

Passing Data to ActiveX Controls
Like Java applets, ActiveX controls do not use special attributes to pass data. Instead,
they use a different element, called <PARAM>, which is enclosed within the
<OBJECT> element. You can pass parameters to the label control by using the
<PARAM> elements, as shown here:

<OBJECT CLASSID="CLSID:99B42120-6EC7-11CF-A6C7-00AA00A47DD2"

ID="IeLabel1" HEIGHT="65" WIDTH="325">

<PARAM NAME="Caption" VALUE="Hello World">

<PARAM NAME="FontName" VALUE="Arial">

<PARAM NAME="FontSize" VALUE="36">

Hello World for you non-ActiveX users!

</OBJECT>

In this case, the Caption parameter is set to Hello World, the FontName parameter
is set to Arial, and the FontSize parameter is set to 36 points. Recall the HTML 4 syntax
for <PARAM> (shown earlier in this chapter in the section “Passing Data to Java
Applets”), which is the same for Java applets and ActiveX controls.

The meaning of these attributes is provided in the section “Java Applets,” earlier in
this chapter, as well as in Appendix A. Microsoft has introduced a few changes for data
binding. Internet Explorer 4 and above supports the ability to bind data dynamically
from a database or text file. With data binding, the parameters for an ActiveX control
can be set by using an external file or database entry. The attributes that provide this
functionality include

■ DATAFLD Sets the column name to use for the <PARAM> element

■ DATASRC Bound to the identifier, which indicates the data to bind to

■ DATAFORMATS Set to either HTML or TEXT, indicating whether the
bound data is HTML or plain text

For more information on how to use data binding, see the Microsoft SiteBuilder
Network (http://www.microsoft.com/sitebuilder).

Another way to pass data to ActiveX controls or other embedded objects is by using
the DATA attribute, which should be set to a URL that references a data file to load.
The type of this data may be determined by the file suffix. The TYPE attribute also can
be used to explicitly declare the MIME type for the data to use.

Using ActiveX Without Programming
Developers can access an abundance of available controls for various purposes. Many
repositories of free and commercial ActiveX controls are available on the Web, such as
ActiveX.com (http://www.activex.com). Microsoft already includes a variety of
controls built in to Internet Explorer; these include various form-like elements, a timer,
a preloader control that allows pages and objects to be prefetched, and many others.
Microsoft also promotes controls for multimedia, such as ActiveMovie and Netshow,
and controls for database access, such as ActiveX Data Objects (ADO), Remote Data
Services (RDS), and Tabular Data Control (TDC). Microsoft even provides a control
called the Agent control, which can be used to add to a Web page an animated agent
that the user can interact with (shown in Figure 15-10).

584 H T M L : T h e C o m p l e t e R e f e r e n c e

As with Java applets, page designers can use prebuilt controls for most functions.
Many Web page development tools (such as Microsoft Control Pad) provide an easy
way to string together ActiveX controls.

Page designers can also write their own ActiveX controls, though in some cases this
may be like reinventing the wheel. Controls can be created by using a variety of
languages, such as Visual Basic, C++, and Java. You can also convert existing Windows
programs to controls. The ActiveX model is not limited to client-side controls. It is part
of a larger framework known as the Active Platform, with server-side and distributed
aspects. Although a discussion of the Active Platform is beyond the scope of this book,
one of its important aspects is that client-side controls expose their interfaces through
the Component Object Model, which can be accessed and controlled easily through
scripting languages.

ActiveX Controls and Scripting
As with Java applets, you can control ActiveX controls by using a scripting language,
such as JavaScript or VBScript. One advantage of ActiveX controls is that many
premade controls with exposed properties are available that can be easily manipulated

C h a p t e r 1 5 : C l i e n t - S i d e P r o g r a m m i n g a n d H T M L 585

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
LFigure 15-10. Agent, an amusing and powerful ActiveX control

586 H T M L : T h e C o m p l e t e R e f e r e n c e

by a scripting language. Before a control can be modified, however, it must be named,
by using the ID attribute. After it is named, scripting code for a particular event can be
set for the control, so that it can respond to events. As discussed in the last chapter,
Microsoft supports a rich event model. However, many of these events (noted with an
asterisk) are beyond the current HTML 4.0 specification. The <OBJECT> element
supports the following events: onafterupdate*, onbeforeupdate*, onblur*, onclick,
ondblclick, ondragstart*, onfocus*, onhelp*, onkeydown, onkeypress, onkeyup,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup,
onreadystatechange*, onresize*, onrowenter*, onrowexit*, and onselectstart*.
However, these events generally aren’t used directly with JavaScript as attributes to
the <OBJECT> element. VBScript access may be more appropriate.

The events designated with an asterisk are defined for Internet Explorer and were not
part of the W3C HTML 4.0 standard at the time of this writing.

The following example, created with the Control Pad, shows how two ActiveX
command buttons can be used to communicate with a label control to change its
message:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>
<HEAD>
<TITLE> ActiveX Scripting Demo </TITLE>

<SCRIPT LANGUAGE="VBScript">
<!--

Sub CommandButton1_Click()

Label1.Caption = "I've been clicked!"
end sub

Sub CommandButton2_Click()
Label1.Caption = "Not Set"

end sub

-->
</SCRIPT>

</HEAD>

<BODY>
<H1 ALIGN="CENTER"> ActiveX Scripting </H1>

<HR>
Label:

<OBJECT CLASSID="CLSID:978C9E23-D4B0-11CE-BF2D-00AA003F40D0"

ALIGN="TOP" ID="Label1" HEIGHT="80" WIDTH="200">

<PARAM NAME="BackColor" VALUE="8454143">

<PARAM NAME="Caption" VALUE="Not set">
<PARAM NAME="Size" VALUE="4233;1212">

<PARAM NAME="BorderColor" VALUE="8421504">
<PARAM NAME="BorderStyle" VALUE="1">
<PARAM NAME="FontHeight" VALUE="200">

<PARAM NAME="FontCharSet" VALUE="0">

<PARAM NAME="FontPitchAndFamily" VALUE="2">
<PARAM NAME="ParagraphAlign" VALUE="3">

</OBJECT>
<HR>

<OBJECT ALIGN="TOP" ID="CommandButton1" WIDTH="168" HEIGHT="52"
CLASSID="CLSID:D7053240-CE69-11CD-A777-00DD01143C57">

<PARAM NAME="ForeColor" VALUE="65535">

<PARAM NAME="BackColor" VALUE="10485760">

<PARAM NAME="Caption" VALUE="Update Label">
<PARAM NAME="Size" VALUE="3577;1101">
<PARAM NAME="FontHeight" VALUE="200">

<PARAM NAME="FontCharSet" VALUE="0">
<PARAM NAME="FontPitchAndFamily" VALUE="2">

<PARAM NAME="ParagraphAlign" VALUE="3">

</OBJECT>

<OBJECT ALIGN="TOP" ID="CommandButton2" WIDTH="168" HEIGHT="52"

CLASSID="CLSID:D7053240-CE69-11CD-A777-00DD01143C57">
<PARAM NAME="ForeColor" VALUE="65535">
<PARAM NAME="BackColor" VALUE="10485760">

<PARAM NAME="Caption" VALUE="Reset Label">
<PARAM NAME="Size" VALUE="3577;1101">

<PARAM NAME="FontHeight" VALUE="200">

<PARAM NAME="FontCharSet" VALUE="0">
<PARAM NAME="FontPitchAndFamily" VALUE="2">

<PARAM NAME="ParagraphAlign" VALUE="3">
</OBJECT>
</BODY>

</HTML>

Note that the event handlers are written in VBScript. This file won’t work in
anything other than Internet Explorer 3 or above running on a Windows-based system.
Although scripting is a simple but powerful tool for ActiveX controls, controls (as with

C h a p t e r 1 5 : C l i e n t - S i d e P r o g r a m m i n g a n d H T M L 587

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

588 H T M L : T h e C o m p l e t e R e f e r e n c e

plug-ins) tend to be too platform-specific to be used for external Web sites, unless
pages are coded very carefully. On a Windows-centered intranet, however, the use of
platform-dependent controls and VBScript might not be a problem.

Cross-Platform Support with Plug-Ins and
ActiveX Controls

Although the whole point of Java applets is to deal with cross-platform compatibility
issues, Microsoft ActiveX controls and Netscape plug-ins are extremely platform- and
browser-dependent. However, you can provide limited support for both platforms.
Netscape users interested in running ActiveX controls may want to look at the
ScriptActive plug-in, available from Ncompass Labs (http://www.ncompasslabs.com).
This plug-in provides general compatibility under Netscape for ActiveX controls,
assuming the site using them pays attention to Ncompass conventions. The Ncompass
approach is not terribly robust. A preferred method is to attempt to provide a plug-in
solution in conjunction with an ActiveX solution. Consider the inclusion of Macromedia
Flash media in a Web page. Internet Explorer prefers the Flash control, whereas Netscape
prefers a Flash plug-in. Very old browsers or less common browsers may only be able to
handle an animated GIF. All browsers can be accommodated with a little planning. For
example, Macromedia’s Aftershock tool (included with Flash) can generate HTML
markup and JavaScript that can be used to handle all of the situations. A modified
version of this tool’s output for a Flash file called splashpage.swf is shown here:

<OBJECT classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"

CODEBASE="http://active.macromedia.com/flash2/cabs/
swflash.cab#version=3,0,0,0"

ID="splashpage" WIDTH="320" HEIGHT="240">

<PARAM NAME="movie" VALUE="splashpage.swf">
<PARAM NAME="quality" VALUE="autohigh">

<PARAM NAME="bgcolor" VALUE="#FFFFFF">

<!-- Script code for non-ActiveX browsers like Netscape -->
<SCRIPT LANGUAGE="JavaScript">

<!--
var ShockMode = 0;
if (navigator.mimeTypes &&

navigator.mimeTypes["application/x-shockwave-flash"] &&
navigator.mimeTypes["application/x-shockwave-flash"].enabledPlugin)

{

if (navigator.plugins && navigator.plugins["Shockwave Flash"])
ShockMode = 1;

}
if (ShockMode)

{

document.write('<EMBED SRC="splashpage.swf"');
document.write(' swLiveConnect="FALSE" WIDTH="320" HEIGHT="240"');

document.write(' QUALITY="autohigh" BGCOLOR="#FFFFFF"');
document.write(' TYPE="application/x-shockwave-flash"

PLUGINSPAGE="http://www.macromedia.com/

shockwave/download/index.cgi?P1

Prod Version=ShockwaveFlash">');
document.write('</EMBED>');

}
else

if (!(navigator.appName && navigator.appName.indexOf("Netscape")>=0
&& navigator.appVersion.indexOf("2.")>=0)

{

document.write('<IMG SRC="splashpage.gif" WIDTH="320" HEIGHT="240"

BORDER="0">');
}

//-->

</SCRIPT>

<NOEMBED>

</NOEMBED>

<NOSCRIPT>

</NOSCRIPT>

</OBJECT>

In this example, the browser should try to use an ActiveX control. If the browser
can’t handle the ActiveX control, it should go for a plug-in. As a last resort, if scripting
is turned off, the plug-in isn’t present, or the browser doesn’t support plug-ins, the
browser should end up with an animated GIF. Of course, the plug-in part of the
example doesn’t provide an accurate reference to a JAR file for automatic download
of the plug-in, but it gets the point across. This code can be added by using the
Macromedia Aftershock tool. Careful thought, combined with some server- or
client-side scripting, should enable you to deal with the various browser conditions
that may occur. Until the syntax for including objects is straightened out, this is the
only reasonable approach to handling cross-browser issues, short of locking users out
of a page or falling back to less interactive or less motivating technology.

C h a p t e r 1 5 : C l i e n t - S i d e P r o g r a m m i n g a n d H T M L 589

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

590 H T M L : T h e C o m p l e t e R e f e r e n c e

The Future of <OBJECT>
According to the HTML 4.0 specification, <OBJECT> will be the main way to add any
form of object to a Web page, whether it’s an image, image map, sound, video, ActiveX
control, Java applet, or anything else. This approach seems appropriate, but before
rushing out to use <OBJECT>, understand the ramifications. Even though <OBJECT>
can be used in some browsers, the syntax is not consistent. <OBJECT> is still mostly
used to include ActiveX controls in a page. Other meanings are not fully supported, if
at all. According to the HTML 4.0 specification, the <OBJECT> element can be used to
include HTML from another file by using the DATA attribute. Any file included must
not introduce elements that would ruin the syntax of the document. For example,
including a file that already has a <HEAD> and <BODY> element may result in an
ill-formed document with multiple <HEAD> and <BODY> elements. Imagine
specifying a header file called header.htm with the contents shown here:

<H1 ALIGN="CENTER"> Big Company, Inc .</H1>

<HR>

This file could then be included in a Web page by using the <OBJECT> element, like so:

<OBJECT DATA="header.htm">

Header not included

</OBJECT>

This example should pull in the contents of the file header.htm in browsers that
support this feature and display “Header not included” in all others. No major browser
appears to support this functionality for the <OBJECT> element, so this should be
avoided in favor of technologies such as server-side includes (Chapter 12) and dynamic
documents generated with JavaScript.

Eventually, the <OBJECT> element will be used in a generalized sense. For now,
HTML page authors should use the <APPLET>, , and <EMBED> elements to
include binary forms beyond ActiveX controls in pages.

Summary
With the inclusion of programmed objects such as ActiveX controls, Java applets, and
Netscape plug-ins, Web pages can become complex, living documents. Choosing the
appropriate component technology is not very straightforward. Netscape plug-ins are
very popular for including media elements such as Shockwave movies, video, or sound
files, but they are platform-specific and somewhat specific to Netscape browsers.

Microsoft supports the <EMBED> element syntax to include plug-ins in a page, but the
preferred solution in the Microsoft world is ActiveX controls. ActiveX controls are just
as platform-specific as Netscape plug-ins and have some potential security issues.
Solving the cross-platform problem requires complex page scripting or the use of Java
applets that provide cross-platform object support, typically at the expense of
performance. Either way, the page rendering should degrade gracefully if the user
can’t support the particular object technology. Eventually, the syntax for all included
media will be handled with the <OBJECT> element; but, for now, <EMBED> and
<APPLET> should be used within <OBJECT> to provide backward compatibility for
including plug-ins and Java applets in a Web page.

C h a p t e r 1 5 : C l i e n t - S i d e P r o g r a m m i n g a n d H T M L 591

P
R

O
G

R
A

M
M

IN
G

A
N

D
H

TM
L

This page intentionally left blank.

Part IV
Site Delivery

Copyright 1999 The McGraw-Hill Companies. Click Here for Terms of Use.

This page intentionally left blank.

Chapter 16
Putting It All Together:
Delivering the Web Site

595

Copyright 1999 The McGraw-Hill Companies. Click Here for Terms of Use.

596 H T M L : T h e C o m p l e t e R e f e r e n c e

So far, this book has said nothing about how to deliver Web pages. Even if
developers master the creation of Web pages using HTML, they can still fall flat on
their faces if they don’t pay careful consideration to how they deliver the pages to

the user. As far as the viewer of a page is concerned, the Web is one big system. If a page
is slow because of a server, the user still views the site in a negative light no matter how
compelling the content or inspiring the design. Ignoring such site delivery issues as
outsourcing, Web server choice, and protocol issues may doom a Web project to failure.

Publishing the Site
There are two basic choices for publishing your HTML documents on the Internet.
One way involves having a dedicated connection to the Internet and running your
own server. The other approach involves renting space or bandwidth from an outside
vendor to place your server or pages outside your organization.

While running your own Web server and connection to the Internet might seem
like the way to go, it can be quite expensive. A common leased line such as a T1 with
Internet services may cost thousands of dollars a year. When factoring in labor, server,
facilities, and other expenses, the total cost starts to approach six figures. Often, many
of these facilities are already available within the organization and should be used. Yet
using someone else’s server may be the only choice for people who want to publish
Web documents but can’t afford a huge fee. Even those firms that have capable staffs
should consider outsourcing because it provides many benefits. Figure 16-1 gives a
basic overview of the two hosting approaches.

Outsourcing Web Hosting
As Web sites become more critical to the information infrastructure of companies, there
is a growing need to provide high-quality, high-availability solutions. However, it is
expensive for companies to develop in-house Talents and facilities to run a mission-
critical Web site. Because of this, many firms have decided to outsource their Web
facilities. Web server outsourcing comes in two basic flavors: shared or virtual hosting
and colocation.

Web hosting involves using the shared server facilities of a hosting vendor. This
means that the site will share Web server resources and bandwidth with other hosted
sites. Sharing can be problematic. Server responsiveness may be significantly affected
because of other hosted Web sites, particularly if those sites become popular.
Furthermore, many customers are wary of sharing a server with others, because
security often cannot be guaranteed on these shared systems. Despite its drawbacks,
hosting is still relatively inexpensive. Shared hosting prices are dependent on the extra
services offered and the traffic expected. Consumer-grade hosting can cost as little as
$20 per month. High-availability, and possibly mirrored, hosting can run into thousands,

if not tens of thousands, of dollars a month. Many Internet Service Providers (ISPs) and
specialized hosting companies offer professional-quality shared Web hosting services.

The other Web server outsourcing option is often called colocation. This describes
the use of a dedicated server, often owned by the organization purchasing the service.
Colocation provides a greater degree of autonomy than shared Web services. In fact,
the colocated machine typically only shares physical facilities, and possibly network
bandwidth, with other customers. Colocation is generally more expensive than hosting;
it may cost anywhere from around a thousand dollars to tens of thousands per
month. Many of the large ISPs offer colocation services as well as specialized data
center providers.

C h a p t e r 1 6 : P u t t i n g I t A l l T o g e t h e r : D e l i v e r i n g t h e W e b S i t e 597

S
ITE

D
ELIV

ER
Y

Figure 16-1. Shared hosting versus dedicated line hosting

Price is often the essential motivation for outsourcing Web services. Research
suggests that Web server outsourcing takes as much as one-third the cost of providing an
equivalent service in-house. Yet the cost differences don’t always add up, since a great
deal of control and security will be lost. Looking beyond cost, there are major benefits
from Web server outsourcing, including bandwidth, security, and facilities issues.

Having enough bandwidth available can be important for mission-critical Web
sites. Regardless of server bottlenecks, a mere fractional T1 or full T1 leased line might
not provide enough bandwidth to deal with the bursty nature of Web access. However,
installing multiple T3 leased lines just to deal with the occasional flash crowd that may
swamp a site seems wasteful given the significant investment required. Rather than
bringing bandwidth to the server, why not move the server to the bandwidth?

Even if bandwidth is not an issue, there may be some issue of network closeness.
Because there will always be a site that is far away, using a provider that can provide
mirrors of the site around the world and automatically redirect the Web browser to the
closest site seems appropriate. Many high-end providers are beginning to use products
that are capable of redirecting people to the network’s closest or least busy server to
provide some degree of load balancing. Many of the popular sites on the Internet such
as Yahoo! already use such sophisticated techniques.

Another motivation for outsourcing Web services is security. Many companies are
still very afraid of the security problems associated with the Internet. Firewalls and
security policies can help; but, if a public Web server is located on the firm’s LAN,
allowing Web viewers to access it is similar to asking potential robbers to come knock
on your door. Putting public use information on outsourced Web servers keeps casual
intruders away from a firm’s network access point and allows stronger security
policies to be put into place at the corporate firewall.

Facilities are often an overlooked benefit of outsourced Web services. With
high-end data centers, colocation or hosting the facility provides benefits that would be
expensive to replicate otherwise. These benefits may include around-the-clock live
monitoring rather than automated monitoring, high-quality power services including
backup generators, computer-sensitive fire suppression systems, disaster
recovery–oriented construction, and sophisticated physical security.

Despite all the benefits of Web server outsourcing, there are some potentially
significant drawbacks. Not all hosting vendors are created equal. Choosing the wrong
vendor can lead to serious problems. While ISPs have more than enough bandwidth to
host Web sites or colocate machines, many providers are more knowledgeable about
networks than servers. This shows when they are questioned about available
development tools and server maintenance policies. Data center vendors may be more
on top of the server aspect of the puzzle, but they often come at a much higher price. If
the correct vendor can be isolated, the only sacrifices facing the outsourced site are
security and control.

While outsourcing Web service can help separate a sensitive network from the
Internet, it also begs the question of the security of the Web server. If the outsourced
site contains sensitive information, there is always the possibility this information may

598 H T M L : T h e C o m p l e t e R e f e r e n c e

be compromised. Hosting vendors generally do not provide complete guarantees of
data integrity. Careful reading of the fine print of hosting contracts indicates, at most, a
“best effort” to protect data. In some cases, there is no guarantee whatsoever. Even if
the hosting vendors protect against outside intrusion internally, security is often very
lax. Security itself is just an example of the general problem of Web server
outsourcing—a lack of control.

The biggest problem with many outsourced Web services, particularly hosting, is
control. Most hosting vendors do not necessarily allow customers to do what they
want. The choice of Web server, server software, development tools such as database
development tools, and statistics packages are often up to the discretion of the hosting
vendor. Particularly with lower-priced hosting services, use of a particular database,
operating system, and statistics package may be forced on the customer. While
customization is still often available, it may come at a significantly higher price. The
ramifications of control go far beyond choice of operating system. Don’t be surprised if
a hosting vendor decides to upgrade its Web server during the middle of the day. It is
the vendor’s server, after all; and, logically or not, the vendor decides how to run it.
With colocation, control is generally more in the customer’s hand, since the vendor
only provides network access, power, and safe facilities.

Companies looking to save money on Web hosting find outsourcing very attractive,
but some flexibility and security may have to be sacrificed. With less experienced
hosting companies, this lack of control can be disastrous, resulting in hidden costs in
site redevelopment or problems with reliability. Those who want more control over
their Web services should consider colocation or running their own servers locally.
This is a more viable option than shared hosting, but it will certainly cost more.

Virtual Hosting
Hosting on a shared Web server often provides support for the feature known as virtual
hosting. In essence, this feature enables multiple domain names to be hosted on the
same server, yet appear as if each were running on its own server. Each machine on the
Internet has an address such as http://www.bigcompany.com; this address maps to a
particular IP (Internet Protocol) address such as 192.102.249.3. In the case of virtual
hosting, the operating system the Web server runs on has the capability of mapping
multiple IP addresses to a single-network interface card installed in the server
hardware. In turn, multiple domain names can be mapped to these IP addresses.

Different types of virtual hosting are offered. Most hosting services offer a true
virtual hosting service, where the URL for a customer’s Web site is as would
normally be expected; that is, http://www.bigcompany.com automatically goes to
the customer’s home page. The address is mapped to a single IP address. However,
in some implementations of virtual hosting, multiple domain names may be mapped
to only a single IP address. In this case, customers are given an address with a
notation such as http://www.bigcompany.com/~bigco, where /~bigco indicates the

C h a p t e r 1 6 : P u t t i n g I t A l l T o g e t h e r : D e l i v e r i n g t h e W e b S i t e 599

S
ITE

D
ELIV

ER
Y

600 H T M L : T h e C o m p l e t e R e f e r e n c e

actual username of the customer on the Web server. The common ~ notation is a
server setting that enables all users on a particular server to have Web pages in their
home directories and have a URL based on their usernames.

A step up from this, but still not true virtual hosting, comes in the form of having
an address such as http://www.bigcompany.com/bigco, where /bigco is a specific
directory assigned to a customer for hosting a Web page. In selecting a shared Web
server hosting provider, potential customers should be careful to ask hosting companies
the type of address provided in their virtual hosting services. The HTTP 1.1 protocol,
as discussed in the section “How Web Servers Work,” later in the chapter, supports
virtual hosting using a single IP address, and will make managing virtual hosting
services easier from the server administrator’s point of view once most browsers
support this extension.

If you are looking to run a small Web site, you may want to consider getting a
local ISP or a low-cost, high-volume national hosting vendor such as HiWay
Technologies (http://www.hway.com). Because of the competitive nature of the
hosting business, pricing and services vary widely. Be sure to visit sites such as
http://www.webhostlist.com before making a quick decision about where to host
your site. Remember, the user won’t be able to tell if the server is slow or the site is
designed poorly.

Running a Local Web Server
Besides outsourcing hosting, it is also possible to pull in a full-time connection to the
Internet and run your own Web server. When doing this, consider what Web servers
actually do. In some sense, a Web server is a glorified file server, and occasionally an
application server. Browsers make requests to the Web server for files. These files are
located on the disk drive and then copied out to the network. In the case of running
Common Gateway Interface (CGI) programs or similar server-side technology, a
request is made to the server to run a program. The program is then loaded from disk
and run, and the result is sent out to the network. To make the best Web server
possible, you should pay careful attention to the disk and network interface. While
many are quick to fault the processor speed or amount of memory, the disk is often the
greatest bottleneck for a Web server. The big question is how to pick the best possible
hardware platform, operating system, and Web server software combination to serve
pages. Of course, all of these decisions must consider budget.

Selecting a Web Server
Price and performance are the basic issues for choosing a Web server. First, you need to
understand what kind of activity to expect and what type of data you will serve. Then
you need to set a budget for your server. A personal Web server might use freeware or

shareware and run on a low-cost personal computer such as a PC or Macintosh. A large
corporate system might use a powerful UNIX workstation running commercial-grade
Web server software. There is no single correct hardware/software combination for
Web page serving. One of the main considerations for a Web server will be the
operating system used. Each operating system popular for Web service has its own
pros and cons, summarized in Table 16-1.

A variant of UNIX, called Linux, has recently become very popular as a Web hosting
platform. Many of the pricing issues and hardware costs associated with traditional
UNIX solutions are not as problematic under Linux.

While Table 16-1 presents a good overview of the issues involved in choosing one
operating system over another for a Web server, the decision may often be made on the
basis of familiarity or personal taste. There is nothing wrong with this. While one
person may argue about the merits of UNIX, introducing a UNIX server into an
environment with heavy Macintosh investment would be foolish. The bottom line is to
always remember suitability. A small Web server for a school might do well on a
Macintosh, while a Windows NT system might make a great departmental server, and
a Sun server might be used for a high-performance Web site. Once the hardware and
operating system are selected, you should consider which Web server software to use.

Only a few years ago, there were only two major Web servers available: NCSA’s
httpd server for UNIX and CERN’s httpd server for UNIX. Both of these servers are
free to use, but both require users to compile and install the software themselves.
Today there are dozens of different Web servers available on a variety of machines. If
you are interested in learning about all of the servers, go to the Serverwatch home
page, at http://www.serverwatch.com, which provides links and reviews of most of
the Web servers currently available. Rather than considering all Web servers in your
decision, it might be wise to look at the most common Web servers used. Based upon
surveys and analysis of reachable servers on the Internet, these servers are well agreed
upon, though their exact market percentage is a topic of hot debate.

These are the major Web servers:

■ Apache

■ Microsoft’s IIS

■ Netscape Web servers

■ WebSite

■ WebStar

These popular Web servers are discussed in the following sections. This should by
no means be considered as approval of these products, just a synopsis of each product
and some of its known issues.

C h a p t e r 1 6 : P u t t i n g I t A l l T o g e t h e r : D e l i v e r i n g t h e W e b S i t e 601

S
ITE

D
ELIV

ER
Y

602 H T M L : T h e C o m p l e t e R e f e r e n c e

Operating System Pros Cons

UNIX Tends to run on fast
hardware such as
UltraSparc and Alpha
systems

Very flexible
High-end applications
are available

Can be complicated to use
and difficult to maintain

Labor costs may be high
Buy-in costs for hardware
and software are relatively
high

Windows NT Can run on both high-
and low-end systems,
from Intel to Alpha
systems

Relatively robust
Fairly easy to administer
and may have lower
maintenance costs

Numerous high-end
applications being
ported to this operating
system

May require more high-end
hardware for adequate
performance

May not be as flexible or
robust as UNIX for some
Internet-related tasks

Windows 95/98 Easy to run
Low equipment and
labor costs

Inexpensive Web server
and development
software

Not as robust as Windows
NT or UNIX; prone to
crashes

May require a fast system for
adequate performance

Not as much server software
ported to Windows 95/98
as to Windows NT

Not as flexible as UNIX or
Windows NT

Macintosh Easy to run
Fairly low equipment and
labor costs

Inexpensive software

Operating system
architecture’s inhibiting of
performance

Relatively little Web
software available

Not as flexible as Windows
NT or UNIX

Not robust and prone to crashes
like Windows 95/98

Table 16-1. Operating System Summary

Apache (http://www.apache.org)
A descendant of NCSA’s httpd server, Apache is probably the first or second most
popular Web server on the Internet. Apache’s popularity stems from the fact that it is
free and fast. It is also very powerful, supporting features such as HTTP 1.1, extended
server-side includes (SSIs), a module architecture similar to NSAPI/ISAPI, and
numerous free modules that perform functions such as server-based Perl interpretation
or interpretation of parsed HTML. However, Apache is not for everyone. The main
issue with Apache is that it isn’t a commercial package. While there is generally support
available on the Internet, many firms may be hesitant to run their mission-critical
systems on a user-supported product. However, as with operating systems such as
Linux, various third parties offer commercial support for Apache.

Another potential limiting factor for Apache is that the system currently is mainly
for UNIX, although a port to Windows 95/Windows NT was recently developed. This
may limit the use of Apache to high-use external and not-for-profit Web sites rather
than intranets. Last, Apache might require modification of configuration files or even
compilation in order to install. If you like to tinker, have a UNIX system, and don’t
have a lot of money, then Apache might just be for you. You’ll be in good company:
some of the largest Web sites on the Internet swear by this product.

For Web trivia buffs, the name Apache is derived from the description of the software as
a patched version of NCSA. Think “a patchy NCSA server.”

Microsoft Internet Information Server
(http://www.microsoft.com/iis)
IIS is Microsoft’s server for Windows NT. Windows 95 also supports a similar but
much less powerful version of IIS called the Personal Web Server (PWS). While PWS
is certainly popular, of the two, most organizations favor IIS. One very important
aspect of IIS is that it is very tightly integrated with the Windows NT environment.
Unfortunately, being so Windows NT specific is also considered one of the problems
with IIS. Because of hardware and clustering issues, it hasn’t proved quite as scalable
as some UNIX-based servers. With new Microsoft clustering technologies and integration
with a transaction processor, this scalability problem is likely to change. For an intranet
environment, particularly one with heavy Microsoft investment, it is difficult to beat
the services offered by IIS—particularly its integration with other Microsoft products
such as the SQL-Server database system. The price for IIS is currently a big selling
point for the software: it’s free.

Netscape Web Servers (http://home.netscape.com/servers)
Netscape has a growing line of Web servers, ranging from its FastTrack system to
its Enterprise server. Netscape Web servers run on most major variants of UNIX
(Solaris, SunOS, AIX, HP-UX, Digital UNIX, and IRIX), as well as Windows 95 and
Windows NT. The systems are advanced, supporting hooks with databases, content

C h a p t e r 1 6 : P u t t i n g I t A l l T o g e t h e r : D e l i v e r i n g t h e W e b S i t e 603

S
ITE

D
ELIV

ER
Y

management, HTTP 1.1, and a variety of other features. Netscape has attempted to
make the software more commercial grade, including Web-based installation and
administration. The only gripe people tend to make about these servers is that they
sometimes perform sluggishly. Otherwise, if you are in a cross-platform environment,
consider using Netscape servers. Netscape Web software is available for evaluation,
but it is commercial and requires payment.

WebSite (http://website.ora.com)
A very easy-to-use Web server for Window 95 and Windows NT, O’Reilly’s WebSite
is one of the only robust Web servers available for Windows 95. Though it lacks the
performance of Netscape or Microsoft servers running on more powerful systems,
WebSite is considered one of the easiest servers to install and administer. Furthermore,
the system provides many nice development features such as integration with Cold
Fusion, advanced SSI, and special APIs for server extensions. For intranets or sites that
don’t need the performance of Windows NT or UNIX, WebSite is a great choice.

WebStar (http://www.starnine.com)
The most popular Web server for the Macintosh was originally based on MacHTTPD.
WebStar integrates well with the Macintosh. It supports AppleScript and other
Macintosh-specific tools and ideas such as automatic binhexing of files. The system
supports UNIX-style CGI programs, a Java virtual machine for server-side Java, and
extended SSI. The performance of WebStar often leaves much to be desired, though
claims have been made that this has been improved. WebStar is probably more than
adequate for intranets or small Web sites.

In the Web server software discussion, people often don’t consider that different
packages will have different performance characteristics. Using the same hardware,
one Web server software package may far outperform another. When planning to build
a Web server, start either from the hardware and build up, or from the particular
software and build down, picking the best possible hardware. If you make good
software and hardware choices, the performance of the site can be significantly
improved. However, be sure to base your build-out on requirements. It is always
possible to design your Web server to handle a certain number of users or requests
per second or minute.

How Web Servers Work
When it comes to the physical process of publishing documents, the main issues are
whether to run your own server or to host elsewhere in conjunction with Web server
software and hardware. An understanding of how Web servers do their job is important
to understanding potential bottlenecks and leads to an in-depth understanding of how
the Web works. In some sense, all that a Web server does is listen for requests from
browsers or, as they are called more generically, user agents. Once the server receives a

604 H T M L : T h e C o m p l e t e R e f e r e n c e

request, typically to deliver a file, it determines if it should do it. If so, it copies the file
from the disk out to the network. In some cases, the user agent may ask the server to
execute a program, but the idea is the same: eventually, some data is transmitted back to
the browser for display. This discussion between the user agent, typically a Web
browser, and the server takes place using the HTTP protocol.

HTTP
The Hypertext Transfer Protocol (HTTP) is the basic underlying application-level
protocol used to facilitate the transmission of data to and from a Web server. HTTP
provides a simple, fast way to specify the interaction between client and server. The
protocol actually defines how a client must ask for data from the server and how the
server returns it. HTTP does not specify how the data is actually transferred; this is up
to lower-level network protocols such as TCP.

The first version of HTTP, known as version 0.9, was used as early as 1990. The
current version of HTTP 1, as defined by RFC 1945, is supported by most servers and
clients (Web browsers). However, HTTP 1 does not properly handle the effects of
hierarchical proxies and caching, or provide features to facilitate virtual hosts. More
important, HTTP 1 has significant performance problems due to the opening and
closing of many connections for a single Web page.

HTTP 1.1 solves many of these problems. It is currently supported by newer,
version 4–generation Web browsers as well as servers. There are still many limitations
to HTTP, however. It is used increasingly in applications that need more sophisticated
features, including distributed authoring, collaboration, and remote procedure calls.
The Protocol Extension Protocol (PEP) is a proposed extension to HTTP designed to
address the tension between browser, server, and proxy vendor enhancement
agreements and public specifications. PEP allows the software to introduce new
protocols during communication, negotiate protocols or content, or even switch
between protocols on-the-fly. For now, such protocols are still in development. This
discussion will deal with HTTP 1 and 1.1.

The process of a Web browser or other user agent such as a Web spider or robot
requesting a document from a web—or, more correctly, an HTTP server—is simple and
has been discussed throughout the book. The overall process is diagrammed in
Figure 16-2.

In Figure 16-2, the user first requests a document from a Web server by specifying
the URL of the document desired.

During this step, a domain name lookup may occur, which translates a machine name
such as www.bigcompany.com to an underlying IP address such as 192.102.249.3. If the
domain name lookup fails, an error message such as “No such host” or “The server does
not have a DNS entry” will be returned. Certain assumptions, such as the default
service port to access for HTTP requests (80), may also be made. This is transparent to
the user, who simply uses a URL to access a page.

C h a p t e r 1 6 : P u t t i n g I t A l l T o g e t h e r : D e l i v e r i n g t h e W e b S i t e 605

S
ITE

D
ELIV

ER
Y

606 H T M L : T h e C o m p l e t e R e f e r e n c e

Figure 16-2. Overview of Web client/server relationship

C h a p t e r 1 6 : P u t t i n g I t A l l T o g e t h e r : D e l i v e r i n g t h e W e b S i t e 607

S
ITE

D
ELIV

ER
Y

The browser then forms the proper HTTP request and sends the request to the
server residing at the address specified by the URL. A typical HTTP request consists of

HTTP-Method Identifier HTTP-version
<Optional additional request headers>

In this example, the HTTP-Method would be GET or POST. An identifier might
correspond to the file desired (for example, /reports/latest.html), and the HTTP-version
indicates the dialect of HTTP being used (for example, HTTP/1.0).

If a user requests a document with the URL http://www.bigcompany.com/
reports/lastest.html, the browser might generate a request such as the one shown
here to retrieve the object from the server:

GET /reports/latest.html HTTP/1.0
If-Modified-Since: Tuesday, 12-Aug-99 01:39:39 GMT;

Referer: http://www.bigcompany.com/reports/index.html

Connection: Keep-Alive
User-Agent: Mozilla/4.02 [en] (X11; I; SunOS 5.4 sun4m)

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*
Accept-Language: en

Accept-Charset: iso-8859-1,*,utf-8

People often ask why the complete URL is not shown in the request. It isn’t
necessary in most cases, except when using a proxy server. The use of a relative URL
in the header is adequate. The server knows where it is; it just needs to know what
document to get from its own file tree. In the case of using a proxy server, which
requests a document on behalf of a browser, a full URL is passed to it that is later made
relative by the proxy. Besides the simple GET method, there are various other methods
specified in HTTP. Not all are commonly used. Table 16-2 provides a summary of the
HTTP 1.1 request methods.

Within an HTTP request, there is a variety of optional fields for creating a complete
request. The common fields and an example for each are shown in the following sections.

Accept: MIME-type/MIME-subtype
This field indicates the data types accepted by the browser. An entry of */* indicates
anything is accepted; however, it is possible to indicate particular content types such
as image/jpeg so the server can make a decision on what to return. This facility could

608 H T M L : T h e C o m p l e t e R e f e r e n c e

be used to introduce a form of content negotiation so that a browser could be served
only data it understands or prefers, although this approach is not widely understood
or implemented.

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*

Accept-Charset: charset
This field indicates the character set that is accepted by the browser, such as ASCII or
foreign character encodings.

Accept-Charset: iso-8859-1,*,utf-8

Method Description

GET Returns the object specified by the identifier

HEAD Returns information about the object specified by the identifier,
such as last modification data, but does not return the actual object

OPTIONS Returns information about the capabilities supported by a server
if no location is specified, or the possible methods that can be
applied to the specified object

POST Sends information to the address indicated by the identifier;
generally used to transmit information from a form using the
METHOD="POST" attribute of the <FORM> element to a
server-based CGI program

PUT Sends data to the server and writes it to the address specified by
the identifier overwriting previous content; in basic form, can be
used for file upload

DELETE Removes the file specified by the identifier; generally disallowed

TRACE Provides diagnostic information by allowing the client to see
what is being received on the server

Table 16-2. Summary of HTTP 1.1 Request Methods

Accept-Encoding: encoding-type
This field instructs the server as to what type of encoding the browser understands.
Typically, this field is used to indicate to the server that compressed data can be handled.

Accept-Encoding: x-compress

Accept-language: language
This field lists the languages preferred by the browser and could be used by the server
to pass back the appropriate language data.

Accept-Language: en

Authorization: authorization-scheme authorization-data
This field is typically used to indicate the userid and “encrypted” password if the user
is returning authorization information.

Authorization: user joeblow:testpass

Content-length: bytes
This field gives the length in bytes of the message being sent to the server, if any.
Remember that the browser may upload or pass data using the PUT or POST method.

Content-length: 1805

Content-type: MIME-type/MIME-subtype
This field indicates the MIME type of a message being sent to a server, if any. The value
of this field would be particularly important in the case of file upload.

Content-type: text/plain

Date: date-time
This field indicates the date and time in Greenwich Mean Time (GMT) that a request
was made. GMT time is mandatory for time consistency, given the worldwide nature
of the Web.

Date: Thursday, 15-Jan-99 01:39:39 GMT

C h a p t e r 1 6 : P u t t i n g I t A l l T o g e t h e r : D e l i v e r i n g t h e W e b S i t e 609

S
ITE

D
ELIV

ER
Y

610 H T M L : T h e C o m p l e t e R e f e r e n c e

From: e-mail address
If given, this field may contain an e-mail address for the requesting browser. For privacy
reasons, this request header often is not sent.

From: joe@bigcompany.com

Host
This field indicates the host and port of the server to which the request is being made.

Host: www.bigcompany.com

If-Modified-Since: date-time
This field indicates file freshness to improve the efficiency of the GET method. When
used in conjunction with a GET request for a particular file, the requested file is
checked to see if it has been modified since the time specified in the field. If the file has
not been modified, a “Not Modified” code (304) is sent to the client so a cached version
of the document can be used; otherwise, the file is returned normally.

If-Modified-Since: Thursday, 15-Jan-99 01:39:39 GMT

If-Match: selector-string
This field makes a request conditionally only if the items match some selector value
passed in. Imagine only using POST to add data once it has been moved to a file
called olddata.

If-Match: "olddata"

If-None-Match: selector-string
This field does the opposite of If-Match. The method is conditional only if the selector
does not match anything. This might be useful for preventing overwrites of existing files.

If-None-Match: "newfile"

If-Range: selector
If a client has a partial copy of an object in its cache and wishes to have an up-to-date copy of
the entire object there, it could use the Range request header with this conditional If-Range
modifier to update the file. Modification selection can take place on time as well.

If-Range: Thursday, 15-Jan-99 01:39:39 GMT;

C h a p t e r 1 6 : P u t t i n g I t A l l T o g e t h e r : D e l i v e r i n g t h e W e b S i t e 611

S
ITE

D
ELIV

ER
Y

If-Unmodified-Since
This field makes a conditional method. If the requested file has not been modified since
the specified time, the server should perform the requested method; otherwise, the
method should fail.

If-Unmodified-Since: Thursday, 15-Jan-99 01:39:39 GMT

Max-Forwards: integer
This field is used with the TRACE method to limit the number of proxies or gateways
that can forward the request. This would be useful to determine failures if a request
moves through many proxies before reaching the final server.

Max-Forwards: 6

MIME-version: version-number
This field indicates the MIME protocol version, understood by the browser, that the
server should use when fulfilling requests.

MIME-Version: 1.0

Proxy-Authorization: authorization information
This field allows the client to identify itself or the user to a proxy that
requires authentication.

Proxy-Authorization: joeblow: testpass; Realm: All

Pragma: server-directive
This field passes information to a server; for example, this field can be used to inform a
caching proxy server to fetch a fresh copy of a page.

Pragma: no-cache

Range: byte-range
This field requests a particular range of a file such as a certain number of bytes.
The example shows a request for the last 500 bytes of a file.

Range: bytes=-500

612 H T M L : T h e C o m p l e t e R e f e r e n c e

Referrer: URL
This field indicates the URL of the document from which the request originates (in
other words, the linking document). This value may be empty if the user has entered
the URL directly rather than by following a link.

Referrer: http://www.bigcompany.com/reports/index.html

User-Agent: agent-code
This field indicates the type of browser making the request.

User-Agent: Mozilla/3.0 (Windows 95; Internet Explorer)

Note that all of these request headers seem very familiar. They constitute the same
environment variables that you can access from within a CGI program. Now it should
be clear how this information is obtained.

After receiving a request, the Web server attempts to process the request. The
result of the request is indicated by a server status line that contains a response code,
for example, the ever-popular “Not Found” (404). The server response status line
takes this form:

HTTP-version Status-code Reason-String

For a successful query, a status line might read as follows:

HTTP/1.0 200 OK

while in case of error the status line might read

HTTP/1.0 404 Not Found

The status codes for the emerging HTTP 1.1 standard are listed in Table 16-3.
After the status line, the server responds with information about itself and the data

being returned. There are various selected response headers, but the most important
indicates the type of data in the form of a MIME-type and subtype that will be
returned. Like request headers, many of these codes are optional and depend on the
status of the request.

C h a p t e r 1 6 : P u t t i n g I t A l l T o g e t h e r : D e l i v e r i n g t h e W e b S i t e 613

S
ITE

D
ELIV

ER
Y

Status Code Reason String Description

Informational Codes (Process Continues After This)

100 Continue An interim response issued by the server
that indicates the request is in progress
but has not been rejected or accepted.
This status code is in support of the
persistent connection idea introduced in
HTTP 1.1.

101 Switching Protocols Can be returned by the server to indicate
that a different protocol should be used
to improve communication. This could
be used to initiate a real-time protocol.

Success Codes (Request Understood and Accepted)

200 OK Indicates the successful completion of
a request.

201 Created Indicates the successful completion of a
PUT request and the creation of the file
specified.

202 Accepted This code indicates that the request has
been accepted for processing, but that
the processing has not been completed
and the request may or may not actually
finish properly.

203 Non-Authoritative
Information

Indicates a successful request, except that
returned information, particularly meta-
information about a document, comes
from a third source and is unverifiable.

Table 16-3. HTTP 1.1 Status Codes

614 H T M L : T h e C o m p l e t e R e f e r e n c e

Status Code Reason String Description

204 No Content Indicates a successful request, but there
is no new data to send to the client.

205 Reset Content Indicates that the client should reset the
page that sent the request (potentially for
more input). This could be used on a form
page that needs consistent refreshing,
rather than reloading as might be used
in a chat system.

206 Partial Content Indicates a successful request for a piece
of a larger document or set of documents.
This response typically is encountered
when media is sent out in a particular
order, or byte-served, as with streaming
Acrobat files.

Redirection Codes (Further Action Necessary to Complete Request)

300 Multiple Choices Indicates that there are many possible
representations for the requested
information, so the client should use the
preferred representation, which may be
in the form of a closer server or different
data format.

301 Moved Permanently Requested resource has been assigned a
new permanent address and any future
references to this resource should be done
using one of the returned addresses.

302 Moved Temporarily Requested resource temporarily resides at
a different address. For future requests,
the original address should still be used.

303 See Other Indicates that the requested object can be
found at a different address and should
be retrieved using a GET method on that
resource.

Table 16-3. HTTP 1.1 Status Codes (continued)

C h a p t e r 1 6 : P u t t i n g I t A l l T o g e t h e r : D e l i v e r i n g t h e W e b S i t e 615

S
ITE

D
ELIV

ER
Y

Status Code Reason String Description

304 Not Modified Issued in response to a conditional GET;
indicates to the agent to use a local copy
from cache or similar action as the request
object has not changed.

305 Use Proxy Indicates that the requested resource
must be accessed through the proxy
given by the URL in the Location field.

Client Error Codes (Syntax Error or Other Problem Causing Failure)

400 Bad Request Indicates that the request could not be
understood by the server due to
malformed syntax.

401 Unauthorized Request requires user authentication.
The authorization has failed for some
reason, so this code is returned.

402 Payment Required Obviously in support of commerce, this
code is currently not well defined.

403 Forbidden Request is understood but disallowed
and should not be reattempted, compared
to the 401 code, which may suggest a
reauthentication. A typical response code
in response to a query for a directory
listing when the latter are disallowed.

404 Not Found Usually issued in response to a typo by
the user or a moved resource, as the
server can’t find anything that matches
the request nor any indication that the
requested item has been moved.

405 Method Not
Allowed

Issued response to a method request such
as GET, POST, or PUT on an object for
which such a method is not supported.
Generally an indication of what methods
are supported will be returned.

Table 16-3. HTTP 1.1 Status Codes (continued)

616 H T M L : T h e C o m p l e t e R e f e r e n c e

Status Code Reason String Description

406 Not Acceptable Indicates that the response to the request
will not be in one of the content types
acceptable by the browser, so why bother
doing the request? This is an unlikely
response given the */* acceptance issued
by most, if not all, browsers.

407 Proxy
Authentication
Required

Indicates that the proxy server requires
some form of authentication to continue.
This code is similar to the 401 code.

408 Request Time-Out Indicates that the client did not produce
or finish a request within the time that
the server was prepared to wait.

409 Conflict The request could not be completed
because of a conflict with the requested
resource; for example, the file might
be locked.

410 Gone Indicates that the requested object is no
longer available at the server and no
forwarding address is known. Search
engines may want to add remote
references to objects that return this
value since it is a permanent condition.

411 Length Required Indicates that the server refuses to accept
the request without a defined Content-
length header. This may happen when a
file is posted without a length.

412 Precondition Failed Indicates that a precondition given in
one or more of the request header fields,
such as If-Unmodified-Since, evaluated
to false.

Table 16-3. HTTP 1.1 Status Codes (continued)

C h a p t e r 1 6 : P u t t i n g I t A l l T o g e t h e r : D e l i v e r i n g t h e W e b S i t e 617

S
ITE

D
ELIV

ER
Y

Status Code Reason String Description

413 Request Entity Too
Large

Indicates that the server is refusing to
return data because the object may be too
large or the server may be too loaded to
handle the request. The server may also
provide information indicating when to
try again if possible, but just as well may
terminate any open connections.

414 Request-URI Too
Large

Indicates that the Uniform Resource
Identifier (URI), generally a URL, in the
request field is too long for the server to
handle. This is unlikely to occur since
browsers will probably not allow such
transmissions.

415 Unsupported Media
Type

Indicates the server will not perform the
request because the media type specified
in the message is not supported. This
code might be returned when a server
receives a file it is not configured to
accept via the PUT method.

Server Error Codes (Server Can’t Fulfill a Potentially Valid Request)

500 Internal Server Error A serious error message indicating that
the server encountered an internal error
that keeps it from fulfilling the request.

501 Not Implemented This response is to a request that the
server does not support or may be
understood but not implemented.

502 Bad Gateway Indicates that the server acting as a
proxy encountered an error from some
other gateway and is passing the
message along.

Table 16-3. HTTP 1.1 Status Codes (continued)

An example server response for the request shown earlier in the chapter follows:

HTTP/1.0 200 OK

Server: Netscape-Commerce/1.12
Date: Thursday, 01-Aug-98 13:05:08 GMT

Content-type: text/html
Last-modified: Thursday, 01-Aug-98 10:09:00 GMT
Content-length: 205

<HTML>

<HEAD>
<TITLE> Report 1 </TITLE>

</HEAD>

<BODY>

<H1>Report About Important Things </H1>
<HR>
<P>Here is some information about important things. </P>

</BODY>

</HTML>

The common server response headers for HTTP 1.1 are given next.

618 H T M L : T h e C o m p l e t e R e f e r e n c e

Status Code Reason String Description

503 Service Unavailable Indicates the server is currently
overloaded or is undergoing
maintenance. Headers may be sent to
indicate when the server will be
available.

504 Gateway Time-Out Indicates that the server, when acting as
a gateway or proxy, encountered too
long a delay from an upstream proxy
and decided to time out.

505 HTTP Version Not
Supported

Indicates that the server does not
support the HTTP version specified in
the request.

Table 16-3. HTTP 1.1 Status Codes (continued)

C h a p t e r 1 6 : P u t t i n g I t A l l T o g e t h e r : D e l i v e r i n g t h e W e b S i t e 619

S
ITE

D
ELIV

ER
Y

Age
This header shows the sender’s estimate of the amount of time since the response was
generated at the origin server. Age values are nonnegative decimal integers,
representing time in seconds.

Age: 10

Content-encoding
This header indicates the encoding type in which the data is returned.

Content-encoding: x-compress

Content-language
This header indicates the language used for the data returned by the server.

Content-language: en

Content-length
This header indicates the number of bytes returned by the server.

Content-length: 205

Content-range
This header indicates the range of the data being sent back by the server.

Content-range: -500

Content-type
This header is probably the most important; it indicates in the form of a MIME type
what type of content is being returned by the server.

Content-type: text/html

Expires
This header gives the date and time after which the returned data should be considered
stale and should not be returned from a cache.

Expires: Thu, 04 Dec 1997 16:00:00 GMT

Last-modified
This header is used to indicate the date on which the content returned was last modified.
It can be used by caches to decide whether or not to keep local copies of objects.

Last-modified: Thursday, 01-Aug-96 10:09:00 GMT

Location
This header is used to redirect the browser to another page. Occasionally, scripts use
this method for browser redirection based on capability.

Location: http://www.bigcompany.com/netscapehome.htm

Proxy-authenticate
This header is included with a “Proxy Authentication Required” (407) response. Its
value consists of a challenge that indicates the authentication scheme and parameters
applicable to the proxy for the request.

Proxy-authenticate: GreenDecoderRing: 0124.

Public
This header lists the set of methods supported by the server. The purpose of this field is
strictly to inform the browser of the server’s capabilities when new or unusual methods
are encountered.

Public: OPTIONS, MGET, MHEAD, GET, HEAD

Retry-after
This header can be used in conjunction with a “Service Unavailable” (503) response to
indicate how long the service is expected to be unavailable to the requesting client. Its
value can be either an HTTP-date or an integer number of seconds after which to retry.

Retry-after: Fri, 31 Dec 1999 23:59:59 GMT Retry-after: 60

Server
This header contains information about the Web software used.

Server: Netscape-Commerce/1.12

620 H T M L : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 6 : P u t t i n g I t A l l T o g e t h e r : D e l i v e r i n g t h e W e b S i t e 621

S
ITE

D
ELIV

ER
Y

Warning
This header is used to carry additional information about the status of a response that
may not be found in the status code.

Warning: 10 Response is stale

WWW-authenticate
This header is included with an “Unauthorized” (401) response message. Its value
consists of at least one challenge that indicates the authentication scheme and
parameters applicable to the request made by the client.

WWW-authenticate: Magic-Key-Challenge=555121, DecoderRing= Green

The most important header response field is the Content-type field. The MIME
type indicated by this field is a device by which the browser is able to figure out what
to do with the data being returned.

MIME
MIME (Multipurpose Internet Mail Extensions) was originally developed as an
extension to the Internet mail protocol that allows for the communication of
multimedia. The basic idea of MIME is transmission of text files with headers that
indicate binary data that will follow. Each MIME header is composed of two parts that
indicate the data type and subtype in the following format:

Content-type: type / subtype

where type can be image, audio, text, video, application, multipart, message, or
extension-token; and subtype gives the specifics of the content. Some samples are
listed here:

text/html
application/x-director

application/x-pdf

video/quicktime
video/x-msvideo

image/gif
audio/x-wav

Beyond these basic headers, you may also include information such as the
character-encoding language. For more information about MIME, refer to RFC 1521,
available from many sites including http://www.faqs.org/rfcs, or the list of registered
MIME types at ftp://ftp.isi.edu/in-notes/iana/assignments/media-types.

When a Web server delivers a file, the header information is intercepted by the
browser and questioned. The MIME type, as mentioned earlier, is specified by the
Content-type server response field. For example, if a browser receives a basic HTML
file, the text/html header indicates what to do and typically renders the file in the
browser window. If the browser receives a type it does not understand—for example,
application/x-director—it may ask the user to pick a helper, save it, or delete it, as
shown by the familiar dialog box shown here:

Normally, users hope that helper applications or plug-ins will intercept any MIME
typed data that their browser doesn’t understand and deal with it. It is interesting to
note how little is said about MIME, but how important it is in the discussion between
the browser and the server.

Speed and State Problems with HTTP
HTTP is a very simple protocol. That is, in a sense, its problem: it may be too simple.
As a simple request-response protocol, HTTP can sometimes be very inefficient.
Consider a Web page with five images on it. In order to fetch this Web page, it may
take six or seven individual requests to pull down all of the files. These may include
one request for the HTML text, five for the images, and perhaps even a redirect request
for a partially formed URL. Each HTTP request has a little overhead with it. Do you see
a potential problem? HTTP 1 suffered from this performance problem. HTTP 1.1,
however, attempts to get around it by keeping connections open and pipelining
responses. Browser vendors are also worried about performance issues and enable
their browsers to request multiple objects at once to get around performance drags.
Because HTTP is so important to the performance of Web sites, many advanced
versions of HTTP are being discussed, most notably HTTP-NG. More information on
this upcoming protocol can be found at http://www.w3.org/Protocols/HTTP-NG.

622 H T M L : T h e C o m p l e t e R e f e r e n c e

The other problem with HTTP is that it is stateless. After a Web server has finished
fulfilling a client request, the server retains no “memory” of the request that just took
place, except in the form of an entry in a log file, which records the request. An
example of this lack of memory is how a user may partially fill in a form on a Web
page, leave the site, and then come back and find the form cleared. As discussed in
Chapter 11, the state problem is one of the biggest challenges to building complex
applications on the Web. Not having to preserve state is what keeps HTTP relatively
simple and fast.

The Realities of Publishing and Maintaining a
Web Site
While understanding how Web servers work and the issues in choosing an in-house or
outsourced server appears easy enough, it does not hint at the challenges of actually
running a Web site. Far too often, Web professionals are quick to start a Web project
but slow to continue it. The fun is often in the development of the site, setting the
structure, designing the navigation, creating the look and feel, and then coding the
page. But what happens next? The site is released to its intended audience, but you
can’t abandon it now. Web sites need care and feeding. Depending on the site, there
may be daily, weekly, or monthly maintenance to perform. Adding new information,
checking for broken links, continually testing under new browsers, upgrading HTML
or script code to modern standards, running statistics, and performing various
server-related activities such as upgrading software or running backups are all vital
tasks. The real work of the site comes after it is released. The site was built for some
purpose, and now it is time to fulfill it.

Summary
Site development should address the need of hosting pages on a Web server. Developers
can choose to host sites on servers within companies; obtain the necessary hardware,
software, Internet connection, and labor required to do hosting themselves; or elect to
outsource hosting to an ISP or Web hosting company. Because of the costs and
complications involved in trying to provide sufficient resources to do your own hosting,
it often makes sense to outsource. This approach presents the options of renting space on
a shared server or the colocation of a dedicated server at a hosting facility. There is more
flexibility in running your own server, rather than being at the mercy of what a shared
hosting provider makes available. Running your own server requires selection and
evaluation of server software and hosting platform, as well as consideration of
performance requirements. In addition to server and hosting choices, an understanding
of how Web servers work using the HTTP and MIME protocols can be essential to
monitoring and improving server performance for better Web page delivery.

C h a p t e r 1 6 : P u t t i n g I t A l l T o g e t h e r : D e l i v e r i n g t h e W e b S i t e 623

S
ITE

D
ELIV

ER
Y

This page intentionally left blank.

Part V
New Horizons

Copyright 1999 The McGraw-Hill Companies. Click Here for Terms of Use.

This page intentionally left blank.

Chapter 17
XML: Beyond HTML

627

Copyright 1999 The McGraw-Hill Companies. Click Here for Terms of Use.

628 H T M L : T h e C o m p l e t e R e f e r e n c e

With much fanfare, Extensible Markup Language (XML) has emerged rapidly
as a new approach to delivering structured data over the Web. Why XML?
Simply put, using this Web-efficient version of Standard Generalized Markup

Language (SGML), the mother language used to define HTML, will enable authors to
define their own elements. Although much of the full XML vision is not widely
supported in currently shipping browsers, and important features have yet to be
finalized, the effects of XML can already be felt.

Microsoft, Sun, and Netscape are furiously working to make XML real, under the
aegis of the World Wide Web Consortium (W3C). And, as usual, browser vendors are
attempting to support XML documents or ideas even before standards are put in place. For
example, Microsoft’s push technology, Channel Definition Format (CDF), as well as Open
Software Description (OSD) format, are both based on an XML data format. But why XML?
What’s so wrong with HTML? Quite simply, HTML isn’t flexible enough to meet the
document-structuring requirements of specific industries or new viewing environments. In
the short term, XML isn’t necessarily going to replace HTML, but it may change the way
that HTML is defined and used, after it is supported by major browsers.

Relationship Among HTML, SGML, and XML
To understand what all of the XML excitement is about, you need to understand the
connection between HTML, SGML, and XML. XML is defined as an application profile,
or restricted form, of SGML that is designed to support the efficient use of SGML
documents over the Web. Informally, an application profile is a subset of a standard that
has been given a little twist to accommodate real-world use. Understanding the twist
that XML gives to SGML requires that you understand the strengths and weaknesses of
SGML and its most famous application, HTML. However, the goal of XML is not to
replace either technology, but to complement and augment them as appropriate.

The first question that needs to be addressed is why XML is even necessary when
HTML is already available. Any technology that is used globally by tens of millions of
people must be doing something right. As a general-purpose technology, HTML meets
an extraordinarily broad set of user needs. However, it doesn’t fit very well with
applications that rely upon specialized information, either as data files or as complex,
structured documents. This is particularly true for applications such as automated data
interchange, which requires data to be structured in a consistent manner. Imagine
trying to format a complex mathematical formula in HTML. The only choices are to
make an image out of the formula, embed a special math technology, or use another
document-formatting technology, such as Adobe’s Acrobat.

As you have seen already, by itself, HTML can’t realistically accommodate the
structuring and formatting needs of documents that require more than paragraphs,
sections, and lists. HTML can’t deal with more-complex application-specific problems,
because its elements are fixed. The language contains no provision for extending itself,

C h a p t e r 1 7 : X M L : B e y o n d H T M L 629

N
EW

H
O

R
IZ

O
N

S
namely, it has no provision for defining new elements. Although browser vendors
used to add new elements all the time, any proposed extension now entails lengthy
advocacy before the W3C.

Regardless, adding more element types to HTML doesn’t make sense at this point.
The language is already large enough. It is meant to be a general-purpose language
that is capable of handling a large variety of documents. Thus, HTML needs some
mechanism so that its general-purpose framework can be augmented to accommodate
specialized content.

SGML seems like a reasonable candidate to increase HTML’s flexibility. SGML is a
meta-language, a language that is used to define other languages. Although HTML is the
best-known SGML-defined language, SGML itself has been used successfully to define
special document types ranging from aviation maintenance manuals to scholarly
texts. SGML can represent very complex information structures, and it scales well to
accommodate enormous volumes of information. SGML is extremely complex,
however, and wasn’t built with today’s online applications in mind. The language first
appeared in the 1970s, the golden age of batch processing, and wasn’t designed to be
used in networked, interactive applications. Without resolving these issues, the full
SGML language can’t be efficiently used over the Web.

Thus, XML is an attempt to define a subset of SGML that is specifically designed for
use in a Web context. As such, it will be influenced both by its SGML parent and by
HTML. The exact way that XML will fit into Web documents is still a topic of great
debate, but the general role of the language is clear. Initially, it will be used to represent
specialized data to augment HTML documents. In fact, it is already being used to do
this. For example, Microsoft’s Channel Definition Format, which specifies documents
for “push” delivery on the Internet, is actually an application of XML. (Push is a
technology in which data, such as news, is sent to users on a scheduled basis, saving
them the trouble of hunting for it on the Web.)

Such purpose-specific extensions to Web documents will be the first use of XML;
but, at some point, XML will be used in its own right to design Web documents,
instead of using HTML. XML is already being used to add data to HTML documents,
such as forms of meta-data that describe the document.

What’s unusual about these specific examples of XML use is that the core language
syntax hasn’t been finalized yet. It is still in the working-draft stage. Leave it to the
browser vendors to implement first and ask questions later. The features that will make
XML a document platform in its own right are even more tentative. For example,
linking models are at the draft stage, and style sheet use and Document Object Model
relationships are still at the discussion stage.

So, is XML just a work in progress? Yes, as much as HTML is. XML is already
arriving in various forms, such as CDF, OSD, Synchronized Multimedia Integration
Language (SMIL), Mathematical Markup Language (MathML), and Chemical Markup
Language (CML). Other possible XML-based languages are being discussed, as well,
including such languages as Hand-held Device Markup Language (HDML), Resource

Description Framework (RDF), and Platform for Internet Content Selection–Next
Generation (PICS-NG). Given the overwhelming interest in XML, it is wise to look at
the current state of its syntax, as well as its likely future directions.

Basic XML
Because XML is a subset of SGML, it should be somewhat familiar, as HTML itself is an
application of SGML. However, to support efficient Web usage, XML doesn’t allow the
use of many SGML constructs that are used to define documents. The eliminated
constructs are either infrequently used or add a performance penalty to document
parsing. Writing XML sounds like a daunting task, requiring an esoteric knowledge of
SGML beyond the capabilities of most HTML authors. Actually, writing simple XML
documents is fairly easy. For example, suppose that you have a compelling need to
define some elements to represent a fast-food restaurant’s combination meals, which
contain a burger, drink, and fries. How might you do this in XML? You would simply
create a file such as burger.xml that contains the following markup:

<?xml version="1.0"?>

<COMBOMEAL>
<BURGER>

<NAME>Tasty Burger </NAME>
<BUN BREAD="WHITE">

<MEAT />

<CHEESE />

<MEAT />
</BUN>
</BURGER>

<FRIES SIZE="LARGE" />
<DRINK SIZE="LARGE" FLAVOR="Cola" />

</COMBOMEAL>

A rendering of this example under a preview version of Internet Explorer 5 is shown in
Figure 17-1.

Notice that the browser shows a structural representation of the file, not a screen
representation. You’ll see how to make this file actually look like something later in
sthe chapter. First, take a look at the document syntax. In many ways, this example
“Meal Markup Language” (or MML, if you like) looks similar to HTML—but how do
you know to name the element <COMBOMEAL> instead of <MEALDEAL> or
<LUNCHSPECIAL>? You don’t need to know, because the decision is completely up
to you. Simply choose any element and attribute names that meaningfully represent

630 H T M L : T h e C o m p l e t e R e f e r e n c e

the domain that you want to model. Does this mean that XML has no rules? It has
rules, but they are few, simple, and relate only to syntax:

■ Just like well-written HTML, all elements must be properly nested. For example,

<OUTER><INNER>ground zero </INNER></OUTER>

is correct, while this isn’t:

<OUTER><INNER>ground zero </OUTER></INNER>

■ All attribute values must be quoted. In HTML, quoting is good authoring practice,
but it is required only for values that contain characters other than letters (A–Z
and a–z), numbers (0–9), hyphens (-), or periods (.). For example, under XML,

<BLASTOFF COUNT="10">

C h a p t e r 1 7 : X M L : B e y o n d H T M L 631

N
EW

H
O

R
IZ

O
N

S

Figure 17-1. Well-formed XML under Internet Explorer 5

632 H T M L : T h e C o m p l e t e R e f e r e n c e

is correct, while this isn’t:

<BLASTOFF COUNT=10>

■ All elements with empty content must be self-identifying, by ending in /> instead of
the familiar >. An empty element is one such as the HTML
, <HR>, or
 elements. In XML, these would be represented, respectively, as
,
<HR/>, and .

■ All elements must be cased consistently. If you start a new element such as
<BURGER>, you must close it as </BURGER>, not </burger>. Later in the
document, if the element is in lowercase, you actually are referring to a new
element known as <burger>. Attribute names are also case-sensitive.

■ A valid XML file may not contain certain characters that have reserved meanings. These
include characters such as &, which indicates the beginning of a character entity
such as , and <, which indicates the start of an element name such as
<SUNNY>. These characters must be coded as & and <, respectively.
They can, however, occur in a section marked off as character data.

A document constructed according to the previous simple rules is known as a
well-formed document. SGML purists may find this notion eccentric and somewhat
troubling. Although SGML itself is currently being revised, traditional SGML has no
notion of well-formed documents—documents that are in some sense okay because
they conform to some basic syntax guidelines. Instead, conventional SGML uses the
notion of valid documents—documents that adhere to a formally defined document
type definition (DTD). Although this concept is also part of HTML, it often is lost on
many page authors. For anything beyond casual applications, defining a DTD and
validating documents against that definition are real benefits. XML supports both
well-formed and valid documents. The well-formed model should encourage those not
schooled in the intricacies of SGML to begin authoring XML documents, thus making
XML as accessible as HTML has been. The valid model is available for applications in
which a document’s logical structure needs to be verified.

Valid Documents
Most HTML authors are familiar with basic elements and attributes. Now, due to the
rising complexity of pages, they are becoming more familiar with the importance of
making an HTML document conform to the rules of a DTD, such as HTML 4. As noted
in the previous paragraph, a document that conforms to a DTD is said to be valid.
Unlike most HTML authors, SGML authors normally concern themselves with
producing valid documents. Many also concern themselves with writing the DTDs that
HTML authors usually take for granted. With the appearance of XML, HTML authors

can look forward to mastering a new skill: writing DTDs. The following example
illustrates how XML might be used to track student performance in an instructional
management system. A definition of the sample language to accomplish this task can
be found within the document, although this definition can be kept outside the file, as
well. The students.xml file shown here includes both the DTD and an occurrence of a
document that conforms to the language in the same document:

<?xml version="1.0"?>
<!DOCTYPE GRADES [

<!ELEMENT GRADES (STUDENT+)>

<!ELEMENT STUDENT (COURSE+)>
<!ATTLIST STUDENT NAME CDATA #REQUIRED

SEX (M | F) #REQUIRED
LEVEL (6 | 7 | 8) #REQUIRED>

<!ELEMENT COURSE EMPTY>
<!ATTLIST COURSE TITLE CDATA #REQUIRED

GRADE (PASS | FAIL) #REQUIRED>

]>

<!-- the document instance -->
<GRADES>

<STUDENT NAME="WILLIE" SEX="M" LEVEL="7">

<COURSE TITLE="MATH" GRADE="PASS" />
<COURSE TITLE="ENGLISH" GRADE="FAIL" />

</STUDENT>

<STUDENT NAME="FIONA" SEX="F" LEVEL="7">
<COURSE TITLE="MATH" GRADE="PASS" />

<COURSE TITLE="ART" GRADE="PASS" />
</STUDENT>

</GRADES>

The meaning of this language is straightforward. A document is enclosed by the
<GRADES> element, which in turn contains <STUDENT> elements that have NAME,
SEX, and GRADE attributes. The NAME attribute can be any character data (CDATA);
the SEX attribute can be M or F; and the LEVEL can be 6, 7, or 8. The <STUDENT>
element may contain one or more <COURSE> elements. The <COURSE> element is
an empty element. However, each <COURSE> element has a TITLE attribute, which
can contain character data, and a GRADE attribute, which can have a value of either
PASS or FAIL. The example document shows the use of these new elements. A
rendering of the document under Internet Explorer 5 is shown in Figure 17-2.

C h a p t e r 1 7 : X M L : B e y o n d H T M L 633

N
EW

H
O

R
IZ

O
N

S

634 H T M L : T h e C o m p l e t e R e f e r e n c e

One interesting aspect of using a DTD with an XML file is that the correctness of
the document can be checked. For example, changing the value of the LEVEL attribute
on the first <STUDENT> element to 4 should cause the XML parser to reject the
document, as shown in Figure 17-3.

Writing a DTD might seem like an awful lot of trouble; but, without one, the value
of XML is limited. If you can guarantee conformance to the specification, you can start
to allow automated parsing and exchange of documents. Writing a DTD is going to be
a new experience for most HTML authors, and not everybody will want to write one.
Fortunately, although not apparent from the DTD rules in this brief example, XML
significantly reduces the complexity of full SGML. A couple of measurements may help
you appreciate the extent of this reduction. First, the full SGML standard is about 500
pages. The XML 1.0 specification is only around 30 pages. Second, XML removes about
30 constructs that SGML uses to define DTDs. The constructs are either infrequently
used or introduce ambiguities that would make efficient document parsing difficult.

Figure 17-2. Rendering of Grades example under Internet Explorer 5

C h a p t e r 1 7 : X M L : B e y o n d H T M L 635

N
EW

H
O

R
IZ

O
N

S

The following valid SGML declaration for an HTML 4 <BODY> element can be used to
illustrate some of the features removed from SGML:

<!ELEMENT BODY O O (%block) -BODY +(INS | DELS) - - the body tag - ->

Note the following syntax differences:

■ O O following the BODY identifier indicates that the start and end tags are
optional and can be omitted. Their presence can be contextually inferred. XML
doesn’t allow omitted tags.

■ –BODY is a type of identifier known as an exclusion. It modifies the basic
content model for the <BODY> element by specifying that it can’t include
another <BODY> element. XML doesn’t support exclusions.

Figure 17-3. Validation Error message under IE 5

636 H T M L : T h e C o m p l e t e R e f e r e n c e

■ +(INS | DELS) specifies an inclusion. It modifies the basic content model of
the <BODY> element by specifying that it can additionally use the <INS>
or <DELS> elements anywhere inside its content. XML doesn’t support
inclusions. (INS | DELS) is also known as a name group, a construct—not
supported by XML—that is used to indicate that a declaration applies to
multiple elements.

■ - - the body tag - - is an embedded comment. XML supports comments, but not
inside declarations.

Although XML will not support some SGML capabilities, it will retain powerful
SGML capabilities that are not found in standard HTML. For example, XML general
entities, which essentially are macros that associate an identifier with replacement text
defined either inside the declaration or in an external file. HTML authors may be
familiar with character entities, such as ", which are used to insert special
characters. XML general entities are used in the same way, except that the replacement
text can be arbitrarily long. Anyone who has ever needed to modify something that is
used repeatedly in a document will appreciate entities. By using the entity name
throughout the document, the replacement text can be modified in a single place, the
entity declaration. For example, the GRAMMAR entity acts as a shorthand notation for
a longer course name:

<?xml version="1.0"?>

<!DOCTYPE GRADES [
<!-- An entity whose replacement text is immediately defined -->

<!ENTITY GRAMMAR "Language Studies: Introduction to English
Grammar">

<!ELEMENT GRADES (STUDENT+)>

<!ELEMENT STUDENT (COURSE+)>
<!ATTLIST STUDENT NAME CDATA #REQUIRED

SEX (M | F) #REQUIRED

LEVEL (6 | 7 | 8) #REQUIRED

<!ELEMENT COURSE EMPTY>

<!ATTLIST COURSE TITLE CDATA #REQUIRED
GRADE (PASS | FAIL) #REQUIRED>

]>

<!-- the document instance -->

<GRADES>
<STUDENT NAME="WILLIE" SEX="M" LEVEL="7">

<COURSE TITLE= "MATH" GRADE="PASS" />
<COURSE TITLE="&GRAMMAR;" GRADE="FAIL" />

</STUDENT>

C h a p t e r 1 7 : X M L : B e y o n d H T M L 637

N
EW

H
O

R
IZ

O
N

S

<STUDENT NAME="FIONA" SEX="F" LEVEL="7">

<COURSE TITLE="MATH" GRADE="PASS" />
<COURSE TITLE="&GRAMMAR;" GRADE="PASS" />

</STUDENT>
</GRADES>

A few more things can be defined in an XML DTD; but, at this point, you may be
wondering whether you are required to include a full DTD every time that you author
an XML document. The answer is no. Just as an HTML file is supposed to start with a
DTD that references an external document type, so, too, is an XML file supposed to
start with a DTD. In the following example, the definition of the GRADES language
has been put in a file called grades.dtd:

<!-- Grades DTD -->

<!ELEMENT GRADES (STUDENT+)>
<!ELEMENT STUDENT (COURSE+)>

<!ATTLIST STUDENT NAME CDATA #REQUIRED
SEX (M | F) #REQUIRED
LEVEL (6 | 7 | 8) #REQUIRED>

<!ELEMENT COURSE EMPTY>

<!ATTLIST COURSE TITLE CDATA #REQUIRED
GRADE (PASS | FAIL) #REQUIRED>

Notice that you don’t have to enclose the various rules in a DOCTYPE statement. You
then would reference the external DTD with the <!DOCTYPE> element. The use of the
SYSTEM keyword and URL indicates that the DTD is external to this file. The next
example shows how you could reference the external definition grades.dtd:

<?xml version="1.0"?>
<!DOCTYPE GRADES SYSTEM "grades.dtd">

<!-- the document instance -->

<GRADES>

<STUDENT NAME="BILLIE" SEX="M" LEVEL="7">

<COURSE TITLE="MATH" GRADE="PASS" />
<COURSE TITLE="ENGLISH" GRADE="FAIL" />

</STUDENT>

<STUDENT NAME="FIONA" SEX="F" LEVEL="7">

<COURSE TITLE="MATH" GRADE="PASS" />
<COURSE TITLE="ART" GRADE="PASS" />

</STUDENT>
</GRADES>

Linking to an external document type is very useful. In the future, you should be
able to obtain DTDs from other organizations.

Ways to Use XML
While creating XML documents doesn’t seem particularly hard, you may wonder how
to actually use this technology. At least three distinct application models are on the
horizon:

■ Using XML for special data files that support HTML applications

■ Embedding XML elements into HTML documents

■ Using XML by itself as the basis for interactive documents

The third approach, using XML by itself, begs a question of how a page will
actually render. Three approaches are designed to solve this problem. The first
approach is to convert XML into HTML, or HTML plus style sheets. This is the only
solution for browsers that are not XML-aware. At the time that this edition was being
written, only Internet Explorer 5 prerelease versions support XML to any major degree.
However, assuming that browsers eventually support XML, you may be able to use
one of the other two approaches: rendering XML by binding your tags to CSS rules or
using XSL, another style sheet technology used with XML to translate the XML
document to HTML or CSS.

XML for Data Files
The first pervasive use of XML is to define special data files that support HTML
applications. This use is already in place in newer browser releases. Microsoft Internet
Explorer 4 relies upon an XML-based language to support push functionality, the ability
of viewers to subscribe to Web sites that are automatically updated on a scheduled
basis. The language, known as Channel Definition Format, is the most publicized of
several other “helper” languages that have suddenly appeared recently. A related
language is Open Software Description, used to support the automatic downloading of
software. The slogan that Microsoft uses to describe the HTML/XML relationship is
“HTML is for presentation, while XML is for data.”

638 H T M L : T h e C o m p l e t e R e f e r e n c e

Operationally, these XML-based language documents are identified by a special file
extension, such as .cdf, that is analogous to the special extensions used for GIF (.gif)
and JPEG (.jpeg) files. XML files are retrieved like files for HTML media inserts, but are
processed in a special way. Instead of being handled by a browser extension for visual
rendering, they are handled by an extension that parses the document and uses the
information that it contains to control the browser’s behavior. This use requires only
those few XML features that are needed to define data and doesn’t approach the full
XML vision. Because these documents are not directly viewed, they can function quite
well without the XML capabilities that are still under development.

The CDF language illustrates the characteristics of the “XML as data” model. It
contains neither linking information, other than the common HREF attribute used in
HTML, nor any style information for rendering CDF elements in an HTML browser. It
contains only the information-building blocks needed to define a channel. The small
CDF document shown next presents an example of some of the more common CDF
elements. The <CHANNEL> element defines the channel and points to an initial
HTML document. It contains a <SCHEDULE> element to update the channel and
several <ITEM> elements to define viewable items, such as pages and even a screen
saver. Viewable pages have an <ABSTRACT> element to summarize their content and
may have both a large and a small graphic logo associated with them, as specified by
the empty <LOGO/> element.

<?xml version="1.0"?>
<CHANNEL HREF="http://www.bigcompany.com/">

<TITLE> Big Company Channel </TITLE>

<ABSTRACT>
Welcome to the Big Company channel, a comprehensive

guide to the latest book examples.
</ABSTRACT>

<LOGO HREF="http://www.bigcompany.com/imageslogo.ico"

STYLE="ICON"/>

<LOGO HREF="http://www.bigcompany.com/images/logo.gif"

STYLE="IMAGE"/>

<SCHEDULE ENDDATE="1998.12.31">
<INTERVALTIME DAY="1"/>

</SCHEDULE>

<ITEM HREF="http://www.bigcompany.com/p1.html">
<LOGO HREF="http://www.bigcompany.com/images/pagelogo.ico"

STYLE="ICON"/>

C h a p t e r 1 7 : X M L : B e y o n d H T M L 639

N
EW

H
O

R
IZ

O
N

S

640 H T M L : T h e C o m p l e t e R e f e r e n c e

<LOG VALUE="document:view"/>

<TITLE> Page 1 </TITLE>
<ABSTRACT>Abstract for Page 1 </ABSTRACT>

</ITEM>

<ITEM HREF="http://www.bigcompany.com/page2.html">
<LOGO HREF="http://www.bigcompany.com/images/pagelogo.ico"

STYLE="ICON"/>

<LOG VALUE="document:view"/>
<TITLE> Page 2 </TITLE>

<ABSTRACT>Abstract for Page 2 </ABSTRACT>
</ITEM>

<ITEM HREF="http://www.bigcompany.com/scrnsave.html">
<USAGE VALUE="ScreenSaver"></USAGE>

</ITEM>

</CHANNEL>

The point of this example isn’t to explain the CDF syntax, but to show how XML
represents data in a real application. Readers interested in making a CDF channel can
visit Microsoft’s Sitebuilder network (http://www.microsoft.com/sitebuilder/) for the
latest CDF syntax. Here’s one other point about CDF to consider: this file format is
external to HTML files. Like any other media type (fractal images, Shockwave, and so
on), CDF could be handled by an external helper application or even a plug-in. But can
you consider putting a language such as CDF right into an HTML document?

Embedding XML into HTML Documents
Although the “official” XML syntax remains unclear, the expectation exists for a means
to embed XML elements into HTML documents. One approach is to use a special
element such as <XML> to indicate sections of XML content. This approach is the idea
behind Microsoft’s XML data islands. The <XML> element can be used anywhere
within an HTML document to enclose XML content, which might work as follows:

<HTML>

<HEAD>

<TITLE> XML Data Islands </TITLE>

</HEAD>

<BODY>

<H1>Regular HTML Here </H1>
<XML ID="tasty">

<COMBOMEAL>
<BURGER>

<NAME>Tasty Burger </NAME>

<BUN BREAD="WHITE">

<MEAT />
<CHEESE />

<MEAT />
</BUN>

</BURGER>

<FRIES SIZE="LARGE" />
<DRINK SIZE="LARGE" FLAVOR="Cola" />

</COMBOMEAL>

</XML>
</BODY>

</HTML>

Under Internet Explorer 5, this markup and content will be hidden, though it is
exposed for scripting manipulation. Other browsers may ignore the <XML> and newly
defined tags but still render onscreen content, such as the phrase “Tasty Burger,” as
shown in Figure 17-4.

To avoid the rendering of unknown markup onscreen, you could use the SRC
attribute for the <XML> element:

<XML SRC="combomeal.xml"></XML>

Older browsers will safely ignore this markup.
Besides using the <XML> element, you could use the <SCRIPT> element to

include HTML. For example,

<SCRIPT LANGUAGE="XML" TYPE="text/xml">

<WEATHER>
<SUNNY />

</WEATHER>
</SCRIPT>

C h a p t e r 1 7 : X M L : B e y o n d H T M L 641

N
EW

H
O

R
IZ

O
N

S

You could also use the SRC attribute for the <SCRIPT> element to reference an
external XML file, like so:

<SCRIPT SRC="http://www.bigcompany.com/combomeal.xml"></SCRIPT>

Regardless of the particular syntax, proposing to use XML inside HTML documents
creates the expectation that XML elements will integrate into the HTML application
environment. But how exactly should this happen? The previous example shows that
embedding XML content in the <BODY> element may cause a problem. What about
the <HEAD> of the document? Placing XML elements inside an HTML document’s
<HEAD> element is consistent with the “XML as data” model. After all, the purpose of
the head of the document is to house the document’s meta-data, as illustrated by the
following example:

<HTML>

<HEAD>

<TITLE> Widget Wonders </TITLE>

642 H T M L : T h e C o m p l e t e R e f e r e n c e

Figure 17-4. Data islands problem under Netscape 4

<XML ID="xmlmetaone">

<DESCRIPTION>
<AUTHOR>Thomas A. Powell </AUTHOR>

<SUMMARY>A sample document about widgets </SUMMARY>

<KEYWORDS>
<KEYWORD RANK="1">Widget </KEYWORD>

<KEYWORD RANK="2">Sample </KEYWORD>

</KEYWORDS>

<CREATION>January 5, 1999 </CREATION>

<EXPIRES>December 31, 1999 </EXPIRES>
</DESCRIPTION>

</XML>
</HEAD>

<BODY>

<H1 ALIGN="CENTER"> Widget Sample Document </H1>

<HR>
<P>This is some sample text about widgets. </P>
</BODY>

</HTML>

The XML code in this example will not render on older browsers, though you could
potentially render or manipulate it with an XML-aware browser. A more likely approach
would be to use a server-side program to index the documents more carefully, instead of
using a traditional, free text-search engine. Although the use of XML data islands may
not seem obvious, if raw XML documents could be displayed, the improved structure
that the language provides over HTML surely could be harnessed.

Converting XML to HTML for Display
As you have already seen, simply including new XML elements in the body of a
document can cause problems, because most browsers will want to display the
contents of the elements. Of course, no formatting will be applied to raw XML elements
because (unlike HTML) XML elements have no default appearance; they must be
assigned one. The most basic way to render XML is to translate it into HTML. All
browsers support HTML, at least to some degree, so you can use a server-side program
to translate your XML documents to HTML documents at delivery time. You may
wonder what benefit this may have, given that HTML doesn’t provide the rich
structuring that XML does. The most obvious benefit is the abstraction provided.

C h a p t e r 1 7 : X M L : B e y o n d H T M L 643

N
EW

H
O

R
IZ

O
N

S

644 H T M L : T h e C o m p l e t e R e f e r e n c e

Imagine if you had a press release that you marked up in a simple press-release
language. It might look something like the following file, called pressrelease1.xml:

<?xml version="1.0"?>

<!DOCTYPE PRESSRELEASE SYSTEM "pressrelease.dtd">
<!-- the document instance -->

<PRESSRELEASE>
<DATE>January 5, 1999 </DATE>
<HEADING>Big Company Releases Super Widget </HEADING>

<RELEASEBODY>

This is a sample press release. This is just some dummy text.
</RELEASEBODY>

<CONTACT TYPE="PHONE">619-555-1212 </CONTACT>

<CONTACT TYPE="FAX">619-444-1212 </CONTACT>
<CONTACT TYPE="EMAIL">info@bigcompany.com </CONTACT>

</PRESSRELEASE>

Assume that all the elements are used appropriately according to the referenced
DTD. Obviously, you can’t deliver this file as-is, but you could write a server-side
program that would take these tags and convert them into HTML fragments, to
assemble an HTML file to be delivered. Maybe this file would look something like this:

<HTML>
<HEAD>

<TITLE> Big Company Releases Super Widget </TITLE>

</HEAD>

<BODY>
<H3 ALIGN="RIGHT" ID="DATE"> January 5, 1999 </H3>

<H1 ALIGN="CENTER" ID="HEADING"> Big Company Releases Super
Widget </H1>

<HR>

<DIV ID="RELEASEBODY">
<P>This is a sample press release this is just sample text.

</P>

</DIV>

<HR>

<!--Contact block -->

<ADDRESS>
E-mail:

info@bigcompany.com

Phone: 619-555-1212

FAX: 619-444-1212

</ADDRESS>

</BODY>
</HTML>

You can tell by the use of the ID attributes and comments how the fragments might
map into the resulting HTML file. You could also use CSS rules to improve the look of
the press release, but the preceding example should illustrate the basic concept. The
benefit to this XML-translated-to-HTML approach is the abstraction provided. Because
the HTML or HTML/CSS fragments are stored separately from the content, you could
change the fragments without necessarily changing the actual content itself, which is
stored in the XML file. You potentially could also provide different fragments
depending on the browser accessing the page. This is a very powerful idea and might
make the possibility of delivering multiple versions of a page a little more realistic.

The concept being described here isn’t unique to XML; you could create the same effect by
using a database. This idea may actually be more appropriate as a database-driven page.

Displaying XML Documents by Using CSS and XSL
The conversion from XML to HTML seems awkward; it would be preferable to deliver
a native XML file and display it. By using Cascading Style Sheets (CSS) or a new
technology called Extensible Stylesheet Language (XSL), you should be able to deliver
XML documents right to the screen. Note that neither of these technologies is well
defined in relation to XML, so these examples may require significant rework to render
in your browser. However, both examples should provide the flavor of how native
XML may be presented.

The following file is a well-formed XML document representing a catalog of small parts:

<?xml version="1.0"?>
<?xml-stylesheet href="catalog.css" type="text/css" ?>

<CATALOG>
<PART>

<NAME>Super Widget </NAME>

<DESCRIPTION>

C h a p t e r 1 7 : X M L : B e y o n d H T M L 645

N
EW

H
O

R
IZ

O
N

S

646 H T M L : T h e C o m p l e t e R e f e r e n c e

The Super Widget is the most powerful widget in the world.

</DESCRIPTION>
<PRICE>$1.95</PRICE>

</PART>

<PART>
<NAME>Deluxe Widget </NAME>

<DESCRIPTION>

The Deluxe Widget is the fanciest widget in the world.
</DESCRIPTION>

<PRICE>$2.95</PRICE>
</PART>

</CATALOG>

Notice that the second line of the file references a style sheet in the same directory,
called catalog.css. The content of this file is shown here:

CATALOG {font-family: Arial; font-size: 14pt;}

PART {background: orange; display: block}
NAME {font-size: larger; font-style: italic;

display: block}

DESCRIPTION {text-indent: 10px; display: block;}

PRICE {color: #009900; text-align: right;
font-weight: bold; display: block}

Notice that the syntax for the style sheet is the same as the syntax discussed for CSS in
Chapter 10, except that the element names are the XML elements that were defined in
the previous example. One small issue with this approach to formatting XML is that
positioning objects with style sheets is difficult unless you either use CSS-P extensions for
absolute positions or assign a display property to the XML element. Notice that the rule
display assigns a value of block to each of the elements. This makes the example XML act
like an HTML block element, and thus induces a return in the document. The rendering of
this rudimentary example under Internet Explorer 5 is shown in Figure 17-5.

The lack of flow objects in CSS makes properly displaying this XML document very
difficult. In some sense, CSS still relies heavily on HTML for basic document structure.
Because of its potential shortcomings, many Web experts look to XSL as a possible
solution. XSL, a much more complex language than CSS, is based on a style sheet
technology called Document Style Semantics and Specification Language (DSSSL) that
was used in the SGML community. Fortunately, XSL doesn’t retain much of the
complexity and awkward parentheses notation of DSSSL. One of the most interesting

C h a p t e r 1 7 : X M L : B e y o n d H T M L 647

N
EW

H
O

R
IZ

O
N

S

aspects of XSL is its complex pattern matching. You can write XSL rules that match
various pieces of an XML file and then output the appropriate HTML and/or CSS
markup to display the information. Using the previous simple Parts example, you
could link instead to an XSL file by using the following statement:

<?xml-stylesheet href="catalog.xsl" type="text/xsl" ?>

The catalog.xsl file shown here contains a variety of pattern-matching rules that
would output HTML and style rules:

<?xml version="1.0"?>

<xsl>
<rule>

<root />
<HTML>
<HEAD>

<TITLE> Parts Catalog </TITLE>

</HEAD>

Figure 17-5. Rendering of XML and CSS under Internet Explorer 5

648 H T M L : T h e C o m p l e t e R e f e r e n c e

<BODY BGCOLOR="orange">

<H1 ALIGN="CENTER"> Product Catalog </H1>
<HR/>

<children/>

</BODY>

</HTML>

</rule>

<rule>

<target-element type="PART" />
<DIV STYLE="margin: 50px; background: yellow">

<children />
</DIV>

</rule>

<rule>

<element type="PART">
<target-element type="NAME" />

</element>

<children />

</rule>

<rule>

<element type="PART">
<target-element type="DESCRIPTION" />

</element>

<DIV STYLE="text-indent: 20px; font-style: italic">
<children/>

</DIV>

</rule>

<rule>
<element type="PART">

<target-element type="PRICE" />

</element>

<DIV ALIGN="RIGHT" STYLE="color: green;">

<children/>
</DIV>

</rule>
</xsl>

One interesting aspect of XSL is that it actually is defined in XML. Note the precise
nesting, quoting, case consistency, and self-identifying in the document, as required by
XML. The basic purpose of this example XSL file is to define numerous rules to match
XML elements to HTML markup. The various rules are defined by the <rule> element,
which contains matching statements such as <target-element type="PRICE" />. This
would look for an element called <PRICE>. You can make the rule more specific by
including the <target-element> tag within an <element> tag that indicates which tag
must enclose the tag that you are trying to match. The second part of the <rule>
element is the actual markup that should be output when the rule works. You may
notice the continued use of the <children/> element, which indicates that the contents
of the element should be processed or output if necessary.

The last example doesn’t work properly under Internet Explorer 5. However, a
JavaScript-based XSL parse utility was able to parse the file properly and output
the appropriate HTML code.

The example provided only begins to touch on the richness of XSL, which provides
complex pattern matching and basic programming facilities. Unfortunately, at the time
of this new edition’s writing, XSL is still in a draft form; even the latest browsers have
only partial support for this technology. Readers interested in the latest developments
in XSL are directed to the W3C Web site (http://www.w3.org/Style/XSL/), as well as
Microsoft’s XML site (http://www.microsoft.com/xml).

Rewriting HTML as XML
As you read about XML, you may wonder how this technology is going to affect
HTML. Already, XML is being used in a fashion that complements HTML. For
example, the concept of XML data islands, as introduced by Microsoft, allows XML
elements to be added to an HTML document based on need. The use of XML as a data
format language outside the realm of HTML shouldn’t affect HTML either. Already,
CDF is being used with HTML files to define push channels for Internet Explorer, and
SMIL is being used by Real Platform (http://www.real.com) to define presentations.
However, XML is not going to stay quietly behind the scenes for long. This chapter has

C h a p t e r 1 7 : X M L : B e y o n d H T M L 649

N
EW

H
O

R
IZ

O
N

S

650 H T M L : T h e C o m p l e t e R e f e r e n c e

already shown examples of how XML could be displayed natively in a browser, or
even translated into HTML for display. XML goes beyond this and may totally change
the flavor of HTML forever.

In late 1998, the W3C released its first draft of how HTML could be rewritten in
light of XML. Code-named Voyager, this form of HTML broke the language into
modules and applied all XML rules to HTML elements. Although these rules were
discussed earlier in this chapter in the section “Basic XML,” they are significant and
should be mentioned again with specific focus on HTML syntax:

■ All elements must be nested. For example, <i>Ok</i> is okay, but
<i>Bad</i> is not.

■ End tags are always required. For example, <p> must always have a
corresponding </p>.

■ Empty elements must include a trailing slash. For example,
 isn’t valid, but

 is.

■ Attributes must not be minimized. For example, <ol compact> is not allowed, but
<ol compact="compact"> is.

■ All tags and attributes must be lowercase. Because XML is case-sensitive, Voyager
is case-sensitive, too. <P> and <p> are different tags. The W3C has decided, for
the moment, that <p> is the official way to denote a paragraph.

Some other rules have been added to make HTML more precise. First, you must
indicate the particular set of XML-defined HTML tags that you are using. This is
defined not by a <!DOCTYPE>, but by the xmlns attribute for the <html> element. For
example,

<html xmlns="http://www.w3.org/Profiles/voyager-strict">

specifies the URL that defines the namespace and document profile for this new form
of HTML. A namespace is a new idea added to XML that enables you to indicate where
elements are defined. The use of namespaces allows more than one author to define an
element, such as <title>, without having to worry about another person somewhere
else in the world causing a problem with their document. As long as a namespace is
indicated, you can always reference the proper definition.

The last important rule is that the first element within the <head> of a document must
be the <title> element and it must be followed by the <base> element, if one is used.

Many of these rules are simply the same good HTML practices that have been
promoted throughout this book. However, the consequences for not following the rules
under Voyager are a little stricter than under HTML. With HTML, browsers pretty

much render anything, even if it doesn’t conform to any known DTD. Under Voyager,
if the document breaks any of the previously discussed rules or uses elements that are
undefined in Voyager, the document will not render at all. This seriously changes the
flavor of HTML, both in good and bad ways.

Predicting the Future of XML
Predicting the future of XML or its effects on HTML is difficult. One thing is for certain:
HTML isn’t going away in its present form any time soon. Simply too many people are
writing HTML documents for it to go away overnight. Furthermore, the definition of
HTML as an XML language may not have much effect in the short term. Unfortunately,
people just don’t seem to follow the rules with HTML, suggesting that all existing
documents have to be rewritten in order to render is unlikely. More likely, browsers will
contain some sort of compatibility mode to deal with old HTML markup, which will
water down the effect of Voyager in the short term. Because Voyager is so precisely
defined, over time, you will see tools developed that guarantee the production of precise
HTML. The strictness of Voyager will also spare browsers from having to make
assumptions about markup, which may help resolve browser compatibility issues to
some degree. Hopefully, this will lead to a much more stable Web.

XML clearly provides significant benefits. The technology is simple to describe, yet
provides the power to create data that can be passed between programs or people
without loss of meaning. With its structure, XML will enable Web-based automation,
improved search engines, and a host of motivating e-commerce applications. However,
before you get too excited, consider that to achieve the dream of an XML-enabled Web,
many diverse groups need to get together and agree on data formats. Just because XML
could be used to write a special language to be used to automate data interchange in a
particular industry doesn’t mean that people will accept it. Remember that XML is based
on SGML, and SGML has promised similar benefits during its history. Getting groups to
agree upon a common data format and actually use it isn’t always feasible, given the
competitive nature of business. Anyone can define their own XML-based language.
McDonald’s could define FFML (Fast Food Markup Language). But does this mean that
Burger King will accept it as standard? With people defining languages for their own
special needs, the chaos of the Web could multiply into a markup Tower of Babel.

Don’t underestimate the simplicity of HTML. It may be ill defined and misused,
but it is commonly known and understood. In some sense, HTML is the English of
the Web. Unfortunately, this analogy might make Voyager the equivalent of
Esperanto—the supposed well-defined perfect common language. Only one thing is
certain about HTML and XML: change will happen. But consider the requirements to
move the Web from an HTML-centered approach to an XML-centered one, and you’ll
see that the widespread adoption of XML is going to take some time.

C h a p t e r 1 7 : X M L : B e y o n d H T M L 651

N
EW

H
O

R
IZ

O
N

S

Summary
This discussion of XML’s core syntax and extension only scratches the surface of
what remains an emerging technology. The best way to track XML’s rapid evolution
is to closely monitor the XML activity at the W3C site, http://www.w3.org. The
implications of XML are enormous. Just as a meta-data definition language, XML has
some wonderful uses for extending the Web. CDF shows how XML is used to define a
push language. Other languages are certainly possible, including markup to help
search engines more accurately index Web pages. However, eventually, a demand will
arise to include XML directly into HTML pages to augment the functionality of the
page, or maybe even replace the page outright.

As it stands, XML is still missing well-defined and well-implemented linking and
style definitions. As a middle-ground language, XML attempts to provide much of the
power of SGML while keeping the application oriented to the Web and within the
easy-to-use spirit of HTML. What XML will eventually bring, if it can be used directly
within Web pages, is the power to make data more regular and more specific to
particular applications or industries. With improved structure, migrating Web data to
and from databases, exchanging documents with other parties, and navigating large
collections of documents could get significantly easier.

Like many new hot technologies, XML will go through a “hype phase” that
suggests it is good for everything. However, at least in the short term, XML will
augment HTML and address its weaknesses rather than replace it outright. Just as
Windows relied on DOS and did not quickly supplant it, the market-driven nature of
Web technologies in conjunction with the existing heavy investment in HTML-based
information will probably spur an XML evolution rather than XML revolution.

652 H T M L : T h e C o m p l e t e R e f e r e n c e

Chapter 18
Future Directions

653

Copyright 1999 The McGraw-Hill Companies. Click Here for Terms of Use.

654 H T M L : T h e C o m p l e t e R e f e r e n c e

Where HTML is heading isn’t always easy to predict. The Web has been
rocked by rapid commercialization and the introduction of numerous new
technologies. However, the evolution of Web technology is far from finished.

Only a few years ago it was hard to imagine the types of multimedia and programmed
sites that are common on the Web today. Current trends in presentation, programming,
page structure, and the Web in general suggest what might happen to HTML and the
Web in the near future.

Presentation Issues
Getting pages to look a particular way is one of the chief goals of Web page designers.
With the rise of Cascading Style Sheets (CSS1) and the CSS positioning extensions
(CSS-P), which are now part of CSS2, style sheets provide many of the layout features
that page designers want. However, the CSS language is far from perfect; it is
particularly lacking in adequate support for tables, multimedia, and fonts. One
approach to dealing with tables is not to have CSS address them, and leave that for
HTML. HTML 4 already provides a rich table model, so this may be adequate. Other
style sheet technologies such as DSSSL (Document Style Semantics and Specification
Language), which is now recast in the form of XSL (Extensible Style Language), show
that it is possible to address table support at the style sheet level. It is unclear in which
direction table support will go. For now, as style sheets grow in acceptance, tables will
probably continue to serve double duty both as traditional tables and as positioning
devices to create well-laid-out Web pages.

Another aspect of presentation that isn’t perfectly clear yet is fonts. It is critical that
downloadable fonts come to the Web. Having page designers rely on certain fonts
being installed on the end user’s computer or attempting to embed fonts as pictures is
not reasonable. Microsoft and Netscape have already demonstrated that Web fonts are
possible. Even so, the issue of fonts isn’t solved. As the difference between the desktop
and the Web shrinks, an issue of font compatibility arises. On the desktop, we use
TrueType and PostScript fonts. On the Web, we use TrueDoc or OpenType fonts. There
is a conflict here when moving documents back and forth. Microsoft’s OpenType is
intended to format for both the Web and the desktop. This seems logical. Netscape
however, is looking to create a Web-specific font technology. Despite logic, which font
format will win is still far from clear. The World Wide Web Consortium (W3C) is
working hard on font-embedding specifications, including defining a way to create
fonts from font objects so that it is possible to avoid downloading complete font sets for
very similar fonts.

A great deal of the discussion about Web presentation is based on the desire to
reach print standards, but are we really looking to mimic print? The Web is more about
multimedia than about paper. Things like multiple windows, or frames, animated
buttons, and page transitions are inevitable additions to Web pages. How should these
features be added? In some cases, new HTML elements have been introduced to
support these features, such as the <MARQUEE> element. This definitely isn’t the best

C h a p t e r 1 8 : F u t u r e D i r e c t i o n s 655

N
EW

H
O

R
IZ

O
N

S
way to introduce these technologies. Small embedded binaries should probably be
used to add new multimedia features, but how will they be referenced from HTML
and style sheets? Microsoft has shown that it is possible to add numerous multimedia
features, in the form of filters, to style sheets. Many more features for multimedia will
undoubtedly be added. The <OBJECT> element may serve as the generic way to add
new binary forms. Which binary forms will dominate the Web is hard to predict, but it
is unlikely that more than two formats will be viable in sound, animation, video, and
3-D. At this point it seems that Macromedia’s Flash and RealNetwork’s RealAudio and
RealVideo are quickly gaining industry support. However, new forms may be on the
horizon. Forms that some might expect to go away, such as Adobe Acrobat, will
continue to thrive online in areas where style sheets and HTML come up short, such as
electronics specifications.

Programming Issues
The Web isn’t just about print. A transition is already underway from a page-oriented
view of the Web to a more program-oriented view of Web sites. Think of a complex
system like a job postings Web site. The site must be able to provide dynamic listings
of various jobs, support keyword searches, accept résumés, schedule interviews, and
perform a variety of other tasks. It should do this within the constraints of the different
browsers that might access the site. Described this way, Web sites sound more like
software. The truth is, many sites are like software.

Adding interactivity to Web sites is now commonplace. There are various new
technologies to choose from. Some of these, such as CGI, NSAPI/ISAPI, and
server-side scripting, are server side. Others, such as plug-ins, are client side. And still
others, such as JavaScript, VBScript, and Java, are used on both ends of the transaction.
The rise of so-called Dynamic HTML (DHTML) and the Document Object Model
(DOM) show just how intermixed HTML and programming languages are becoming.
Choosing which technology to use, and when, is a challenge. Too much emphasis
on the server can slow the site down and keep it from scaling. Placing too much
responsibility on the client side can also be problematic, since it is often difficult to
ensure that all clients support the technology properly. Because the client is beyond the
page designer’s control, it may be hard to ensure that things don’t go wrong, even with
careful design and rigorous testing. There is a balance between what should be done on
the client side and what should be done on the server.

The chief problems with programming facilities being added to Web sites include
standardization, scalability, and methodology. Web programming technologies like
Java and JavaScript are far from standardized. There seems to be a growing rift
between one browser’s idea of Java and another’s. Netscape’s JavaScript and
Microsoft’s JScript have major differences despite conformance to the ECMAScript
standard. These issues will have to be sorted out soon if there is to be any hope for a
true cross-platform programming environment. Otherwise, it may be necessary to
use platform-specific technologies like ActiveX controls or Netscape plug-ins in
conjunction with server-side technologies, regardless of what makes sense in theory.

As more and more users get on the Internet, some programmed sites are going to
face a critical problem of scalability. Imagine an airline reservation system on the Web.
How is it going to handle tens or hundreds of thousands of people who use it nearly at
the same time to order cheap tickets for the holidays? Another example of the problem
of scalability was when, in the fall of 1997, trading and related news sites were quickly
swamped after the stock market took a plunge. The problems continued in 1998 when
shopping sites were overwhelmed during the Christmas rush and electronic auction
sites went up and down due to huge traffic spikes. The need to build large, robust
systems will increase as electronic commerce develops. Today, however, most systems
simply won’t scale. The applications aren’t distributed across many servers, and it is
difficult to create distributed systems. Many industry pundits like to discuss how
programming objects will be flung far over the Internet, and how corporate networks
will be served out from various application servers to help solve scalability problems.
These objects should help when you think of many application servers distributing
ordering objects to airline ticket buyers. In this sense, the Web turns into a giant
distributed system. The question arises of how well these objects are going to interact.
Even on a single-user’s computer, the idea of having objects communicate with each
other has been less than straightforward. Doing this over a network only makes things
worse. The battle for the object world, already in progress, pits a loose alliance of
Common Object Request Broker Architecture (CORBA) and Java against Microsoft’s
Distributed Component Object Model (DCOM). Which of these particular object
technologies will dominate the Internet is unclear. One may be popular on intranets,
while the other is common outside the corporation. The true answer might be neither,
as XML-based formats provide a way for applications to interact with each other over
the Internet. Already companies like Allaire (http://www.allaire.com), with its WDDX
format, and others show that this can be done today.

With the rise of complexity in programming systems, particularly those that must
be built to scale, rigorous development methodologies must be adopted. The current
state of affairs on the Web overemphasizes the look and feel of a site. Back end work
on databases and programming often take a backseat to visuals. Testing is poorly
considered. Sites are often built without solid plans, in a mad rush to get on the Web
or outdo the competition. This has to change. To build complex systems, the ideas of
software engineering will have to be applied to Web pages. The ad hoc approaches
used to date won’t work. Principles adopted from software engineering, which may be
dubbed Web site engineering, may help curb problems, but there is still a great deal of
work left to do in order to develop the best practices for Web site development. Don’t
be fooled: tools won’t save the developer facing a complex task. Methodology is
required as well.

The idea of using simple what-you-see-is-what-you-get (WYSIWYG) development
tools to link components in a Rapid Application Development (RAD) style is a
tempting idea, but it doesn’t work. RAD is widely practiced on the Web, but in a form
that often causes more harm than benefit. The key to RAD is the idea of prototype-
driven design. On the Web, this would mean creating a Web site and then working

656 H T M L : T h e C o m p l e t e R e f e r e n c e

over the site in numerous iterations with user input, including design meetings, until
the final design falls out. In this sense, RAD means building the wrong site multiple
times until the right site falls out of the process. How far is the rapidly developed Web
site from what the users actually want? Will there be repercussions if a subpar site is
launched for public use? Looking at all the sites with “under construction” signs on
them, it seems that RAD is very popular on the Web. It is not, however, a safe approach
to building Web sites, least of all complex ones.

RAD grew from the maturity of the software engineering discipline. Before RAD
came a variety of structured design paradigms that helped developers understand the
systems they were developing. How can one create a RAD-based tool or philosophy for
an environment that is still in its infancy? RAD will work, and it will certainly have its
place on the Web, but it is too soon for Web RAD. Many Web page developers are
hardly schooled in software development, let alone structured software development.
Ask yourself if the HTML code, not to mention the scripts, of many Web site files
exhibits strict coding standards. Naming conventions, organization, and coding rules
are not widely promoted on the Web.

No more evidence of the Web’s lack of software development maturity is required
than the state of testing. Vague references to “test your site under other browsers” are
the typical depth of this discussion, which invariably omits test plans and matrices, test
types, regression testing, and so on. Even if browser testing were the only aspect to Web
testing, just how many versions of browsers are there? There are literally hundreds.
The payoff of making a site work under the Commodore 64 browser (there is one) is
generally minor. How many versions of Netscape are there? A quick survey shows ports
to Macintosh, Windows 3.1, Windows 95/NT, OS/2, and numerous flavors of UNIX. The
browser itself has gone through numerous major releases at the time of this writing (1.x,
2.x, 3.x, 4, 4.5, and soon 5.x), and there are various beta versions still floating around. So
what? you might ask. The problem is that these browsers act differently when it comes to
programming facilities. Serious bugs exist, programmingwise, under different versions
of the browser, such as JavaScript support. Ad hoc “looks right so it must be right”
testing by example could spell disaster for complex programmed Web sites. This is not
a proclamation of doom and gloom for Web development, simply a wakeup call to the
requirements of programmed sites.

There should be no doubt that, when appropriate, the programming paradigm of Web
sites is here. Many of the more interesting sites that do something have sophisticated back
end systems, and often tie in with databases. Scripting and objects have made it to the
client. The idea of Dynamic HTML (DHTML) makes the page a dynamic document rather
than a print-oriented one. However, these changes come with a potential price. Remember
how mixing the structure of a Web page with presentation by forcing layout with HTML
was considered a bad idea? Now add in a heavy amount of scripting. Without careful
decomposition in pages to keep content separate in a structured fashion from presentation
and logic, can pages live on past the current state?

C h a p t e r 1 8 : F u t u r e D i r e c t i o n s 657

N
EW

H
O

R
IZ

O
N

S

Structure
One of a Web designer’s chief roles is bringing order to the chaos, simply to provide
structure. As mentioned throughout this book, the original intent of HTML was as a
structuring language, but its purpose was often misunderstood. The structure that
HTML provides for documents is not enough, particularly when considering the site as a
whole. While it is easy enough to collect documents, how do they relate, and how will
the documents be managed? Many Web sites manage their information as a collection of
files in directories. This won’t work as the site scales unless very strict rules are followed.
The keys to solving many of the problems of document management and site structure
are databases and XML. A database can be used to hold content that is pulled out of a
database and flowed into HTML templates. The HTML templates are then combined
with style sheets, binary objects, and programming logic to form a complex Web-based
application. An overview of this separation is shown in Figure 18-1.

658 H T M L : T h e C o m p l e t e R e f e r e n c e

Figure 18-1. Separation of style, structure, and logic

The benefits of such harsh borders are not always obvious. Using a database as a
centralized repository for information can provide significant benefits. Imagine the
knowledge of a company stored in a document repository that can be mined to pull
data out and flowed into various different presentation formats like PageMaker files,
HTML files, and so on. These files can then be distributed in a variety of fashions:
paper, Web, or even CD-ROM. Figure 18-2 provides an overview of this idea.

While all this makes sense, few people are really doing it. In many cases, HTML is
the primary form of the data; the structure and the content of the document are tightly
bound. Is this such a wise idea? Think back to just one year ago. Are last year’s HTML
facilities considered passé? How easy is it to retrofit these documents and bring them
up to the latest features? In some cases, certain HTML elements have been deprecated.
The way HTML is being used today does not promote long document life. While this
may keep Web professionals in business, it really isn’t the best approach. Document

C h a p t e r 1 8 : F u t u r e D i r e c t i o n s 659

N
EW

H
O

R
IZ

O
N

SFigure 18-2. Content and preservation separation in action

form should be dependent on the purpose and life expectancy of the information.
Certain documents might not work well in HTML. Adobe Acrobat, which allows the
display of more complicated documents in a Web browser, might be a great solution,
particularly as it also permits easier printing of those documents. Translating certain
low-priority documents from Microsoft Word to the Web might be totally wasteful
given the possibility of using word processing files on the Web. HTML does bring
structure, but there are other ways to do things.

XML may provide the structure that HTML does not, particularly for industry-
specific applications. HTML is a generalized markup language that provides structures
like headings, lists, and paragraphs. However, data often has a much richer meaning
than simply being a paragraph. Imagine a summary paragraph for a technical paper.
Perhaps you would want to indicate such a structure with a <SUMMARY> tag. In
XML, it would be possible to deploy such specific markup. XML already has been used
to develop a special push-technology markup language called Channel Definition
Format (CDF), as well as a software distribution language called Open Software
Description (OSD), a Chemical Markup Language (CML), and a Mathematical Markup
Format (MathML). The structure such languages provide is not just helpful for
particular industries; it can help migrate data in and out of databases. Imagine creating
a special markup language for electronics parts with elements like <PRODUCTID>,
<DESCRIPTION>, <PRICE>, and <DIESIZE>. Wouldn’t it be easy to have database
table definitions with similar names? Such structure would make managing complex
data collections on the Web much easier. The answer depends on what the data is
doing. If data is to be interchanged between systems, XML makes sense as it is a
neutral form. However, XML-based flat file systems will never be able to provide the
searching and query mechanisms databases are good at, so XML won’t solve all the
Web’s structuring problems.

HTML does not provide all the structuring that is necessary, but when it’s used
properly, it’s a start. That’s why the idea of document structuring with HTML should
be taken to heart. Eventually, XML might be required. Exactly how XML and HTML
will interact is unclear. How databases and HTML/XML should work together is
also uncertain. Microsoft has already shown that, using data binding, it is possible
to provide direct interaction between Web pages and databases. Databases are
mandatory. Structure is mandatory. If you are unconvinced, look at the history of
hypermedia. Numerous papers written about hypertext have discussed a three-layer
model consisting of a presentation layer, a linking layer, and a database layer. The Web
has presentation in the form of the browser, style sheets, and certain HTML features.
The Web also has the hypertext abstract layer in the form of URLs and HTML linking
constructs. But what about the database layer? The Web itself really does not have such
a thing, though individual sites often do. What’s interesting about the future of HTML
is that it intersects with many of the grand problems of the Web, such as the lack of
regular structure for Web documents.

660 H T M L : T h e C o m p l e t e R e f e r e n c e

Web-Wide Problems
Many Web-wide problems intersect HTML every day. One major problem involves
searching the Web. It is very difficult to find things on the Internet using a search
engine. Why this is a problem is obvious if you consider how search engines work.
A search engine looks at a Web page and indexes the words it sees there. The engine
determines what the page is about based upon a heuristic that combines how many
times a particular word occurs, the value of the keywords specified by the <META>
elements in the document, and the title of the document. This is terribly imprecise, as
anyone who has searched the Web knows. A Web page that contains the word Intel in
it may have nothing to do with the Intel Corporation. Typing this word in a search
engine might return hundreds of thousands of responses. You should hope to see a site
like http://www.intel.com listed first, but this rarely happens. The robots or spiders
that index Web pages really have no idea what they are indexing. They can provide no
value to the indexing that a human might. For the search engines to understand the
information they are looking at, wouldn’t they have to possess artificial intelligence?
Yes, if data is unstructured. If structure can be added to data, then it is very easy to
index information. HTML elements like <META> and new meta-data formats written
in XML should bring such order. However, this is actually more difficult than it
sounds. Getting people to agree on the structure of more complex meta-data, the
allowable words in the data, and the organizations that will certify the correctness of
the meta-data will be very difficult.

As searching suggests, navigating around the Web is less than straightforward.
People are perpetually lost in cyberspace; the back button is their only way to safety.
The linking mechanisms of the Web will certainly be improved. Eventually, even some
type of uniform naming scheme, like a uniform resource name (URN), will arise.
HTML will have to be extended to deal with a richer linking structure, because the <A>
element provides only limited functionality as it stands. The <META> element
provides some relief; but after looking at complex timing and linking technologies used
with SGML, such as HyTime, there are many other extensions that may have to be
made to HTML or XML.

Another Web-wide problem is that of accessibility. Lack of accessibility comes
in many forms: an international user dealing with an English-only environment, a
visually impaired user dealing with a site that has too much visual emphasis, or a
technology-poor user unable to run Netscape to enter the latest and greatest site. The
bottom line is that the Web and HTML should not intentionally lock people out. There
may be cases where the designers of the site want to limit access based upon their own
views, but the technology itself should not be designed to do such a thing.

The first example of accessibility is internationalization. The Web is supposed to be
the World Wide Web, but it seems as if a U.S.-centric viewpoint often dominates the
landscape. The Web needs to be improved to support other languages’ character sets
and reading directions. HTML 4 is already moving toward a more international
approach, but there is still a long way to go. English will probably continue to serve as

C h a p t e r 1 8 : F u t u r e D i r e c t i o n s 661

N
EW

H
O

R
IZ

O
N

S

the dominant language, but Web documents in French, Spanish, German, Japanese,
Chinese, Korean, and Russian are already commonplace. Undoubtedly, more
languages will be used online. There will need to be facilities to provide friendly help
to those with a less-than-perfect mastery of a given language.

Much can also be said about how unfriendly the Web can be for those who have
handicaps. Many Web sites completely lock out those users who are sight impaired
because such sites provide no meaningful ALT text and rely heavily on graphics. (You
may recall that the ALT attribute provides alternative text for user agents that do not
display images, or for graphical browsers where the user has turned image rendering
off.) While the Web will continue to be a medium rich in visuals, the W3C is making
sure that many users are not left out of the experience by extending HTML to help
make pages more accessible via keyboard, voice, and Braille.

Last, there are those users who, because of limited bandwidth or computing
technology, don’t often receive the complete picture. HTML does not always degrade
gracefully when older or less common browsers view pages. More work, both in
standards and development techniques, will be required to keep the Web open to those
people who don’t always use the latest and greatest gadgets or applications.

Despite all the problems with accessibility, the biggest gripe with the Web is
performance. The Internet is growing at such a wild pace that traffic snarls are an
everyday occurrence. New protocols like HTTP 1.1, image formats with better
compression schemes like Portable Network Graphics (PNG), and new technologies
like DSL and cable modems will help speed the delivery of Web pages in the future.
However, the amount of data that users want is quickly increasing. Bandwidth-hungry
media forms like video don’t work reliably on the Internet. Delivering reasonable-
quality video over today’s Web is impossible. Even still images can seem to take an
eternity to download. HTML has been extended to help improve the usability of
multimedia-laden pages. Remember the HEIGHT, WIDTH, and LOWSRC attributes
for the element? Other approaches that have been considered are the ideas of
suggesting which pages will be visited next so that they can be pre-fetched for the user.
WebTV shows one way HTML can be used to provide such functionality.

Other approaches that will help speed the Web experience include alternative
transport protocols, caches, and page-level compression. However, delivery always
breaks down because of the idea of point sources. With single Web servers delivering
data, eventually there is going to be a bottleneck. Content must be replicated around
caches and delivered from mirror sites, or even broadcast. One technique is the use of
intelligent hardware devices to balance distribution of pages among different Web
servers based on how busy the servers are or by determining which server is closest to
the user requesting pages. Another approach is with the proposed Distribution and
Replication Protocol (DRP). DRP distributes updates to content such as Web pages in a
differential fashion, meaning that if only part of a file has been changed, just that part
will be sent, instead of the whole file. These and other approaches to better content
distribution models are just now being determined, but many sites (including Yahoo!)
already use some of these techniques to provide a high level of performance. While the

662 H T M L : T h e C o m p l e t e R e f e r e n c e

Web may be slow, the problems are being addressed at the network level with
improvements in the Internet infrastructure and better protocols such as IP Multicast
and IPv6, which address inefficiencies in the current TCP/IP protocol, and protocols
based on it, such as HTTP. The idea of multicast, for example, enables the broadcast
delivery of a single file to multiple destinations, instead of sending the same file many
times to multiple destinations. Some of these solutions will certainly affect HTML.
Remember that the network is the medium of the Web; its effect is significant. How
people access the Web will certainly affect the direction HTML takes.

Application-Specific Presentation
As the Internet and the Web become more mainstream, the way they are used will
certainly change. In just a few years, the Web has gone from being an environment of
engineers and academics to being a very commercial environment dominated by
consumers. The major change is still to come. Many people are not on the Web, and
the potential uses of the medium have not been fully explored.

The Web is very computer-centered, but this may change somewhat. Many people do
not have computers, but many want to get one just to get on the Web. Because of such
interest, consumer-oriented devices such as WebTV have been developed. While none of
these devices is as common as VCRs or CD players, the adoption rate of WebTV is higher
than the initial adoption rate of VCRs. People often forget that consumer electronics may
take five or ten years to become mainstream. The CD player was initially considered a
status symbol in the early ’80s before it finally caught on and all but replaced cassettes
and LPs in the consumer market. It is obvious that consumer Web devices will not be
the way that most people will access the Internet for the near term. However, their
development and initial acceptance points to an interesting trend toward nontraditional,
computer-based Web use. This has some interesting ramifications for HTML.

HTML may have to become more of an application specification. At the very least,
new languages will be developed to deal with such applications. This book has
mentioned numerous WebTV extensions. Regardless of your particular slant on
whether vendors should make such extensions to HTML, television-based Web
viewing is very different from computer-based browsing. People tend to browse Web
sites by themselves, close up to a computer with a high-resolution monitor. They may
not read information onscreen; they may print it instead. Now think of using a WebTV.
The WebTV uses a large screen with relatively low resolution. People, often many of
them at once, tend to sit far away from the screen they are viewing. They probably will
not read large amounts of text on a TV screen. They may use a remote or a wireless
keyboard to interact with information. A traditional mouse pointer is out of the
question when you are sitting on the couch. Given WebTV’s unique environment, it
seems obvious that less text in bigger size would probably work better. The dimensions
of the screen are different as well. Other considerations arise. Won’t people have to
consume the information onscreen? How much information can be positioned

C h a p t e r 1 8 : F u t u r e D i r e c t i o n s 663

N
EW

H
O

R
IZ

O
N

S

664 H T M L : T h e C o m p l e t e R e f e r e n c e

onscreen? How should the navigation work? Many of the HTML extensions made by
WebTV address some of these problems, though in subtle ways. These extensions make
it easier to fill out forms and constrain pages not to scroll left to right, among other
things. WebTV shows that applications will influence what features will have to be
included.

Other application-specific environments that may need special extensions or
HTML-like languages include voice browsing and cellular phone browsing. Devices
that allow you to view a Web page with a telephone or pocket organizer, such as a
Windows-CE hand-held device, are already available. These systems are very different
from traditional computer screens; they often have tiny screens with only four shades
of gray. Furthermore, many hand-held devices have slower access rates to the Internet,
even as low as 4800 bps via a wireless network. Traditional HTML may not be well
suited to these low-speed, small-screen environments. A language called HDML
(Hand-held Device Markup Language) has already been submitted to the W3C as a
proposed standard. Whether special languages are implemented as new languages,
subsets of HTML, supersets of HTML, or as new languages written as applications
of XML remains unclear. The current thought is that HTML will be written with
conformance profiles like TV, phone, computer, and so on. Various devices will then
be able to request pages that meet a particular conformance profile. With the rise of
network computers, hand-held personal information managers, sophisticated digital
cellular phones, and consumer-oriented network devices, the ideas of HTML will
certainly have to be modified to fit a radically different application environment.

What Is the Future of HTML?
After all this discussion, we might wonder what can be said for sure about the future
of HTML. One thing is certain: page designers won’t do things the way they do now.
Hacking around in HTML is a throwback to the days of page-setting languages such as
troff or LaTeX. With the rise of PostScript and the tools that could output it, document
designers stopped editing files directly in most cases. While older page-setting
technologies are still used, and some people even program directly in PostScript, most
do not. Using a tool to output PostScript, whether a word processor or a page layout
program tool, is the way most designers create documents. As HTML settles down and
becomes more standardized, tools will certainly be developed that can output pages
appropriately. Right now, with standards and browsers in flux, tool vendors have a
nearly impossible time creating such tools. For the moment, HTML designers often
have to resort to doing tweaks, if not the whole page, by hand. This won’t last long. If
HTML can be written in a precise way as an XML application, it should be a lot easier
to create machine-readable and editable markup. At this point we should be able to
focus less on tag syntax and more on document design and content. What does this
mean? Simply that within five years, HTML coders will be in about as much demand
as typesetting machine operators.

With the rise of electronic and improved mechanical printing technologies, the
demand for these skills quickly went away. However, HTML as a print formatting
language is not the point. The migration to a dynamic program-like environment
should already be clear. Dynamic HTML, databases, and embedded objects all point
the way to the Web of tomorrow. Knowledge of HTML will serve as a backbone for
accessing these technologies. The benefit of short-term mastery of HTML will be early
access to these ideas and a fundamental understanding of how the Web works.

Summary
While standards and the open philosophy of the Web are important, there is one
big lesson to be learned from the past, present, and future of HTML: there is no single
correct solution to the Web puzzle. What is cutting edge today will be trivial tomorrow.
Tools will eventually make intimate knowledge of HTML obsolete. So why did you
even read this book? Because today you have to build Web pages, and HTML is
one of the primary tools for this task. Don’t lose perspective: HTML and the other
technologies are just tools to help people accomplish goals for disseminating
information and providing services. Not everybody has the same goals. This book
has discussed how things can be done and provided some information on why, but
the real answer to the why question is up to you. Many of the ideas and the syntax
presented here will undoubtedly be outdated in a few years, but that doesn’t matter.
Implementing a site today and reaching your goals is the main point of the Web.
Today most people will not judge a site by its conformance to the document type
definition, but by whether it was useful or enjoyable. This is often forgotten when
talking about HTML. Knowing the particular syntax of an HTML element or the
correct structure for HTML documents is very important, just as the rules and
standards are important. But these rules are not well enforced. This doesn’t mean
you should break the rules; it means you should design for today with an eye on
tomorrow. Remember that in the future with the rise of XML, the rules will matter.
Making a transition will be easy if you understand how HTML is supposed to be
written. Tools should make the transition easier, but until then, actually knowing
HTML completely and precisely will be invaluable when authoring Web pages.

C h a p t e r 1 8 : F u t u r e D i r e c t i o n s 665

N
EW

H
O

R
IZ

O
N

S

This page intentionally left blank.

Part VI
Appendixes

667

Copyright 1999 The McGraw-Hill Companies. Click Here for Terms of Use.

This page intentionally left blank.

Appendix A
HTML Element
Reference

669

Copyright 1999 The McGraw-Hill Companies. Click Here for Terms of Use.

This appendix provides a complete reference of the elements in the HTML 4.0 specification
and the elements commonly supported by Internet Explorer, Netscape, and WebTV. Some
elements presented here may be nonstandard or deprecated, but are included because

browser vendors continue to support them or they are still in common use. The standard used
in this text is the final version of HTML 4 as defined on December 18, 1997, and is available at
http://www.w3.org/TR/REC-html40/.

Core Attributes Reference
The HTML 4.0 specification provides four main attributes, which are common to nearly all
elements and have the same meaning for all elements. These elements are CLASS, ID, STYLE,
and TITLE.

CLASS
This attribute is used to indicate the class or classes that a particular element belongs to. A class
name is used by a style sheet to associate style rules to multiple elements at once. For example, it
may be desirable to associate a special class name called "important" with all elements that
should be rendered with a yellow background. Since class values are not unique to a particular
element, <B CLASS="important"> could be used as well as <P CLASS="important"> in the
same document. It is also possible to have multiple values for the CLASS attribute separated by
white space; <STRONG CLASS="important special-font"> would define two classes with
the particular element. Currently, most browsers recognize only one class name
for this attribute.

ID
This attribute specifies a unique alphanumeric identifier to be associated with an element.
Naming an element is important to being able to access it with a style sheet, a link, or a scripting
language. Names should be unique to a document and should be meaningful, so while ID="x1"
is perfectly valid, ID="Paragraph1" might be better. Values for the ID attribute must begin
with a letter (A–Z and a–z) and may be followed by any number of letters, digits, hyphens,
and periods.

One potential problem with the ID attribute is that for some elements, particularly form
controls and images, the NAME attribute already serves its function. Values for NAME should
not collide with values for ID, as they share the same naming space. For example, the following
would not be allowed:

<B ID="elementX"> This is a test.

There is some uncertainty about what to do to ensure backward compatibility with browsers that
understand NAME but not ID. Some people suggest that the following is illegal:

670 H T M L : T h e C o m p l e t e R e f e r e n c e

Since NAME and ID are naming the same item, there should be no problem; the common
browsers do not have an issue with such markup. Complex scripting necessary to deal with two
different names for the image, like

is possible, but may not be necessary.
Page designers are encouraged to pick a naming strategy and use it consistently. Once

elements are named, they should be easy to manipulate with a scripting language.
Like the CLASS attribute, the ID attribute is also used by style sheets for accessing a

particular element.
For example, an element named Paragraph1 can be referenced by a style rule in a

document-wide style using a fragment identifier:

#Paragraph1 {color: blue}

Once an element is named using ID, it is also a potential destination for an anchor. In the
past an <A> element was used to set a destination; now any element may be a destination. For
example,

 Go to first bold element.

<B ID="firstbolditem"> This is important.

STYLE
This attribute specifies an inline style (as opposed to an external style sheet) associated with the
element. The style information is used to determine the rendering of the affected element.
Because the STYLE attribute allows style rules to be used directly with the element, it gives up
much of the benefit of style sheets that divide the presentation of an HTML document from its
structure. An example of this attribute’s use is shown here:

<STRONG STYLE="font-family: Arial;

font-size: 18pt"> Important text

TITLE
This attribute supplies advisory text for the element that may be rendered as a tool tip when the
mouse is over the element. A title may also simply provide information that alerts future
document maintainers to the meaning of the element and its enclosed content. In some cases,
such as the <A> element, the TITLE attribute may provide additional help in bookmarking. Like
the title for the document itself, TITLE attribute values as advisory information should be short,
yet useful. For example, <P TITLE="paragraph1"> provides little information of value, while <P
TITLE="HTML Programmer’s Reference: Chapter 1, Paragraph 10"> provides much more
detail. When combined with scripting, it may provide facilities for automatic index generation.

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 671

A
P

P
EN

D
IX

ES

Language Reference
One of the main goals of the HTML 4.0 specification is better support for other languages besides
English. The use of other languages in a Web page may require that text direction be changed
from left to right or right to left. Furthermore, once supporting non-ASCII languages becomes
easier, it may be more common to see documents in mixed languages. Thus, there must be a way
to indicate the language in use.

LANG
This attribute indicates the language being used for the enclosed content. The language is
identified using the ISO standard language abbreviation such as fr for French, en for English, and
so on. RFC 1766 (ftp://ds.internic.net/rfc/rfc1766.txt) describes these codes and their format.

DIR
This attribute sets the text direction as related to the LANG attribute. The accepted values under
the HTML 4.0 specification are LTR (left to right) and RTL (right to left). It should be possible to
override whatever direction a user agent sets by using the <BDO> element. No browsers yet
support this attribute; Internet Explorer 5 may support DIR, but not in the beta version available
for testing at the time of this edition.

Events Reference
In preparation for a more dynamic Web, the W3C (World Wide Web Consortium) has defined a
set of core events that are associated with nearly every HTML element. Most of these events
cover simple user interaction such as the click of a mouse button or a key being pressed. A few
elements, such as form controls, have some special events associated with them, signaling that
the field has received focus from the user or that the form was submitted. Intrinsic events
like a document loading and unloading are also described. The core events are summarized in
the Table A-1. Note that, in the table, Internet Explorer 4 and 5 and Netscape 4 and 4.5 are
abbreviated to IE4, IE5, N4, and N4.5, respectively.

In Table A-1, "most display elements" means all elements except <APPLET>, <BASE>,
<BASEFONT>, <BDO>,
, , <FRAME>, <FRAMESET>, <HEAD>,
<HTML>, <IFRAME>, <ISINDEX>, <META>, <PARAM>, <SCRIPT>, <STYLE>,
and <TITLE>.

This event model is far from complete, and it is still not fully supported by browsers. The
event model should be considered a work in progress. It will certainly change as the Document
Object Model (DOM) is more carefully defined. More information about the DOM can be found
at http://www.w3.org/DOM/.

Extended Events
Browsers may also support other events than those defined in the preliminary HTML 4.0
specification. Microsoft in particular has introduced a variety of events to capture more complex

672 H T M L : T h e C o m p l e t e R e f e r e n c e

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 673

A
P

P
EN

D
IX

ES

Event
Attribute

Event
Description

Elements
Allowed Under
HTML 4

Additional
Elements
(IE4 and IE5)

Additional
Elements
(N4 and N4.5)

onblur Occurs when an
element loses focus,
meaning that the
user has moved
focus to another
element, typically
either by clicking it
or tabbing to it

<A>
<AREA>
<BUTTON>
<INPUT>
<LABEL>
<SELECT>
<TEXTAREA>

<BODY>
<APPLET>
<DIV>
<EMBED>
<HR>

<MARQUEE>
<OBJECT>

<TABLE>
<TD>
<TR>

<BODY>
<FRAMESET>
<ILAYER>
<LAYER>

onchange Signals that the
form control has
lost user focus and
its value has been
modified during its
last access

<INPUT>
<SELECT>
<TEXTAREA>

onclick Indicates that
the element has
been clicked

Most display
elements

<APPLET>

ondblclick Indicates that the
element has been
double-clicked

Most display
elements

<APPLET>

onfocus Describes when
an element has
received focus,
namely when it
has been selected
for manipulation
or data entry

<A>
<AREA>
<BUTTON>
<INPUT>
<LABEL>
<SELECT>
<TEXTAREA>

<APPLET>
<BODY>
<DIV>
<EMBED>
<HR>

<MARQUEE>
<OBJECT>

<TABLE>
<TD>
<TR>

<BODY>
<FRAMESET>
<ILAYER>
<LAYER>

onkeydown Indicates that a
key is being
pressed with focus
on the element

Most display
elements

<APPLET>

Table A-1. Core Events

674 H T M L : T h e C o m p l e t e R e f e r e n c e

Event
Attribute

Event
Description

Elements
Allowed Under
HTML 4

Additional
Elements
(IE4 and IE5)

Additional
Elements
(N4 and N4.5)

onkeypress Describes the event
of a key being
pressed and
released with focus
on the element

Most display
elements

<APPLET>

onkeyup Indicates that a key
is being released
with focus on the
element

Most display
elements

<APPLET>

onload Indicates the event
of a window or
frame set finishing
the loading of a
document

<BODY>
<FRAMESET>

IE4 only:
<APPLET>
<EMBED>
<LINK>
<SCRIPT>
<STYLE>
IE4 and IE5:
<ILAYER>

<LAYER>

<ILAYER>

<LAYER>

onmousedown Indicates the click
of a mouse button
with focus on the
element

Most display
elements

<APPLET>

onmousemove Indicates that the
mouse has moved
while over the
element

Most display
elements

<APPLET>

onmouseout Indicates that the
mouse has moved
away from an
element

Most display
elements

<APPLET>

<ILAYER>
<LAYER>

onmouseover Indicates that the
mouse has moved
over an element

Most display
elements

<APPLET>

<ILAYER>
<LAYER>

onmouseup Indicates the
release of a mouse
button with focus
on the element

Most display
elements

<APPLET>

Table A-1. Core Events (continued)

mouse actions like dragging, element events like the bouncing of <MARQUEE> text, and
data-binding events signaling the loading of data. (Mouse events may be bound to data in a
database.) The events are described in more detail in Table A-2.

Documentation errors may exist. Microsoft currently documents events in the object model, not in
the HTML reference. On inspection, some events are obviously not supported or may have been
omitted. Events were tested by the author for accuracy, but for an accurate, up-to-date event model
for these browsers, visit http://developer.netscape.com or http://www.microsoft.com/sitebuilder.

Microsoft introduced a number of new proprietary event handlers in the Internet Explorer 5
browser. For a brief discussion of these new event handlers, see the section "Internet Explorer 5
Event Preview” in Chapter 13.

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 675

A
P

P
EN

D
IX

ES

Event
Attribute

Event
Description

Elements
Allowed Under
HTML 4

Additional
Elements
(IE4 and IE5)

Additional
Elements
(N4 and N4.5)

onreset Indicates that the
form is being reset,
possibly by the
click of a reset
button

<FORM>

onselect Indicates the
selection of text by
the user, typically
by highlighting the
desired text

<INPUT>
<TEXTAREA>

onsubmit Indicates a form
submission,
generally by
clicking a
submit button

<FORM>

onunload Indicates that the
browser is leaving
the current
document and
unloading it
from the window
or frame

<BODY>
<FRAMESET>

Table A-1. Core Events (continued)

676 H T M L : T h e C o m p l e t e R e f e r e n c e

Associated
Event Attribute Event Description Compatibility Elements

IE4 IE5 N3 N4 N4.5

onabort Triggered by the user
aborting the image
load with a stop button
or similar effect.

✓ ✓ ✓ ✓ ✓

onafterupdate Fires after the transfer
of data from the
element to a data
provider, namely a
data update.

✓ ✓ <APPLET>
<BODY>
<BUTTON>
<CAPTION>
<DIV>
<EMBED>

<INPUT>
<MARQUEE>
<OBJECT>
<SELECT>
<TABLE>
<TD>
<TEXTAREA>
<TR>

onbeforeunload Fires just prior to a
document being
unloaded from a
window.

✓ ✓ <BODY>
<FRAMESET>

onbeforeupdate Triggered before the
transfer of data from
the element to the data
provider. May be
triggered explicitly or
by a loss of focus or a
page unload forcing a
data update.

✓ ✓ <APPLET>
<BODY>
<BUTTON>
<CAPTION>
<DIV>
<EMBED>
<HR>

<INPUT>
<OBJECT>
<SELECT>
<TABLE>
<TD>
<TEXTAREA>
<TR>

Table A-2. Extended Event Model

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 677

A
P

P
EN

D
IX

ES

Associated
Event Attribute Event Description Compatibility Elements

IE4 IE5 N3 N4 N4.5

onbounce Triggered when the
bouncing contents of a
marquee touch one
side or another.

✓ ✓ <MARQUEE>

ondataavailable Fires when data arrives
from data sources that
transmit information
asynchronously.

✓ ✓ <APPLET>
<OBJECT>

ondatasetchanged Triggered when the
initial data is made
available from data
source or when the
data changes.

✓ ✓ <APPLET>
<OBJECT>

ondatasetcomplete Indicates that all the
data is available from
the data source.

✓ ✓ <APPLET>
<OBJECT>

ondragdrop Triggered when the
user drags an object
onto the browser
window to attempt to
load it.

✓ ✓ ✓ ✓ <BODY>
<FRAMESET>
(window)

ondragstart Fires when the user
begins to drag a
highlighted selection.

✓ ✓ <A>
<ACRONYM>
<ADDRESS>
<APPLET>
<AREA>

<BIG>
<BLOCKQUOTE>
<BODY>
(document)
<BUTTON>
<CAPTION>
<CENTER>
<CITE>
<CODE>
<DD>

<DFN>
<DIR>
<DIV>
<DL>

Table A-2. Extended Event Model (continued)

678 H T M L : T h e C o m p l e t e R e f e r e n c e

Associated
Event Attribute Event Description Compatibility Elements

IE4 IE5 N3 N4 N4.5

<DT>

<FORM>
<FRAMESET>
(document)
<H1>
<H2>
<H3>
<H4>
<H5>
<H6>

onerror Fires when the loading
of a document,
particularly the
execution of a script,
causes an error. Used
to trap syntax errors.

✓ ✓ ✓ ✓ ✓ <BODY>
<FRAMESET>
(window)

IE4:
<LINK>
<OBJECT>
<SCRIPT>
<STYLE>

onerrorupdate Fires if a data transfer
has been canceled by
the onbeforeupdate
event handler.

✓ ✓ <A>
<APPLET>
<OBJECT>
<SELECT>
<TEXTAREA>

onfilterchange Fires when a page filter
changes state or
finishes.

✓ ✓ Nearly all elements

onfinish Triggered when a
looping marquee
finishes.

✓ ✓ <MARQUEE>

onhelp Triggered when the
user presses the F1 key
or similar help button
in the user agent.

✓ ✓ Nearly all elements
under IE4 only

onmove Triggered when the
user moves a window.

✓ ✓ <BODY>
<FRAMESET>

Table A-2. Extended Event Model (continued)

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 679

A
P

P
EN

D
IX

ES

Associated
Event Attribute Event Description Compatibility Elements

IE4 IE5 N3 N4 N4.5

onreadystatechange Similar to onload. Fires
whenever the ready
state for an object has
changed.

✓ ✓ <APPLET>
<BODY>
<EMBED>
<FRAME>
<FRAMESET>
<IFRAME>

<LINK>
<OBJECT>
<SCRIPT>
<STYLE>

onresize Triggered whenever an
object is resized. Can
only be bound to the
window under
Netscape as set via the
<BODY> element.

✓ ✓ * ✓ * <APPLET>
<BODY>
<BUTTON>
<CAPTION>
<DIV>
<EMBED>
<FRAMESET>
<HR>

<MARQUEE>
<OBJECT>
<SELECT>
<TABLE>
<TD>
<TEXTAREA>
<TR>

onrowenter Indicates that a bound
data row has changed
and new data values
are available.

✓ ✓ <APPLET>
<BODY>
<BUTTON>
<CAPTION>
<DIV>
<EMBED>
<HR>

<MARQUEE>
<OBJECT>
<SELECT>
<TABLE>
<TD>
<TEXTAREA>
<TR>

*<BODY> only

Table A-2. Extended Event Model (continued)

680 H T M L : T h e C o m p l e t e R e f e r e n c e

Associated
Event Attribute Event Description Compatibility Elements

IE4 IE5 N3 N4 N4.5

onrowexit Fires just prior to a
bound data source
control changing the
current row.

✓ ✓ <APPLET>
<BODY>
<BUTTON>
<CAPTION>
<DIV>
<EMBED>
<HR>

<MARQUEE>
<OBJECT>
<SELECT>
<TABLE>
<TD>
<TEXTAREA>
<TR>

onscroll Fires when a scrolling
element is
repositioned.

✓ ✓ <BODY>
<DIV>
<FIELDSET>

<MARQUEE>

<TEXTAREA>

onselectstart Fires when the user
begins to select
information by
highlighting.

✓ ✓ Nearly all elements

onstart Fires when a looped
marquee begins or
starts over.

✓ ✓ <MARQUEE>

Table A-2. Extended Event Model (continued)

HTML Element Reference
This appendix lists all HTML 4 elements, as well as some proprietary elements defined by
different browser vendors. The element entries include all or some of the following information:

■ Syntax HTML 4 syntax for the element, including attributes and event handlers
defined by the W3C specification

■ Attributes and events defined by browsers Additional syntax defined by different
browsers

■ Attributes Descriptions of all attributes associated with the element

■ Attribute and Event Support Browser support of attributes and events

■ Example(s) A code example or examples using the element

■ Compatibility The element’s general compatibility with HTML specifications and
browser versions

■ Notes Additional information about the element

Listings of attributes and events defined by browser versions assume that these attributes
and events remain associated with later versions of that browser; for example, attributes defined
by Internet Explorer 4 are also valid for Internet Explorer 5, and attributes defined for Netscape 4
are also valid for Netscape 4.5.

<!- - ... - -> (Comment)
This construct is used to include text comments that will not be displayed by the browser.

Syntax

<!-- ... -->

Attributes
None.

Event Handlers
None.

Examples

<!-- This is an informational comment that can occur anywhere in an HTML
document. The next example shows how a script is "commented out" to

prevent non-script-enabled browsers from reading the script. -->

<SCRIPT>
<!--

document.write("hello world");
// -->

</SCRIPT>

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 681

A
P

P
EN

D
IX

ES

Compatibility

HTML 2, 3.2, and 4
Internet Explorer 2, 3, 4, and 5
Netscape 1, 2, 3, 4, and 4.5
WebTV

Notes
Comments are often used to exclude content from older browsers, particularly those that do
not understand client-side scripting or style sheets. Page developers should be careful when
commenting HTML markup. Older browsers may or may not render the enclosed content.

<!DOCTYPE> (Document Type Definition)
This SGML construct specifies the document type definition corresponding to the document.

Syntax

<!DOCTYPE " DTD identifier ">

Attributes
None.

Event Handlers
None.

Example

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

Compatibility

HTML 2, 3.2, and 4
Internet Explorer 2, 3, 4, and 5
Netscape 1, 2, 3, 4, and 4.5
WebTV

Notes
The <!DOCTYPE> element should be used as the first line of all HTML documents. Validation
programs may use this construct when determining the correctness of an HTML document. Be
certain to use the document type appropriate for the elements used in the document.

682 H T M L : T h e C o m p l e t e R e f e r e n c e

<A> (Anchor)
This element indicates the portion of the document that is a hyperlink or the named target
destination for a hyperlink.

Syntax

<A

ACCESSKEY="key"
CHARSET="character code for language of linked

resource"
CLASS="class name(s)"
COORDS="comma-separated list of numbers"

DIR="LTR | RTL"

HREF="URL"
HREFLANG="language code"

ID="unique alphanumeric identifier"
LANG="language code"

NAME="name of target location"
REL="comma-separated list of relationship values"
REV="comma-separated list of relationship values"

SHAPE="DEFAULT | CIRCLE | POLY | RECT"

STYLE="style information"
TABINDEX="number"
TARGET="_blank | frame-name | _parent | _self | _top"

(transitional)
TITLE="advisory text"

TYPE="content type of linked data"

onblur="script" (transitional)
onclick="script"

ondblclick="script">
onfocus="script"
onhelp="script"

onkeydown="script"
onkeypress="script"

onkeyup="script"

onmousedown="script"
onmousemove="script"

onmouseout="script"
onmouseover="script"

onmouseup="script">

Linked content

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 683

A
P

P
EN

D
IX

ES

Attributes and Events Defined by Internet Explorer 4

DATAFLD="name of column supplying bound data"

DATASRC="ID of data source object supplying data"
LANGUAGE="JAVASCRIPT | JSCRIPT | VBS | VBSCRIPT"

METHODS="http-method"
URN="urn"
ondragstart="script"

onselectstart="script"

Attributes Defined by WebTV

NOCOLOR

SELECTED

Attributes

ACCESSKEY This attribute specifies a keyboard navigation accelerator for the element.
Pressing ALT or a similar key (depending on the browser and operating system) in association
with the specified key selects the anchor element correlated with that key.

CHARSET This attribute defines the character encoding of the linked resource. The value is a
space- and/or comma-delimited list of character sets as defined in RFC 2045. The default value
is ISO-8859-1.

CLASS See “Core Attributes Reference,” earlier in this appendix.

COORDS For use with object shapes, this attribute uses a comma-separated list of numbers to
define the coordinates of the object on the page.

DATAFLD This attribute specifies the column name from that data source object that supplies
the bound data. This attribute is specific to Microsoft’s Data Binding in Internet Explorer 4.

DATASRC This attribute indicates the ID of the data source object that supplies the data
that is bound to this element. This attribute is specific to Microsoft’s Data Binding in Internet
Explorer 4.

DIR See “Language Reference,” earlier in this appendix.

HREF This is the single required attribute for anchors defining a hypertext source link. It
indicates the link target, either a URL or a URL fragment, that is a name preceded by a hash
mark (#), which specifies an internal target location within the current document. URLs are
not restricted to Web (http)-based documents. URLs may use any protocol supported by
the browser. For example, file, ftp, and mailto work in most user agents.

684 H T M L : T h e C o m p l e t e R e f e r e n c e

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 685

A
P

P
EN

D
IX

ES
HREFLANG This attribute is used to indicate the language of the linked resource. See
“Language Reference,” earlier in this appendix for information on allowed values.

ID See “Core Attributes Reference,” earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

LANGUAGE This attribute specifies the language the current script is written in and invokes
the proper scripting engine. The default value is JAVASCRIPT. JAVASCRIPT and JSCRIPT
represent that the scripting language is written in JavaScript. VBS and VBSCRIPT represent that
the scripting language is written in VBScript. It may also be possible to use extended names, such
as JavaScript1.1, to hide code from JavaScript-aware browsers that don’t conform to a particular
version of the language.

METHODS The value of this attribute provides information about the functions that may
be performed on an object. The values are generally given by the HTTP protocol when it is
used, but it may, for similar reasons as for the TITLE attribute, be useful to include advisory
information, in advance, in the link. For example, the browser may choose a different rendering
of a link as a function of the methods specified; something that is searchable may get a different
icon, or an outside link may render with an indication of leaving the current site. This element is
not well understood nor supported, even by the defining browser, Internet Explorer 4.

NAME This attribute is required in an anchor defining a target location within a page. A value
for NAME is similar to a value for the ID core attribute and should be an alphanumeric identifier
unique to the document.

NOCOLOR Supported only by WebTV, this attribute overrides the LINK color set in the
BODY element and prevents the link from changing color.

REL For anchors containing the HREF attribute, this attribute specifies the relationship of the
target object to the link object. The value is a comma-separated list of relationship values. The
values and their semantics will be registered by some authority that may have meaning to the
document author. The default relationship, if no other is given, is void. The REL attribute should
be used only when the HREF attribute is present.

REV This attribute specifies a reverse link, the inverse relationship of the REL attribute. It is
useful for indicating where an object came from, such as the author or a document.

SELECTED Supported only in WebTV, this attribute selects the anchor with a yellow
highlight box.

SHAPE This attribute is used to define a selectable region for hypertext source links associated
with a figure to create an image map. The values for the attribute are CIRCLE, DEFAULT,
POLYGON, and RECT. The format of the COORDS attribute depends on the value of SHAPE.
For CIRCLE, the value is x,y,r where x and y are the pixel coordinates for the center of the circle
and r is the radius value in pixels. For RECT, the COORDS attribute should be x,y,w,h. The x,y

values define the upper-left-hand corner of the rectangle, while w and h define the width and
height respectively. A value of POLYGON for SHAPE requires x1,y1,x2,y2,… values for
COORDS. Each of the x,y pairs defines a point in the polygon, with successive points being
joined by straight lines and the last point joined to the first. The value DEFAULT for SHAPE
defines that the entire enclosed area, typically an image, be used.

STYLE See “Core Attributes Reference,” earlier in this appendix.

TABINDEX This attribute uses a number to identify the object’s position in the tabbing order
for keyboard navigation using the TAB key.

TARGET This attribute specifies the target window for a hypertext source link referencing
frames. The information linked to will be displayed in the named window. Frames must be
named to be targeted. There are, however, special name values, including _blank, which
indicates a new window; _parent, which indicates the parent frame set containing the source
link; _self, which indicates the frame containing the source link; and _top, which indicates the
full browser window.

TITLE See “Core Attributes Reference,” earlier in this appendix.

TYPE This attribute specifies the media type in the form of a MIME type of the link target.
Generally, this is provided strictly as advisory information; however, in the future a browser
may add a small icon for multimedia types. For example, a browser might add a small speaker
icon when TYPE was set to audio/wav.

URN See the “Notes” section for this element.

Attribute and Event Support

NETSCAPE 4 HREF, NAME, TARGET, onclick, onmouseout, and onmouseover. (CLASS,
ID, LANG, and STYLE are implied.)

INTERNET EXPLORER 4 ACCESSKEY, CLASS, HREF, ID, LANG, NAME, REL, REV,
STYLE, TARGET, TITLE, onblur, onclick, ondblclick, onfocus, onhelp, onkeydown,
onkeypress, onkeyup, onmousedown, onmousemove, onmouseout, onmouseover,
onmouseup, and all attributes and events defined by Internet Explorer 4.

WEBTV HREF, ID, NAME, NOCOLOR, SELECTED, onclick, onmouseout, and
onmouseover.

Event Handlers
See “Events Reference,” earlier in this appendix.

Examples

<!-- anchor linking to external file -->

 External link

686 H T M L : T h e C o m p l e t e R e f e r e n c e

<!-- anchor linking to file on local filesystem -->

 Local file link

<!-- anchor invoking anonymous FTP -->

 Anonymous FTP
Link

<!-- anchor invoking FTP with password -->

FTP with password

<!-- anchor invoking mail -->

 Send mail

<!-- anchor used to define target destination within document -->

 Jump Target

<!-- anchor linking internally to previous target anchor -->
 Local jump within document

<!-- anchor linking externally to previous target anchor -->

 Remote jump
within document

Compatibility

HTML 2, 3.2, and 4
Internet Explorer 2, 3, 4, and 5
Netscape 1, 2, 3, 4, and 4.5
WebTV

Notes

■ The following are reserved browser key bindings for the two major browsers and should
not be used as values to ACCESSKEY: A, C, E, F, G, H, V, left arrow, and right arrow.

■ The URN attribute was defined in HTML 2. Although Internet Explorer 4 and above
support it, its use is unclear, particularly since URNs are not yet well defined.

■ HTML 3.2 defines only NAME, HREF, REL, REV, and TITLE.

■ HTML 2 defines only NAME, HREF, METHODS, REL, REV, TITLE, and URN.

■ The TARGET attribute is not defined in browsers that do not support frames, such as
Netscape 1–generation browsers.

■ The DIR attribute is not yet supported by any browsers.

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 687

A
P

P
EN

D
IX

ES

<ABBR> (Abbreviation)
This element allows authors to clearly indicate a sequence of characters that compose an
acronym or abbreviation for a word (XML, WWW, and so on). See <ACRONYM>.

Syntax

<ABBR

CLASS="class name(s)"
DIR="LTR | RTL"

ID="unique alphanumeric identifier"
LANG="language code"
STYLE="style information"

TITLE="advisory text"

onclick="script"
ondblclick="script"

onkeydown="script"
onkeypress="script"

onkeyup="script"
onmousedown="script"
onmousemove="script"

onmouseout="script"

onmouseover="script"
onmouseup="script">

</ABBR>

Attributes

CLASS See “Core Attributes Reference,” earlier in this appendix.

DIR See “Language Reference,” earlier in this appendix.

ID See “Core Attributes Reference,” earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

STYLE See “Core Attributes Reference,” earlier in this appendix.

TITLE See “Core Attributes Reference,” earlier in this appendix.

Attribute and Event Support
None.

Event Handlers
See “Events Reference,” earlier in this appendix.

688 H T M L : T h e C o m p l e t e R e f e r e n c e

Examples

<ABBR TITLE="Dynamic Hypertext Markup Language"> DHTML

</ABBR>

<ABBR LANG="fr" TITLE="World Wrestling Federation"> WWF

</ABBR>

Compatibility

HTML 4

Notes
<ABBR> is a new element that is not defined under HTML 2 or 3.2. At present, no browsers
appear to support the <ABBR> element. <ACRONYM> serves a similar function but is only
supported by Internet Explorer 4 and later.

<ACRONYM> (Acronym)
This element allows authors to clearly indicate a sequence of characters that compose an
acronym or abbreviation for a word (XML, WWW, and so on).

Syntax

<ACRONYM

CLASS="class name(s)"
DIR="LTR | RTL"

ID="unique alphanumeric identifier"
LANG="language code"
STYLE="style information"

TITLE="advisory text"

onclick="script"
ondblclick="script"

onkeydown="script"
onkeypress="script"

onkeyup="script"
onmousedown="script"
onmousemove="script"

onmouseout="script"

onmouseover="script"
onmouseup="script">

</ACRONYM>

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 689

A
P

P
EN

D
IX

ES

Attributes and Events Defined by Internet Explorer 4

LANGUAGE="JAVASCRIPT | JSCRIPT | VBS | VBSCRIPT"

ondragstart="script"

onhelp="script"

onselectstart="script"

Attributes

CLASS See “Core Attributes Reference,” earlier in this appendix.

DIR See “Language Reference,” earlier in this appendix.

ID See “Core Attributes Reference,” earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

LANGUAGE This attribute specifies the language the current script is written in and invokes
the proper scripting engine. The default value is JAVASCRIPT. JAVASCRIPT and JSCRIPT
represent that the scripting language is written in JavaScript. VBS and VBSCRIPT represent that
the scripting language is written in VBScript. It may also be possible to use extended names, such
as JavaScript1.1, to hide code from JavaScript-aware browsers that don’t conform to a particular
version of the language.

STYLE See “Core Attributes Reference,” earlier in this appendix.

TITLE See “Core Attributes Reference,” earlier in this appendix.

Attribute and Event Support

INTERNET EXPLORER 4 All attributes.

Event Handlers
See “Events Reference,” earlier in this appendix.

Examples

<ACRONYM TITLE="Extensible Markup Language"> XML</ACRONYM>

<ACRONYM LANG="fr" TITLE="Société

Nationale de Chemins de Fer"> SNCF</ACRONYM>

690 H T M L : T h e C o m p l e t e R e f e r e n c e

Compatibility

HTML 4
Internet Explorer 4 and 5

Notes
<ACRONYM> is a new element that is not defined under HTML 2 or 3.2. Under Internet
Explorer 4 and above, the TITLE attribute renders as a tool tip that can be used to define the
meaning of the acronym.

<ADDRESS> (Address)
This element marks up text indicating authorship or ownership of information. It generally
occurs at the beginning or end of a document.

Syntax

<ADDRESS

CLASS="class name(s)"
DIR="LTR | RTL"

ID="unique alphanumeric identifier"
LANG="language code"
STYLE="style information"

TITLE="advisory text"

onclick="script"
ondblclick="script"

onkeydown="script"
onkeypress="script"

onkeyup="script"
onmousedown="script"
onmousemove="script"

onmouseout="script"

onmouseover="script"
onmouseup="script">

</ADDRESS>

Attributes and Events Defined by Internet Explorer 4

LANGUAGE="JAVASCRIPT | JSCRIPT | VBS | VBSCRIPT"

ondragstart="script"

onhelp="script"

onselectstart="script"

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 691

A
P

P
EN

D
IX

ES

Attributes

CLASS See “Core Attributes Reference,” earlier in this appendix.

DIR See “Language Reference,” earlier in this appendix.

ID See “Core Attributes Reference,” earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

LANGUAGE This attribute specifies the language the current script is written in and invokes
the proper scripting engine. The default value is JAVASCRIPT. JAVASCRIPT and JSCRIPT
represent that the scripting language is written in JavaScript. VBS and VBSCRIPT represent that
the scripting language is written in VBScript. It may also be possible to use extended names, such
as JavaScript1.1, to hide code from JavaScript-aware browsers that don’t conform to a particular
version of the language.

STYLE See “Core Attributes Reference,” earlier in this appendix.

TITLE See “Core Attributes Reference,” earlier in this appendix.

Attribute and Event Support

NETSCAPE 4 CLASS, ID, LANG, and STYLE.

INTERNET EXPLORER 4 CLASS, ID, LANG, LANGUAGE, STYLE, TITLE, onclick,
ondblclick, ondragstart, onhelp, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup, and onselectstart.

WEBTV No attributes.

Event Handlers
See “Events Reference,” earlier in this appendix.

Example

<ADDRESS>Big Company, Inc.
2105 Demo Street

San Diego, CA U.S.A. </ADDRESS>

Compatibility

HTML 2, 3.2, and 4
Internet Explorer 2, 3, 4, and 5
Netscape 1, 2, 3, 4, and 4.5
WebTV

692 H T M L : T h e C o m p l e t e R e f e r e n c e

Notes
Under HTML 2, 3.2, and WebTV there are no attributes for <ADDRESS>.

<APPLET> (Java Applet)
This element identifies the inclusion of a Java applet. The strict HTML 4.0 definition does not
include this element.

Syntax (Transitional Only)

<APPLET

ALIGN="BOTTOM | LEFT | MIDDLE | RIGHT | TOP"
ALT="alternative text"

ARCHIVE="URL of archive file"
CLASS="class name(s)"
CODE="URL of Java class file"

CODEBASE="URL for base referencing"

HEIGHT="pixels"
HSPACE="pixels"

ID="unique alphanumeric identifier"
NAME="unique name for scripting reference"

OBJECT="filename"
STYLE="style information"
TITLE="advisory text"

VSPACE="pixels"

WIDTH="pixels">

<PARAM> elements

Alternative content

</APPLET>

Attributes and Events Defined by Internet Explorer 4

ALIGN="ABSBOTTOM | ABSMIDDLE | BASELINE | BOTTOM |

LEFT | MIDDLE | RIGHT | TEXTTOP | TOP"
DATAFLD="name of column supplying bound data"
DATASRC="ID of data source object supplying data"

SRC="URL"
onafterupdate="script"

onbeforeupdate="script"

onblur="script"
onclick="script"

ondataavailable="script"
ondatasetchanged="script"

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 693

A
P

P
EN

D
IX

ES

ondatasetcomplete="script"

ondblclick="script"
ondragstart="script"

onerrorupdate="script"
onfocus="script"
onhelp="script"

onkeydown="script"

onkeypress="script"
onkeyup="script"

onmousedown="script"
onmousemove="script"

onmouseout="script"
onmouseover="script"
onmouseup="script"

onreadystatechange="script"

onresize="script"
onrowenter="script"

onrowexit="script"

Attributes Defined by Netscape 4

ALIGN="ABSBOTTOM | ABSMIDDLE | BASELINE | CENTER | TEXTTOP"

MAYSCRIPT

Attributes

ALIGN This attribute is used to position the applet on the page relative to content that may
flow around it. The HTML 4.0 specification defines values of BOTTOM, LEFT, MIDDLE,
RIGHT, and TOP, while Microsoft and Netscape may also support ABSBOTTOM,
ABSMIDDLE, BASELINE, CENTER, and TEXTTOP.

ALT This attribute causes a descriptive text alternate to be displayed on browsers that do not
support Java. Page designers should also remember that content enclosed within the <APPLET>
element may also be rendered as alternative text.

ARCHIVE This attribute refers to an archived or compressed version of the applet and its
associated class files, which may help reduce download time.

CLASS See “Core Attributes Reference,” earlier in this appendix.

CODE This attribute specifies the URL of the applet’s class file to be loaded and executed.
Applet filenames are identified by a .class filename extension. The URL specified by CODE may
be relative to the CODEBASE attribute.

694 H T M L : T h e C o m p l e t e R e f e r e n c e

CODEBASE This attribute gives the absolute or relative URL of the directory where applets’
.class files referenced by the CODE attribute are stored.

DATAFLD This attribute, supported by Internet Explorer 4 and above, specifies the column
name from the data source object that supplies the bound data. This attribute may be used to
specify the various <PARAM> elements passed to the Java applet.

DATASRC Like DATAFLD, this attribute is used for data binding under Internet Explorer 4.
It indicates the ID of the data source object that supplies the data that is bound to the <PARAM>
elements associated with the applet.

HEIGHT This attribute specifies the height, in pixels, that the applet needs.

HSPACE This attribute specifies additional horizontal space, in pixels, to be reserved on either
side of the applet.

ID See “Core Attributes Reference,” earlier in this appendix.

MAYSCRIPT In the Netscape implementation, this attribute allows access to an applet by
programs in a scripting language embedded in the document.

NAME This attribute assigns a name to the applet so that it can be identified by other
resources, particularly scripts.

OBJECT This attribute specifies the URL of a serialized representation of an applet.

SRC As defined for Internet Explorer 4 and above, this attribute specifies a URL for
an associated file for the applet. The meaning and use are unclear and not part of the
HTML standard.

STYLE See “Core Attributes Reference,” earlier in this appendix.

TITLE See “Core Attributes Reference,” earlier in this appendix.

VSPACE This attribute specifies additional vertical space, in pixels, to be reserved above and
below the applet.

WIDTH This attribute specifies in pixels the width that the applet needs.

Attribute and Event Support

NETSCAPE 4 ALIGN, ALT, ARCHIVE, CODE, CODEBASE, HSPACE, MAYSCRIPT,
NAME, VSPACE, and WIDTH. (CLASS, ID, and STYLE are implied.)

INTERNET EXPLORER 4 ALT, CLASS, CODE, CODEBASE, HEIGHT, HSPACE, ID,
NAME, STYLE, TITLE, VSPACE, WIDTH, and all attributes and events defined by
Internet Explorer 4.

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 695

A
P

P
EN

D
IX

ES

696 H T M L : T h e C o m p l e t e R e f e r e n c e

Event Handlers
None.

Example

<APPLET CODE="game.class"

ALIGN="LEFT"
ARCHIVE="game.zip"

HEIGHT="250" WIDTH="350">
<PARAM NAME="DIFFICULTY" VALUE="EASY">
Sorry, you need Java to play this game.

</APPLET>

Compatibility

HTML 3.2 and 4
Internet Explorer 3, 4, and 5
Netscape 2, 3, 4, and 4.5

Notes

■ The <APPLET> element replaces the original <APP> element. Parameter values can be
passed to applets using the <PARAM> element in the applet’s content area.

■ The HTML 4.0 specification does not encourage the use of <APPLET> and prefers the
use of the <OBJECT> element. Under the HTML 4.0 strict specification, this element is
not defined.

■ WebTV’s current implementation does not support Java applets.

■ Java applets were first supported under Netscape 2–level browsers and Internet
Explorer 3–level browsers.

<AREA> (Image Map Area)
<AREA> is an empty element used within the content model of the <P> element to implement
client-side image maps. It defines a hot-spot region on the map and associates it with a hypertext
link.

Syntax

<AREA

ACCESSKEY="character"

ALT="alternative text"

CLASS="class name(s)"

COORDS="comma separated list of values"

DIR="LTR | RTL"
HREF="URL"

ID="unique alphanumeric identifier"
LANG="language code"
NOHREF

SHAPE="CIRCLE | DEFAULT | POLY | RECT"

STYLE="style information"
TABINDEX="number"

TARGET="_blank | frame-name | _parent | _self |
_top" (transitional)

TITLE="advisory text"
onblur="script"
onclick="script"

ondblclick="script"

onfocus="script"
onkeydown="script"
onkeypress="script"

onkeyup="script"
onmousedown="script"

onmousemove="script"

onmouseout="script"
onmouseover="script"

onmouseup="script">

Attributes and Events Defined by Internet Explorer 4

LANGUAGE="JAVASCRIPT | JSCRIPT | VBS | VBSCRIPT"
SHAPE="CIRC | CIRCLE | POLY | POLYGON | RECT |

RECTANGLE"
ondragstart="script"

onhelp="script"

onselectstart="script"

Attributes Defined by Netscape 4

NAME="filename"

SHAPE="CIRCLE | DEFAULT | POLY | POLYGON | RECT"

Attributes Defined by WebTV

NOTAB

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 697

A
P

P
EN

D
IX

ES

Attributes

ACCESSKEY This attribute specifies a keyboard navigation accelerator for the element.
Pressing ALT or a similar key in association with the specified character selects the form control
correlated with that key sequence. Page designers are forewarned to avoid key sequences
already bound to browsers.

ALT This attribute contains a text string alternative to display on browsers that cannot
display images.

CLASS See “Core Attributes Reference,” earlier in this appendix.

COORDS This attribute contains a set of values specifying the coordinates of the hot-spot
region. The number and meaning of the values depend upon the value specified for the SHAPE
attribute. For a RECT or RECTANGLE shape, the COORDS value is two x,y pairs: left, top,
right, and bottom. For a CIRC or CIRCLE shape, the COORDS value is x,y,r where x,y is a pair
specifying the center of the circle and r is a value for the radius. For a POLY or POLYGON
shape, the COORDS value is a set of x,y pairs for each point in the polygon: x1,y1,x2,y2,x3,y3
and so on.

DIR See “Language Reference,” earlier in this appendix.

HREF This attribute specifies the hyperlink target for the area. Its value is a valid URL. Either
this attribute or the NOHREF attribute must be present in the element.

ID See “Core Attributes Reference,” earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

LANGUAGE This attribute specifies the language the current script is written in and invokes
the proper scripting engine. The default value is JAVASCRIPT. JAVASCRIPT and JSCRIPT
represent that the scripting language is written in JavaScript. VBS and VBSCRIPT represent that
the scripting language is written in VBScript. It may also be possible to use extended names, such
as JavaScript1.1, to hide code from JavaScript-aware browsers that don’t conform to a particular
version of the language.

NAME This attribute is used to define a name for the clickable area so that it can be scripted by
older browsers.

NOHREF This attribute indicates that no hyperlink exists for the associated area. Either this
attribute or the HREF attribute must be present in the element.

NOTAB Supported by WebTV, this attribute keeps the element from appearing in the
tabbing order.

SHAPE This attribute defines the shape of the associated hot spot. HTML 4 defines the values
RECT, which defines a rectangular region; CIRCLE, which defines a circular region; POLY,
which defines a polygon; and DEFAULT, which indicates the entire region beyond any defined

698 H T M L : T h e C o m p l e t e R e f e r e n c e

shapes. Many browsers, notably Internet Explorer 4 and above, support CIRC, POLYGON, and
RECTANGLE as valid values for SHAPE.

STYLE See “Core Attributes Reference,” earlier in this appendix.

TABINDEX This attribute represents a numeric value specifying the position of the defined
area in the browser tabbing order.

TARGET This attribute specifies the target window for hyperlink referencing frames. The
value is a frame name or one of several special names. A value of _blank indicates a new
window. A value of _parent indicates the parent frame set containing the source link. A value of
_self indicates the frame containing the source link. A value of _top indicates the full browser
window.

TITLE See “Core Attributes Reference,” earlier in this appendix.

Attribute and Event Support

NETSCAPE 4 COORDS, HREF, NOHREF, SHAPE, TARGET, onmouseout, and
onmouseover. (CLASS, ID, LANG, and STYLE are implied but not listed for this element in
Netscape documentation.)

INTERNET EXPLORER 4 ALT, CLASS, COORDS, HREF, ID, LANG, LANGUAGE,
NOHREF, SHAPE, STYLE, TABINDEX, TARGET, TITLE, all W3C-defined events, and all
attributes and events defined by Internet Explorer 4.

WEBTV COORDS, HREF, ID, NAME, NOTAB, SHAPE, TARGET, onmouseout,
and onmouseover.

Event Handlers
See “Events Reference,” earlier in this chapter.

Example

<MAP NAME="primary">
<AREA SHAPE="CIRCLE" COORDS="200,250,25"

HREF="another.htm">

<AREA SHAPE="DEFAULT" NOHREF>
</MAP>

Compatibility

HTML 3.2 and 4
Internet Explorer 2, 3, 4, and 5
Netscape 1, 2, 3, 4, and 4.5
WebTV

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 699

A
P

P
EN

D
IX

ES

Notes

■ By the HTML 3.2 and 4.0 specifications, the closing tag </AREA> is forbidden.

■ The ID, CLASS, and STYLE attributes have the same meaning as the core attributes
defined in the HTML 4.0 specification, but only Netscape and Microsoft define them.

■ Netscape 1–level browsers do not understand the TARGET attribute as it relates
to frames.

■ HTML 3.2 defines only ALT, COORDS, HREF, NOHREF, and SHAPE.

<AUDIOSCOPE> (Sound Amplitude Display)
This WebTV-specific element displays an audioscope for a sound resource that displays a
dynamic, graphical display of a sound’s amplitude.

Syntax (Defined by WebTV)

<AUDIOSCOPE

ALIGN="ABSBOTTOM | ABSMIDDLE | BASELINE | BOTTOM |
LEFT | MIDDLE | RIGHT | TEXTTOP | TOP"

BORDER="pixels"
GAIN="number"
HEIGHT="pixels"

LEFTCOLOR="color name | #RRGGBB"

LEFTOFFSET="number"
MAXLEVEL="TRUE | FALSE"

RIGHTCOLOR="name | #RRGGBB"
RIGHTOFFSET="number"

WIDTH="pixels">

Attributes

ALIGN This attribute positions the audioscope object on the page relative to text or other
content that may flow around it.

BORDER This attribute sets the width of the audioscope border in pixels. The default
value is 1.

GAIN This attribute takes a numeric value, which is a multiplier for the amplitude display.
The default value is 1.

HEIGHT This attribute sets the height of the audioscope in pixels. The default value is
80 pixels.

LEFTCOLOR This attribute sets the color of the line displaying the left audio channel in the
audioscope. Values can either be given as named colors or in the numeric #RRGGBB format. The
default value is #8ECE10.

700 H T M L : T h e C o m p l e t e R e f e r e n c e

LEFTOFFSET This attribute sets the vertical offset for the display of the left audio channel
with positive and negative values relative to the center of the audioscope. The default value is 0.

MAXLEVEL This Boolean attribute specifies whether the audioscope should clip sound
according to the specified gain. The default value is FALSE.

RIGHTCOLOR This attribute sets the color of the line displaying the right audio channel in the
audioscope. Values can either be given as named colors or in the numeric #RRGGBB format. The
default value is #8ECE10.

RIGHTOFFSET This attribute sets the vertical offset for the display of the right audio channel
with positive and negative values relative to the center of the audioscope. The default value is 1.

WIDTH This attribute sets the width of the audioscope in pixels. The default width is
100 pixels.

Attribute and Event Support

WEBTV All attributes.

Event Handlers
None.

Example

<AUDIOSCOPE BORDER="1" HEIGHT="16" WIDTH="240" GAIN="3"

MAXLEVEL="FALSE">

Compatibility

WebTV

Notes
<AUDIOSCOPE> is supported only by WebTV.

 (Bold)
This element indicates that the enclosed text should be displayed in boldface.

Syntax

<B

CLASS="class name(s)"

DIR="LTR | RTL"

ID="unique alphanumeric identifier"

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 701

A
P

P
EN

D
IX

ES

LANG="language code"

STYLE="style information"
TITLE="advisory text"

onclick="script"
ondblclick="script"
onkeydown="script"

onkeypress="script"

onkeyup="script"
onmousedown="script"

onmousemove="script"
onmouseout="script"

onmouseover="script"
onmouseup="script">

Attributes and Events Defined by Internet Explorer 4

LANGUAGE="JAVASCRIPT | JSCRIPT | VBS | VBSCRIPT"

ondragstart="script"

onhelp="script"

onselectstart="script"

Attributes

CLASS See “Core Attributes Reference,” earlier in this appendix.

DIR See “Language Reference,” earlier in this appendix.

ID See “Core Attributes Reference,” earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

LANGUAGE This attribute specifies the language the current script is written in and invokes
the proper scripting engine. The default value is JAVASCRIPT. JAVASCRIPT and JSCRIPT
represent that the scripting language is written in JavaScript. VBS and VBSCRIPT represent that
the scripting language is written in VBScript. It may also be possible to use extended names, such
as JavaScript1.1, to hide code from JavaScript-aware browsers that don’t conform to a particular
version of the language.

STYLE See “Core Attributes Reference,” earlier in this appendix.

TITLE See “Core Attributes Reference,” earlier in this appendix.

702 H T M L : T h e C o m p l e t e R e f e r e n c e

Attribute and Event Support

NETSCAPE 4 CLASS, ID, LANG, and STYLE are implied but not explicitly listed for
this element.

INTERNET EXPLORER 4 All W3C-defined attributes and events except DIR, and attributes
and events defined by Internet Explorer 4.

Event Handlers
See “Events Reference,” earlier in this appendix.

Example

This text is bold for emphasis.

Compatibility

HTML 2, 3.2, and 4
Internet Explorer 2, 3, 4, and 5
Netscape 1, 2, 3, 4, and 4.5
WebTV

Notes
HTML 2 and 3.2 do not define any attributes for this element.

<BASE> (Base URL)
This element specifies the base URL to use for all relative URLs contained within a document. It
occurs only in the scope of a <HEAD> element.

Syntax

<BASE

HREF="URL"

TARGET="_blank | frame-name | _parent | _self |

_top" (transitional)>

Attributes

HREF This attribute specifies the base URL to be used throughout the document for relative
URL addresses.

TARGET For documents containing frames, this attribute specifies the default target window
for every link that does not have an explicit target reference. Besides named frames, several
special values exist. A value of _blank indicates a new window. A value of _parent indicates the

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 703

A
P

P
EN

D
IX

ES

parent frame set containing the source link. A value of _self indicates the frame containing the
source link. A value of _top indicates the full browser window.

Attribute and Event Support

NETSCAPE 4 HREF and TARGET.

INTERNET EXPLORER 4 HREF and TARGET.

WEBTV HREF and TARGET.

Event Handlers
None.

Examples

<BASE HREF="http://www.bigcompany.com/">

<BASE TARGET="_blank" HREF="http://www.bigcompany.com/">

Compatibility

HTML 2, 3.2, and 4
Internet Explorer 2, 3, 4, and 5
Netscape 1, 2, 3, 4, and 4.5
WebTV

Notes
HTML 2 and 3.2 define only the HREF attribute.

<BASEFONT> (Base Font)
This element establishes a default font size for a document. Font size can then be varied relative
to the base font size using the element. The <BASEFONT> element must be placed
near the beginning of the body part of the page.

Syntax (Transitional Only)

<BASEFONT

COLOR="color name | #RRGGBB"
FACE="font name(s)"

ID="unique alphanumeric identifier"
SIZE="1-7 | +/-int">

704 H T M L : T h e C o m p l e t e R e f e r e n c e

Attributes Defined by Internet Explorer 4

CLASS="class name(s)"

LANG="language code"

Attributes

CLASS Internet Explorer 4 documentation indicates that the CLASS can be set for the
<BASEFONT> element; however, this is probably a mistake in the documentation.

COLOR This attribute sets the text color using either a named color or a color specified in the
hexadecimal #RRGGBB format.

FACE This attribute contains a list of one or more font names. The document text in the
default style is rendered in the first font face that the client’s browser supports. If no font listed is
installed on the local system, the browser typically defaults to the proportional or fixed width
font for that system.

ID See “Core Attributes Reference,” earlier in this appendix.

LANG Internet Explorer 4 documentation also mentions use of the LANG attribute to indicate
the language used. Meaning with this element is not well defined.

SIZE This attribute specifies the font size as either a numeric or relative value. Numeric values
range from 1 to 7 with 1 being the smallest and 3 the default.

Attribute and Event Support

NETSCAPE 4 ID (implied) and SIZE.

INTERNET EXPLORER 4 All attributes.

WEBTV SIZE.

Event Handlers
None.

Example

<BASEFONT COLOR="#FF0000" FACE="Helvetica, Times Roman"

SIZE="+2">

Compatibility

HTML 3.2 and 4 (transitional)
Internet Explorer 2, 3, 4, and 5

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 705

A
P

P
EN

D
IX

ES

Netscape 1.1, 2, 3, 4, and 4.5
WebTV

Notes

■ HTML 3.2 supports the <BASEFONT> element and the SIZE attribute. HTML 4.0
transitional specification adds support for COLOR and FACE as well.

■ The HTML 4.0 strict specification does not support this element.

■ The font sizes indicated by numeric values are browser dependent and not absolute.

<BDO> (Bidirectional Override)
This element is used to override the current directionality of text.

Syntax

<BDO

CLASS="class name(s)"
DIR="LTR | RTL"

ID="unique alphanumeric identifier"
LANG="language code"
STYLE="style information"

TITLE="advisory text">

</BDO>

Attributes

CLASS See “Core Attributes Reference,” earlier in this appendix.

DIR This attribute is required for the <BDO> element. It sets the text direction either to left to
right (LTR) or right to left (RTL).

ID See “Core Attributes Reference,” earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

STYLE See “Core Attributes Reference,” earlier in this appendix.

TITLE See “Core Attributes Reference,” earlier in this appendix.

Attribute and Event Support
None.

Event Handlers
None.

706 H T M L : T h e C o m p l e t e R e f e r e n c e

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 707

A
P

P
EN

D
IX

ES
Example

<!-- Switch text direction -->

<BDO ID="switch1" DIR="RTL"> This text will go right to left

if you can find a browser that supports this element.

</BDO>

Compatibility

HTML 4
Internet Explorer 5

Notes
Internet Explorer 5 is the first browser to support this element. In the beta version of Internet
Explorer 5, available at the time of this edition, <BDO> is the only element with which the DIR
attribute works.

<BGSOUND> (Background Sound)
This Internet Explorer and WebTV element associates a background sound with a page.

Syntax (Defined by Internet Explorer 4)

<BGSOUND>

BALANCE="number"
CLASS="class name(s)"

ID="unique alphanumeric identifier"
LANG="language code"
LOOP=number

SRC="URL of sound file"

TITLE="advisory text"
VOLUME="number">

Attributes

BALANCE This attribute defines a number between –10,000 and +10,000 that determines how
the volume will be divided between the speakers.

CLASS See “Core Attributes Reference,” earlier in this appendix.

ID See “Core Attributes Reference,” earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

LOOP This attribute indicates the number of times a sound is to be played and either has a
numeric value or the keyword infinite.

SRC This attribute specifies the URL of the sound file to be played, which must be one of the
following types: .wav, .au, or .mid.

TITLE See “Core Attributes Reference,” earlier in this appendix.

VOLUME This attribute defines a number between –10,000 and 0 that determines the loudness
of a page’s background sound.

Attribute and Event Support

INTERNET EXPLORER 4 All attributes.

WEBTV LOOP and SRC.

Event Handlers
None.

Examples

<BGSOUND SRC="sound1.mid">

<BGSOUND SRC="sound2.au" LOOP="INFINITE">

Compatibility

Internet Explorer 2, 3, 4, and 5
WebTV

Notes
Similar functionality can be achieved in Netscape using the <EMBED> element to invoke
LiveAudio.

<BIG> (Big Font)
This element indicates that the enclosed text should be displayed in a larger font relative to the
current font.

Syntax

<BIG

CLASS="class name(s)"
DIR="LTR | RTL"

ID="unique alphanumeric identifier"
LANG="language code"
STYLE="style information"

TITLE="advisory text"

onclick="script"
ondblclick="script"

708 H T M L : T h e C o m p l e t e R e f e r e n c e

onkeydown="script"

onkeypress="script"
onkeyup="script"

onmousedown="script"
onmousemove="script"
onmouseout="script"

onmouseover="script"

onmouseup="script">

</BIG>

Attributes and Events Defined by Internet Explorer 4

LANGUAGE="JAVASCRIPT | JSCRIPT | VBS | VBSCRIPT"

ondragstart="script"

onhelp="script"

onselectstart="script"

Attributes

CLASS See “Core Attributes Reference,” earlier in this appendix.

DIR See “Language Reference,” earlier in this appendix.

ID See “Core Attributes Reference,” earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

LANGUAGE This attribute specifies the language the current script is written in and invokes
the proper scripting engine. The default value is JAVASCRIPT. JAVASCRIPT and JSCRIPT
represent that the scripting language is written in JavaScript. VBS and VBSCRIPT represent that
the scripting language is written in VBScript.

STYLE See “Core Attributes Reference,” earlier in this appendix.

TITLE See “Core Attributes Reference,” earlier in this appendix.

Attribute and Event Support

NETSCAPE 4 CLASS, ID, LANG, and STYLE are implied.

INTERNET EXPLORER 4 All attributes and events except DIR.

Event Handlers
See “Events Reference,” earlier in this appendix.

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 709

A
P

P
EN

D
IX

ES

Example

This text is regular size. <BIG>This text is larger. </BIG>

Compatibility

HTML 3.2 and 4
Internet Explorer 2, 3, 4, and 5
Netscape 2, 3, 4, and 4.5
WebTV

Notes
HTML 3.2 does not support any attributes for this element.

<BLACKFACE> (Blackface Font)
This WebTV element renders the enclosed text in a double-weight boldface font. It is used for
headings and other terms needing special emphasis.

Syntax

<BLACKFACE> Text </BLACKFACE>

Attributes
None.

Event Handlers
None.

Example

<BLACKFACE>Buy now! </BLACKFACE > This offer expires in five minutes.

Compatibility

WebTV

Notes
This element is supported only by WebTV.

<BLINK> (Blinking Text Display)
This Netscape-specific element causes the enclosed text to flash slowly.

710 H T M L : T h e C o m p l e t e R e f e r e n c e

Syntax (Defined by Netscape)

<BLINK

CLASS="class name(s)"
ID="unique alphanumeric identifier"

LANG="language code"
STYLE="style information">

</BLINK>

Attributes

CLASS See “Core Attributes Reference,” earlier in this appendix.

ID See “Core Attributes Reference,” earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

STYLE See “Core Attributes Reference,” earlier in this appendix.

Attribute and Event Support

NETSCAPE 4 All attributes.

Event Handlers
None.

Example

<BLINK> Annoying, isn't it? </BLINK>

Compatibility

Netscape 1, 2, 3, 4, and 4.5

Notes
While not defined explicitly in Netscape documentation, the CLASS, ID, LANG, and STYLE
attributes are mentioned to be universal to all elements under Netscape 4 and above, and may
have meaning here.

<BLOCKQUOTE> (Block Quote)
This block element indicates that the enclosed text is an extended quotation. Usually this is
rendered visually by indentation.

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 711

A
P

P
EN

D
IX

ES

Syntax

<BLOCKQUOTE

CITE="URL of source information"
CLASS="class name(s)"

DIR="LTR | RTL"
ID="unique alphanumeric identifier"
LANG="language code"

STYLE="style information"

TITLE="advisory text"
onclick="script"

ondblclick="script"
onkeydown="script"

onkeypress="script"
onkeyup="script"
onmousedown="script"

onmousemove="script"

onmouseout="script"
onmouseover="script"
onmouseup="script">

</BLOCKQUOTE>

Attributes and Events Defined by Internet Explorer 4

LANGUAGE="JAVASCRIPT | JSCRIPT | VBS | VBSCRIPT"

ondragstart="script"

onhelp="script"

onselectstart="script"

Attributes

CITE The value of this attribute should be a URL of the document in which the information
cited can be found.

CLASS See “Core Attributes Reference,” earlier in this appendix.

DIR See “Language Reference,” earlier in this appendix.

ID See “Core Attributes Reference,” earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

LANGUAGE This attribute specifies the language the current script is written in and invokes
the proper scripting engine. The default value is JAVASCRIPT. JAVASCRIPT and JSCRIPT

712 H T M L : T h e C o m p l e t e R e f e r e n c e

represent that the scripting language is written in JavaScript. VBS and VBSCRIPT represent that
the scripting language is written in VBScript.

STYLE See “Core Attributes Reference,” earlier in this appendix.

TITLE See “Core Attributes Reference,” earlier in this appendix.

Attribute and Event Support

NETSCAPE 4 CLASS, ID, LANG, and STYLE.

INTERNET EXPLORER 4 All attributes and events except CITE and DIR.

Event Handlers
See “Events Reference,” earlier in this appendix.

Example

The following paragraph is taken from our March report:

<BLOCKQUOTE CITE="marchreport.htm"> ... text ...

</BLOCKQUOTE>

Compatibility

HTML 2, 3.2, and 4
Internet Explorer 2, 3, 4, and 5
Netscape 1, 2, 3, 4, and 4.5
WebTV

Notes

■ HTML 2 and 3.2 do not support any attributes for this element.

■ WebTV only indents the left margin of text enclosed in the <BLOCKQUOTE> element.

■ Some browsers understand the <BQ> shorthand notation.

<BODY> (Document Body)
This element encloses a document’s displayable content, in contrast to the descriptive and
informational content contained in the <HEAD> element.

Syntax

<BODY

ALINK="color name | #RRGGBB" (transitional)

BACKGROUND="URL of background image" (transitional)

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 713

A
P

P
EN

D
IX

ES

BGCOLOR="color name | #RRGGBB" (transitional)

CLASS="class name(s)"
DIR="LTR | RTL"

ID="unique alphanumeric identifier"
LANG="language code"
LINK="color name | #RRGGBB" (transitional)

STYLE="style information"

TEXT="color name | #RRGGBB" (transitional)
TITLE="advisory text"

VLINK="color name | #RRGGBB" (transitional)
onclick="script"

ondblclick="script"
onkeydown="script"
onkeypress="script"

onkeyup="script"

onload="script"
onmousedown="script"
onmousemove="script"

onmouseout="script"
onmouseover="script"

onmouseup="script"

onunload="script">

</BODY>

Attributes and Events Defined by Internet Explorer 4

BGPROPERTIES="FIXED"

BOTTOMMARGIN="pixels"
LANGUAGE="JAVASCRIPT | JSCRIPT | VBS | VBSCRIPT"
LEFTMARGIN="pixels"

RIGHTMARGIN="pixels"
SCROLL="NO | YES"

TOPMARGIN="pixels"

onafterupdate="script"
onbeforeunload="script"

onbeforeupdate="script"
ondragstart="script"
onhelp="script"

onrowenter="script"

onrowexit="script"
onscroll="script"

onselect="script"
onselectstart="script"

714 H T M L : T h e C o m p l e t e R e f e r e n c e

Events Defined by Netscape 4

onblur="script"

onfocus="script"

Attributes Defined by WebTV

CREDITS="URL"

INSTRUCTIONS="URL"

LOGO="URL"

Attributes

ALINK This attribute sets the color for active links within the document. Active links represent
the state of a link as it is being pressed. The value of the attribute can either be a
browser-dependent named color or a color specified in the hexadecimal #RRGGBB format.

BACKGROUND This attribute contains a URL for an image file, which will be tiled to provide
the document background.

BGCOLOR This attribute sets the background color for the document. Its value can either be a
browser-dependent named color or a color specified using the hexadecimal #RRGGBB format.

BGPROPERTIES This attribute, first introduced in Internet Explorer 2, has one value, FIXED,
which causes the background image to act as a fixed watermark and not to scroll.

BOTTOMMARGIN This attribute specifies the bottom margin for the entire body of the page
and overrides the default margin. When set to 0 or "", the bottom margin is the bottom edge of
the window or frame the content is displayed in.

CLASS See “Core Attributes Reference,” earlier in this appendix.

CREDITS In the WebTV implementation, this attribute contains the URL of the document to
retrieve when the viewer presses the credits button on the Info Panel.

DIR See “Language Reference,” earlier in this appendix.

ID See “Core Attributes Reference,” earlier in this appendix.

INSTRUCTIONS In the WebTV implementation, this attribute contains the URL of the
document to retrieve when the viewer presses the instructions button on the Info Panel.

LANG See “Language Reference,” earlier in this appendix.

LANGUAGE This attribute specifies the language the current script is written in and invokes
the proper scripting engine. The default value is JAVASCRIPT. JAVASCRIPT and JSCRIPT

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 715

A
P

P
EN

D
IX

ES

represent that the scripting language is written in JavaScript. VBS and VBSCRIPT represent that
the scripting language is written in VBScript.

LEFTMARGIN This Internet Explorer–specific attribute sets the left margin for the page in
pixels, overriding the default margin. When set to 0 or "", the left margin is the left edge of the
window or the frame.

LINK This attribute sets the color for hyperlinks within the document that have not yet been
visited. Its value can either be a browser-dependent named color or a color specified using the
hexadecimal #RRGGBB format.

LOGO In the WebTV implementation, this attribute contains the URL of a 70 × 52–pixel
thumbnail image for the page, which is used in the history and bookmarks for WebTV.

RIGHTMARGIN This attribute, specific to Internet Explorer, sets the right margin for the page
in pixels, overriding the default margin. When set to 0 or "", the right margin is the right edge of
the window or the frame.

SCROLL This attribute turns the scroll bars on or off. The default value is YES.

STYLE See “Core Attributes Reference,” earlier in this appendix.

TEXT This attribute sets the text color for the document. Its value can either be a
browser-dependent named color or a color specified using the hexadecimal #RRGGBB format.

TITLE See “Core Attributes Reference,” earlier in this appendix.

TOPMARGIN This Internet Explorer–specific attribute sets the top margin for the document in
pixels. If set to 0 or "", the top margin will be exactly on the top edge of the window or frame.

VLINK This attribute sets the color for links within the document that have already been
visited. Its value can either be a browser-dependent named color or a color specified using the
hexadecimal #RRGGBB format.

Attribute and Event Support

NETSCAPE 4 ALINK, BACKGROUND, BGCOLOR, LINK, TEXT, VLINK, onblur,
onfocus, onload, and onunload. (CLASS, ID, LANG, and STYLE are implied.)

INTERNET EXPLORER 4 All W3C-defined attributes and events except DIR, all attributes
and events defined by Internet Explorer 4, and onblur and onfocus.

WEBTV BACKGROUND, BGCOLOR, CREDITS, INSTRUCTIONS, LINK, LOGO, TEXT,
VLINK, onload, and onunload.

Event Handlers
See “Events Reference,” earlier in this appendix.

716 H T M L : T h e C o m p l e t e R e f e r e n c e

Example

<BODY BACKGROUND="checkered.gif"

BGCOLOR="White"
ALINK="Red"

LINK="Blue"
VLINK="Red"
TEXT="Black"> ... </BODY>

<!-- myLoadFunction defined in document head in <SCRIPT> element -->

<BODY onload="myLoadFunction()"> ... </BODY>

Compatibility

HTML 2, 3.2, and 4
Internet Explorer 2, 3, 4, and 5
Netscape 1, 2, 3, 4, and 4.5
WebTV

Notes

■ When defining text colors, it is important to be careful to specify both foreground and
background explicitly so that they are not masked out by browser defaults set by the
user.

■ Under the HTML 4.0 strict specification, all color-setting attributes and background
attributes are not allowed. This includes the ALINK, BACKGROUND, BGCOLOR,
LINK, TEXT, and VLINK attributes

■ This element must be present in all documents except those declaring a frame set.

<BQ> (Block Quote)
This obsolete element signifies that the enclosed text is an extended quotation. Though it has
been defined in early HTML specifications, it is currently supported only by the WebTV browser
as an alias for the <BLOCKQUOTE> element.

Syntax (Obsolete)

<BQ>

</BQ>

Attributes
None.

Event Handlers
None.

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 717

A
P

P
EN

D
IX

ES

718 H T M L : T h e C o m p l e t e R e f e r e n c e

Example

<BQ>HTML: The Complete Reference says "Don't use this element." </BQ>

Compatibility

WebTV

Notes
This element originated in the early days of HTML and is considered obsolete. It should
not be used.

 (Line Break)
This empty element forces a line break.

Syntax

<BR

CLASS="class name(s)"
CLEAR="ALL | LEFT | NONE | RIGHT" (transitional)

ID="unique alphanumeric identifier"
STYLE="style information"

TITLE="advisory text">

Attributes Defined by Internet Explorer 4

LANGUAGE="JAVASCRIPT | JSCRIPT | VBS | VBSCRIPT"

Attributes

CLASS See “Core Attributes Reference,” earlier in this appendix.

CLEAR This attribute forces the insertion of vertical space so that the tagged text may be
positioned with respect to images. A value of LEFT clears text that flows around left-aligned
images to the next full left margin, a value of RIGHT clears text that flows around right-aligned
images to the next full right margin, and a value of ALL clears text until it can reach both full
margins. The default value according to the HTML 4.0 transitional specification is NONE, but its
meaning is generally supported as just introducing a return and nothing more.

ID See “Core Attributes Reference,” earlier in this appendix.

A
P

P
EN

D
IX

ES
LANGUAGE This attribute specifies the language the current script is written in and invokes
the proper scripting engine. The default value is JAVASCRIPT. JAVASCRIPT and JSCRIPT
represent that the scripting language is written in JavaScript. VBS and VBSCRIPT represent that
the scripting language is written in VBScript.

STYLE See “Core Attributes Reference,” earlier in this appendix.

TITLE See “Core Attributes Reference,” earlier in this appendix.

Attribute and Event Support

NETSCAPE 4 CLEAR. (CLASS, ID, and STYLE are implied by Netscape documentation.)

INTERNET EXPLORER 4 All attributes.

WEBTV CLEAR.

Event Handlers
None.

Examples

This text will be broken here
and continued on a new line.

This is the image caption. <BR CLEAR="RIGHT">

Compatibility

HTML 3.2 and 4
Internet Explorer 2, 3, 4, and 5
Netscape 1, 2, 3, 4, and 4.5
WebTV

Notes

■ This is an empty element. A closing tag is illegal.

■ Under the HTML 4.0 strict specification, the CLEAR attribute is not valid. Style sheet
rules provide the functionality of the CLEAR attribute.

<BUTTON> (Form Button)
This element defines a nameable region known as a button, which may be used together
with scripts.

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 719

Syntax

<BUTTON

ACCESSKEY="key"
CLASS="class name(s)"

DIR="LTR | RTL"
DISABLED
ID="unique alphanumeric identifier"

LANG="language code"

NAME="button name"
STYLE="style information"

TABINDEX="number"
TITLE="advisory text"

TYPE="BUTTON | RESET | SUBMIT"
VALUE="button value"
onblur="script"

onclick="script"

ondblclick="script"
onfocus="script"
onkeydown="script"

onkeypress="script"
onkeyup="script"

onmousedown="script"

onmousemove="script"
onmouseout="script"

onmouseover="script"
onmouseup="script">

</BUTTON>

Attributes and Events Defined by Internet Explorer 4

DATAFLD="name of column supplying bound data"
DATAFORMATAS="HTML | TEXT"

DATASRC="ID of data source object supplying data"
LANGUAGE="JAVASCRIPT | JSCRIPT | VBS | VBSCRIPT"

onafterupdate="script"

onbeforeupdate="script"
ondragstart="script"

onhelp="script"
onresize="script"
onrowenter="script"

onrowexit="script"

onselectstart="script"

720 H T M L : T h e C o m p l e t e R e f e r e n c e

Attributes

ACCESSKEY This attribute specifies a keyboard navigation accelerator for the element.
Pressing ALT or a similar key in association with the specified key selects the anchor element
correlated with that key.

CLASS See “Core Attributes Reference,” earlier in this appendix.

DATAFLD This attribute specifies the column name from the data source object that supplies
the bound data that defines the information for the <BUTTON> element’s content.

DATAFORMATAS This attribute indicates if the bound data is plain text or HTML.

DATASRC This attribute indicates the ID of the data source object that supplies the data that
is bound to the <BUTTON> element.

DIR See “Language Reference,” earlier in this appendix.

DISABLED This attribute is used to disable the button.

ID See “Core Attributes Reference,” earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

LANGUAGE This attribute specifies the language that the current script associated with the
event handlers is written in and invokes the proper scripting engine. The default value is
JAVASCRIPT. JAVASCRIPT and JSCRIPT represent that the scripting language is written in
JavaScript. VBS and VBSCRIPT represent that the scripting language is written in VBScript.

NAME This attribute is used to define a name for the button so that it can be scripted by older
browsers or used to provide a name for submit buttons when there is more than one in a page.

STYLE See “Core Attributes Reference,” earlier in this appendix.

TABINDEX This attribute uses a number to identify the object’s position in the tabbing order.

TITLE See “Core Attributes Reference,” earlier in this appendix.

TYPE Defines the type of button. According to the HTML 4.0 specification, by default the
button is undefined. Possible values include BUTTON, RESET, and SUBMIT, which are used to
indicate the button is a plain button, reset button, or submit button respectively.

VALUE Defines the value that is sent to the server when the button is pressed. This may be
useful when using multiple SUBMIT buttons that perform different actions to indicate which
button was pressed to the handling CGI program.

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 721

A
P

P
EN

D
IX

ES

Attribute and Event Support

INTERNET EXPLORER 4 All attributes and events except DIR, NAME, TABINDEX,
and VALUE.

Event Handlers
See “Events Reference,” earlier in this appendix.

Examples

<BUTTON NAME="Submit"

VALUE="Submit"
TYPE="Submit"> Submit Request </BUTTON>

<BUTTON TYPE="BUTTON"
onclick="doSomething()"> Click This Button </BUTTON>

<BUTTON TYPE="BUTTON">

</BUTTON>

Compatibility

HTML 4
Internet Explorer 4 and 5

Notes

■ It is illegal to associate an image map with an that appears as the contents of a
BUTTON element.

■ The HTML 4.0 specification reserves the data-binding attributes DATAFLD,
DATAFORMATAS, and DATASRC for future use.

<CAPTION> (Figure or Table Caption)
This element is used within both the figure and table elements to define a caption.

Syntax

<CAPTION

ALIGN="BOTTOM | LEFT | RIGHT | TOP" (transitional)
CLASS="class name(s)"

DIR="LTR | RTL"
ID="unique alphanumeric identifier"

LANG="language code"
STYLE="style information"

TITLE="advisory text"

722 H T M L : T h e C o m p l e t e R e f e r e n c e

onclick="script"

ondblclick="script"
onkeydown="script"

onkeypress="script"
onkeyup="script"
onmousedown="script"

onmousemove="script"

onmouseout="script"
onmouseover="script"

onmouseup="script">

</CAPTION>

Attributes and Events Defined by Internet Explorer 4

LANGUAGE="JAVASCRIPT | JSCRIPT | VBS | VBSCRIPT"

VALIGN="BOTTOM | TOP"
onafterupdate="script"
onbeforeupdate="script"

onblur="script"

onchange="script"
ondragstart="script"
onfocus="script"

onhelp="script"
onresize="script"

onrowenter="script"

onrowexit="script"
onselect="script"

onselectstart="script"

Attributes

ALIGN This attribute specifies the alignment of the caption. HTML 4 defines BOTTOM, LEFT,
RIGHT, and TOP as legal values. Internet Explorer and WebTV also support CENTER. Because
this does not provide the possibility of combining vertical and horizontal alignments, Microsoft
has introduced the VALIGN attribute for the <CAPTION> element.

CLASS See “Core Attributes Reference,” earlier in this appendix.

DIR See “Language Reference,” earlier in this appendix.

ID See “Core Attributes Reference,” earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 723

A
P

P
EN

D
IX

ES

LANGUAGE This attribute specifies the language the current script is written in and invokes
the proper scripting engine. The default value is JAVASCRIPT. JAVASCRIPT and JSCRIPT
represent that the scripting language is written in JavaScript. VBS and VBSCRIPT represent that
the scripting language is written in VBScript.

STYLE See “Core Attributes Reference,” earlier in this appendix.

TITLE See “Core Attributes Reference,” earlier in this appendix.

VALIGN This Internet Explorer–specific attribute specifies whether the table caption appears
at the top or bottom.

Attribute and Event Support

NETSCAPE 4 ALIGN. (CLASS, ID, LANG, and STYLE are implied.)

INTERNET EXPLORER 4 All attributes and events except DIR.

WEBTV ALIGN (CENTER | LEFT | RIGHT).

Event Handlers
See “Events Reference,” earlier in this appendix.

Example

<TABLE>

<CAPTION ALIGN="TOP"> Our High-Priced Menu </CAPTION>
<TR>

<TD>Escargot </TD>
<TD>Filet Mignon </TD>
<TD>Big Mac </TD>

</TR>

</TABLE>

Compatibility

HTML 3.2 and 4
Internet Explorer 2, 3, 4, and 5
Netscape 1.1, 2, 3, 4, and 4.5
WebTV

Notes

■ There should be only one caption per table.

■ HTML 3.2 defines only the ALIGN attribute with values of BOTTOM and TOP. No
other attributes are defined prior to HTML 4. WebTV adds a CENTER value to the
ALIGN attribute.

724 H T M L : T h e C o m p l e t e R e f e r e n c e

<CENTER> (Center Alignment)
This element causes the enclosed content to be centered within the margins currently in effect.
Margins are either the default page margins or those imposed by overriding elements such as tables.

Syntax (Transitional Only)

<CENTER

CLASS="class name(s)"
DIR="LTR | RTL"

ID="unique alphanumeric identifier"
LANG="language code"
STYLE="style information"

TITLE="advisory text"

onclick="script"
ondblclick="script"

onkeydown="script"
onkeypress="script"

onkeyup="script"
onmousedown="script"
onmousemove="script"

onmouseout="script"

onmouseover="script"
onmouseup="script">

</CENTER>

Attributes and Events Defined by Internet Explorer 4

LANGUAGE="JAVASCRIPT | JSCRIPT | VBS | VBSCRIPT"

ondragstart="script"

onhelp="script"

onselectstart="script"

Attributes

CLASS See “Core Attributes Reference,” earlier in this appendix.

DIR See “Language Reference,” earlier in this appendix.

ID See “Core Attributes Reference,” earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

LANGUAGE This attribute specifies the language the current script is written in and invokes
the proper scripting engine. The default value is JAVASCRIPT. JAVASCRIPT and JSCRIPT

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 725

A
P

P
EN

D
IX

ES

represent that the scripting language is written in JavaScript. VBS and VBSCRIPT represent that
the scripting language is written in VBScript.

STYLE See “Core Attributes Reference,” earlier in this appendix.

TITLE See “Core Attributes Reference,” earlier in this appendix.

Attribute and Event Support

NETSCAPE 4 CLASS, ID, LANG, and STYLE are implied.

INTERNET EXPLORER 4 All attributes and events except DIR.

Event Handlers
See “Events Reference,” earlier in this appendix.

Example

<CENTER>This is in the center of the page. </CENTER>

Compatibility

HTML 3.2 and 4 (transitional)
Internet Explorer 2, 3, 4, and 5
Netscape 1.1, 2, 3, 4, and 4.5
WebTV

Notes

■ The <CENTER> element defined by the W3C is a shorthand notation for <DIV
ALIGN="CENTER">. The HTML 4.0 strict specification does not include the
<CENTER> element.

■ HTML 3.2 does not support any attributes for this element.

<CITE> (Citation)
This element indicates a citation from a book or other published source and is usually rendered
in italics by a browser.

Syntax

<CITE

CLASS="class name(s)"

DIR="LTR | RTL"

ID="unique alphanumeric identifier"

726 H T M L : T h e C o m p l e t e R e f e r e n c e

LANG="language code"

STYLE="style information"
TITLE="advisory text"

onclick="script"
ondblclick="script"
onkeydown="script"

onkeypress="script"

onkeyup="script"
onmousedown="script"

onmousemove="script"
onmouseout="script"

onmouseover="script"
onmouseup="script">

</CITE>

Attributes and Events Defined by Internet Explorer 4

LANGUAGE="JAVASCRIPT | JSCRIPT | VBS | VBSCRIPT"

ondragstart="script"

onhelp="script"

onselectstart="script"

Attributes

CLASS See “Core Attributes Reference,” earlier in this appendix.

DIR See “Language Reference,” earlier in this appendix.

ID See “Core Attributes Reference,” earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

LANGUAGE This attribute specifies the language the current script is written in and invokes
the proper scripting engine. The default value is JAVASCRIPT. JAVASCRIPT and JSCRIPT
represent that the scripting language is written in JavaScript. VBS and VBSCRIPT represent that
the scripting language is written in VBScript.

STYLE See “Core Attributes Reference,” earlier in this appendix.

TITLE See “Core Attributes Reference,” earlier in this appendix.

Attribute and Event Support

NETSCAPE 4 CLASS, ID, LANG, and STYLE are implied.

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 727

A
P

P
EN

D
IX

ES

INTERNET EXPLORER 4 All events and attributes except DIR.

Event Handlers
See “Events Reference,” earlier in this appendix.

Example

This example is taken from the <CITE> HTML Programmer's Reference. </CITE>

Compatibility

HTML 2, 3.2, and 4
Internet Explorer 2, 3, 4, and 5
Netscape 1, 2, 3, 4, and 4.5
WebTV

Notes
HTML 2 and 3.2 do not indicate any attributes for this element.

<CODE> (Code Listing)
This element indicates that the enclosed text is source code in a programming language. Usually
it is rendered in a monospaced font.

Syntax

<CODE

CLASS="class name(s)"
DIR="LTR | RTL"

ID="unique alphanumeric identifier"
LANG="language code"
STYLE="style information"

TITLE="advisory text"

onclick="script"
ondblclick="script"

onkeydown="script"
onkeypress="script"

onkeyup="script"
onmousedown="script"
onmousemove="script"

onmouseout="script"

onmouseover="script"
onmouseup="script">

</CODE>

728 H T M L : T h e C o m p l e t e R e f e r e n c e

Attributes and Events Defined by Internet Explorer 4

LANGUAGE="JAVASCRIPT | JSCRIPT | VBS | VBSCRIPT"

ondragstart="script"

onhelp="script"

onselectstart="script"

Attributes

CLASS See “Core Attributes Reference,” earlier in this appendix.

DIR See “Language Reference,” earlier in this appendix.

ID See “Core Attributes Reference,” earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

LANGUAGE This attribute specifies the language the current script is written in and invokes
the proper scripting engine. The default value is JAVASCRIPT. JAVASCRIPT and JSCRIPT
represent that the scripting language is written in JavaScript. VBS and VBSCRIPT represent that
the scripting language is written in VBScript.

STYLE See “Core Attributes Reference,” earlier in this appendix.

TITLE See “Core Attributes Reference,” earlier in this appendix.

Attribute and Event Support

NETSCAPE 4 CLASS, ID, LANG, and STYLE are implied.

INTERNET EXPLORER 4 All attributes and events except DIR.

Event Handlers
See “Events Reference,” earlier in this appendix.

Example
To increment a variable called count, use

<CODE> count++ </CODE>

Compatibility

HTML 2, 3.2, and 4
Internet Explorer 2, 3, 4, and 5
Netscape 1, 2., 3, 4, and 4.5
WebTV

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 729

A
P

P
EN

D
IX

ES

Notes

■ This element is best for short code fragments because it does not preserve special
indentation. For multiline code fragments, page authors tend to use the <PRE> element.

■ HTML 2 and 3.2 do not support any attributes for this element.

<COL> (Column)
This element defines a column within a table and is used for grouping and alignment purposes.
It is generally found within a <COLGROUP> element.

Syntax

<COL

ALIGN="CENTER | CHAR | JUSTIFY | LEFT | RIGHT"
CHAR="character"

CHAROFF="number"
CLASS="class name(s)"
DIR="LTR | RTL"

ID="unique alphanumeric identifier"

LANG="language code"
SPAN="number"

STYLE="style information"
TITLE="advisory text"

VALIGN="BASELINE | BOTTOM | MIDDLE | TOP"
WIDTH="column width specification"
onclick="script"

ondblclick="script"

onkeydown="script"
onkeypress="script"
onkeyup="script"

onmousedown="script"
onmousemove="script"

onmouseout="script"

onmouseover="script"
onmouseup="script">

Attributes

ALIGN This attribute specifies horizontal alignment of a cell’s contents.

CHAR This attribute is used to set the character to align the cells in a column on. Typical
values for this include a period (.) when attempting to align numbers or monetary values.

CHAROFF This attribute is used to indicate the number of characters to offset the column data
from the alignment characters specified by the CHAR value.

730 H T M L : T h e C o m p l e t e R e f e r e n c e

CLASS See “Core Attributes Reference,” earlier in this appendix.

DIR See “Language Reference,” earlier in this appendix.

ID See “Core Attributes Reference,” earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

SPAN When present, this attribute applies the attributes of the <COL> element to additional
consecutive columns.

STYLE See “Core Attributes Reference,” earlier in this appendix.

TITLE See Core Attributes Reference,” earlier in this appendix.

VALIGN This attribute specifies the vertical alignment of the text within the cell. Possible
values for this attribute are BASELINE, BOTTOM, MIDDLE, and TOP.

WIDTH This attribute specifies a default width for each column in the current column group.
In addition to the standard pixel and percentage values, this attribute may take the special form
0*, which means that the width of each column in the group should be the minimum width
necessary to hold the column’s contents. Relative widths like 0.5* can also be used.

Attribute and Event Support

INTERNET EXPLORER 4 ALIGN (CENTER | LEFT | RIGHT), CLASS, ID, SPAN, STYLE,
TITLE, VALIGN, and WIDTH.

Event Handlers
See “Events Reference,” earlier in this appendix.

Example

<TABLE BORDER="1" WIDTH="400">

<COLGROUP>
<COL ALIGN="CENTER" WIDTH="150"><COL ALIGN="RIGHT">

<TR>
<TD>This column is aligned to the center. </TD>
<TD>This one is aligned to the right. </TD>

</TR>

<TR><TD>! </TD><TD>?</TD></TR>

<TR><TD>! </TD><TD>?</TD></TR>

</TABLE>

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 731

A
P

P
EN

D
IX

ES

Compatibility

HTML 4
Internet Explorer 4

Notes

■ As an empty element, <COL> does not require a closing tag.

■ This element generally appears within a <COLGROUP> element and like that element
is somewhat of a convenience feature used to set attributes with one or more table
columns.

<COLGROUP> (Column Group)
This element creates an explicit column group to access a group of table columns for scripting or
formatting.

Syntax

<COLGROUP

ALIGN="CENTER | CHAR | JUSTIFY | LEFT | RIGHT"
CHAR="character"

CHAROFF="number"
CLASS="class name(s)"
DIR="LTR | RTL"

ID="unique alphanumeric identifier"

LANG="language code"
SPAN="number"

STYLE="style information"
TITLE="advisory text"

VALIGN="BASELINE | BOTTOM | MIDDLE | TOP"
WIDTH="column width specification"
onclick="script"

ondblclick="script"

onkeydown="script"
onkeypress="script"
onkeyup="script"

onmousedown="script"
onmousemove="script"

onmouseout="script"

onmouseover="script"
onmouseup="script">

<COL> elements

</COLGROUP>

732 H T M L : T h e C o m p l e t e R e f e r e n c e

Attributes

ALIGN This attribute specifies horizontal alignment of contents of the cells in the column
group. The values of CENTER, LEFT, and RIGHT have obvious meanings. A value of JUSTIFY
for the attribute should attempt to justify all the column’s contents. A value of CHAR attempts to
align the contents based on the value of the CHAR attribute in conjunction with CHAROFF.

CHAR This attribute is used to set the character to align the cells in a column on. Typical
values for this include a period (.) when attempting to align numbers or monetary values.

CHAROFF This attribute is used to indicate the number of characters to offset the column data
from the alignment characters specified by the CHAR value.

CLASS See “Core Attributes Reference,” earlier in this appendix.

DIR See “Language Reference,” earlier in this appendix.

ID See “Core Attributes Reference,” earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

SPAN When present, this attribute specifies the default number of columns in this group.
Browsers should ignore this attribute if the current column group contains one or more <COL>
elements. The default value of this attribute is 1.

STYLE See “Core Attributes Reference,” earlier in this appendix.

TITLE See “Core Attributes Reference,” earlier in this appendix.

VALIGN This attribute specifies the vertical alignment of the contents of the cells within the
column group.

WIDTH This attribute specifies a default width for each column and its cells in the current
column group. In addition to the standard pixel and percentage values, this attribute may take
the special form 0*, which means that the width of each column in the group should be the
minimum width necessary to hold the column’s contents.

Attribute and Event Support

INTERNET EXPLORER 4 ALIGN (CENTER | LEFT | RIGHT), CLASS, ID, SPAN, STYLE,
TITLE, VALIGN, and WIDTH.

Event Handlers
See “Events Reference,” earlier in this appendix.

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 733

A
P

P
EN

D
IX

ES

Examples

<COLGROUP SPAN="10" ALIGN="CHAR" CHAR=":" VALIGN="CENTER">

<COLGROUP STYLE="{background: green}">
<COL ALIGN="LEFT">

<COL ALIGN="CENTER">
</COLGROUP>

Compatibility

HTML 4
Internet Explorer 4 and 5

Notes
Each column group defined by a <COLGROUP> may contain zero or more <COL> elements.

<COMMENT> (Comment Information)
This nonstandard element treats enclosed text as nondisplaying comments while processing
enclosed HTML. This element should not be used.

Syntax (Defined by Internet Explorer 4)

<COMMENT

ID="unique alphanumeric identifier"

LANG="language code"

TITLE="advisory text">

Commented information

</COMMENT>

Attributes

ID See “Core Attributes Reference,” earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

TITLE See “Core Attributes Reference,” earlier in this appendix.

Attribute and Event Support

INTERNET EXPLORER 4 All attributes.

734 H T M L : T h e C o m p l e t e R e f e r e n c e

Event Handlers
None.

Example

<COMMENT>This is not the proper way to form comments. </COMMENT>

Compatibility

Internet Explorer 4 and 5
WebTV

Notes

■ It is better to use the <!- -. . .- -> element, an alternate comment element that does not
process enclosed HTML in all specification-conforming browsers.

■ Because the <COMMENT> element is not supported by all browsers, commented text
done in this fashion will appear in Netscape browsers. While Internet Explorer still
supports this element, IE documentation recommends use of the <!- -. . .- -> element.

■ While some notes indicate that the <COMMENT> element will render HTML included
within it, in practice this does not seem to be the case.

<DD> (Definition in a Definition List)
This element indicates the definition of a term within a list of defined terms (<DT>) enclosed by
a definition list (<DL>).

Syntax

<DD

CLASS="class name(s)"
DIR="LTR | RTL"

ID="unique alphanumeric identifier"
LANG="language code"
STYLE="style information"

TITLE="advisory text"

onclick="script"
ondblclick="script"

onkeydown="script"
onkeypress="script"

onkeyup="script"
onmousedown="script"
onmousemove="script"

onmouseout="script"

onmouseover="script"
onmouseup="script">

</DD>

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 735

A
P

P
EN

D
IX

ES

Attributes and Events Defined by Internet Explorer 4

LANGUAGE="JAVASCRIPT | JSCRIPT | VBS | VBSCRIPT"

ondragstart="script"

onhelp="script"

onselectstart="script"

Attributes

CLASS See “Core Attributes Reference,” earlier in this appendix.

DIR See “Language Reference,” earlier in this appendix.

ID See “Core Attributes Reference, earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

LANGUAGE This attribute specifies the language the current script is written in and invokes
the proper scripting engine. The default value is JAVASCRIPT. JAVASCRIPT and JSCRIPT
represent that the scripting language is written in JavaScript. VBS and VBSCRIPT represent that
the scripting language is written in VBScript.

STYLE See “Core Attributes Reference,” earlier in this appendix.

TITLE See “Core Attributes Reference,” earlier in this appendix.

Attribute and Event Support

NETSCAPE 4 CLASS, ID, LANG, and STYLE.

INTERNET EXPLORER 4 All attributes and events except DIR.

Event Handlers
See “Events Reference,” earlier in this appendix.

Example

<DL>

<DT>DOG
<DD>A domesticated animal that craves attention all the time

<DT>CAT
<DD>An animal that would just as soon ignore you until it

gets hungry

</DL>

736 H T M L : T h e C o m p l e t e R e f e r e n c e

Compatibility

HTML 2, 3.2, and 4
Internet Explorer 2, 3, 4, and 5
Netscape 1, 2, 3, 4, and 4.5
WebTV

Notes

■ The close tag for this element is optional, though encouraged when it will help make the
list more understandable.

■ This element occurs within a list of defined terms enclosed by the <DL> element.
Typically associated with it is the term it defines, indicated by the <DT> element that
just proceeds it.

■ HTML 2 and 3.2 define no attributes for this element.

 (Deleted Text)
This element is used to indicate that text has been deleted from a document. A browser may
render deleted text as strikethrough text.

Syntax

<DEL

CITE="URL"
CLASS="class name(s)"

DATETIME="date"
DIR="LTR | RTL"
ID="unique alphanumeric identifier"

LANG="language code"

STYLE="style information"
TITLE="advisory text"

onclick="script"
ondblclick="script"

onkeydown="script"
onkeypress="script"
onkeyup="script"

onmousedown="script"

onmousemove="script"
onmouseout="script"
onmouseover="script"

onmouseup="script"
onselectstart="script">

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 737

A
P

P
EN

D
IX

ES

Attributes and Events Defined by Internet Explorer 4

LANGUAGE="JAVASCRIPT | JSCRIPT | VBS | VBSCRIPT"

ondragstart="script"

onhelp="script"

Attributes

CITE The value of this attribute is a URL that designates a source document or message that
may give a reason why the information was deleted.

CLASS See “Core Attributes Reference,” earlier in this appendix.

DATETIME This attribute is used to indicate the date and time the deletion was made. The
value of the attribute is a date in a special format as defined by ISO 8601. The basic date format is

YYYY-MM-DDThh:mm:ssTZD

where the following is true:

YYYY=four-digit year such as 1999

MM=two-digit month (01=January, 02=February, and so on)
DD=two-digit day of the month (01 through 31)

hh=two digit hour (00 to 23) (24-hour clock, not AM or PM)
mm=two digit minute (00 through 59)
ss=two digit second (00 through 59)

TZD=time zone designator

The time zone designator is either Z, which indicates UTC (Universal Time Coordinate, or
coordinated universal time format), or +hh:mm, which indicates that the time is a local time that
is hh hours and mm minutes ahead of UTC. Alternatively, the format for the time zone designator
could be -hh:mm, which indicates that the local time is behind UTC. Note that the letter “T”
actually appears in the string, all digits must be used, and 00 values for minutes and seconds
may be required. An example value for the DATETIME attribute might be 1999-10-6T09:
15:00-05:00, which corresponds to October 6, 1999, 9:15 A.M., U.S. Eastern Standard Time.

DIR See “Language Reference,” earlier in this appendix.

ID See “Core Attributes Reference,” earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

LANGUAGE In the Microsoft implementation, this attribute specifies the scripting language to
be used with an associated script bound to the element, typically through an event handler
attribute. Possible values may include JAVASCRIPT, JSCRIPT, VBS, and VBSCRIPT. Other

738 H T M L : T h e C o m p l e t e R e f e r e n c e

values, which include the version of the language used, such as JavaScript1.1, may also
be possible.

STYLE See “Core Attributes Reference,” earlier in this appendix.

TITLE See “Core Attributes Reference,” earlier in this appendix.

Attribute and Event Support

INTERNET EXPLORER 4 All attributes and events except CITE, DATETIME, and DIR.

Event Handlers
See “Events Reference,” earlier in this appendix.

Example

<DEL CITE="http://www.bigcompany.com/changes/oct97.htm"

DATETIME="1990-10-06T09:15:00-05:00">

The penalty clause applies to client lateness as well.

Compatibility

HTML 4
Internet Explorer 4 and 5

Notes

■ Browsers may render deleted () text in a different style to show the changes that
have been made to the document. Internet Explorer 4 renders the text as strikethrough
text. Eventually, a browser may have a way to show a revision history on a document.
User agents that do not understand or <INS> will show the information
anyway, so there is no harm in adding information—only in deleting it. Because of the
fact that -enclosed text may show up, it may be wise to comment it out within the
element as shown here:

<!-- This is old information. -->

■ The element is not supported under the HTML 2.0 and 3.2 specifications.

<DFN> (Defining Instance of a Term)
This element encloses the defining instance of a term. It is usually rendered as bold or bold
italic text.

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 739

A
P

P
EN

D
IX

ES

Syntax

<DFN

CLASS="class name(s)"
DIR="LTR | RTL"

ID="unique alphanumeric identifier"
LANG="language code"
STYLE="style information"

TITLE="advisory text"

onclick="script"
ondblclick="script"

onkeydown="script"
onkeypress="script"

onkeyup="script"
onmousedown="script"
onmousemove="script"

onmouseout="script"

onmouseover="script"
onmouseup="script">

</DFN>

Attributes and Events Defined by Internet Explorer 4

LANGUAGE="JAVASCRIPT | JSCRIPT | VBS | VBSCRIPT"

ondragstart="script"

onhelp="script"

onselectstart="script"

Attributes

CLASS See “Core Attributes Reference,” earlier in this appendix.

DIR See “Language Reference,” earlier in this appendix.

ID See “Core Attributes Reference,” earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

LANGUAGE This attribute specifies the language the current script is written in and invokes
the proper scripting engine. The default value is JAVASCRIPT. JAVASCRIPT and JSCRIPT
represent that the scripting language is written in JavaScript. VBS and VBSCRIPT represent that
the scripting language is written in VBScript.

STYLE See “Core Attributes Reference,” earlier in this appendix.

740 H T M L : T h e C o m p l e t e R e f e r e n c e

TITLE See “Core Attributes Reference,” earlier in this appendix.

Attribute and Event Support

INTERNET EXPLORER 4 All attributes and events except DIR.

Event Handlers
See “Events Reference,” earlier in this appendix.

Example

An <DFN>elephant </DFN> is too large to make

a viable pet for anyone poorer than Bill Gates.

Compatibility

HTML 2, 3.2, and 4
Internet Explorer 2, 3, 4, and 5
WebTV

Notes
HTML 2 and 3.2 define no attributes for this element.

<DIR> (Directory List)
This element encloses a list of brief, unordered items, such as might occur in a menu or directory.
The individual items are indicated by the element. Use of this element is not encouraged,
as it is not part of the HTML 4.0 strict specification and provides little extra benefit over the
 element.

Syntax (Transitional Only)

<DIR

CLASS="class name(s)"
COMPACT

DIR="LTR | RTL"
ID="unique alphanumeric identifier"
LANG="language code"

STYLE="style information"

TITLE="advisory text"
onclick="script"

ondblclick="script"
onkeydown="script"

onkeypress="script"
onkeyup="script"

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 741

A
P

P
EN

D
IX

ES

onmousedown="script"

onmousemove="script"
onmouseout="script"

onmouseover="script"
onmouseup="script">

</DIR>

Attributes and Events Defined by Internet Explorer 4

LANGUAGE="JAVASCRIPT | JSCRIPT | VBS | VBSCRIPT"

ondragstart="script"

onhelp="script"

onselectstart="script"

Attributes

CLASS See “Core Attributes Reference,” earlier in this appendix.

COMPACT This attribute reduces the white space between list items.

DIR See “Language Reference,” earlier in this appendix.

ID See “Core Attributes Reference,” earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

LANGUAGE This attribute specifies the language the current script is written in and invokes
the proper scripting engine. The default value is JAVASCRIPT. JAVASCRIPT and JSCRIPT
represent that the scripting language is written in JavaScript. VBS and VBSCRIPT represent that
the scripting language is written in VBScript.

STYLE See “Core Attributes Reference,” earlier in this appendix.

TITLE See “Core Attributes Reference,” earlier in this appendix.

Attribute and Event Support

NETSCAPE 4 CLASS, ID, LANG, and STYLE are explicit.

INTERNET EXPLORER 4 All events and attributes except COMPACT and DIR.

WEBTV No attributes. (Note: WebTV bolds text enclosed in the <DIR> element.)

742 H T M L : T h e C o m p l e t e R e f e r e n c e

Event Handlers
See “Events Reference,” earlier in this appendix.

Example

<DIR>

 Header Files
 Code Files

 Comment Files
</DIR>

Compatibility

HTML 2, 3.2, and 4 (transitional)
Internet Explorer 2, 3, 4, and 5
Netscape 1, 2, 3, 4, and 4.5
WebTV

Notes

■ Because the <DIR> element is supposed to be used with short lists, the items in the list
should have a maximum width of 20 characters.

■ The HTML 4.0 strict specification does not support this element.

■ Many browsers will not to render the <DIR> element any differently than the
element.

■ Many browsers will not render the COMPACT list style.

■ HTML 2 and 3.2 support only the COMPACT attribute.

<DIV> (Division)
This element indicates a block of document content, which should be treated as a logical unit.

Syntax

<DIV
ALIGN="CENTER | JUSTIFY | LEFT | RIGHT"

(transitional)

CLASS="class name(s)"
DATAFLD="name of column supplying bound data"

(reserved)
DATAFORMATAS="HTML | TEXT" (reserved)

DATASRC="ID of data source object supplying data"
(reserved)

DIR="LTR | RTL"

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 743

A
P

P
EN

D
IX

ES

ID="unique alphanumeric identifier"

LANG="language code"
STYLE="style information"

TITLE="advisory text"
onclick="script"
ondblclick="script"

onkeydown="script"

onkeypress="script"
onkeyup="script"

onmousedown="script"
onmousemove="script"

onmouseout="script"
onmouseover="script"
onmouseup="script">

</DIV>

Attributes and Events Defined by Internet Explorer 4

LANGUAGE="JAVASCRIPT | JSCRIPT | VBS | VBSCRIPT"

onafterupdate="script"
onbeforeupdate="script"
onblur="script"

ondragstart="script"
onfocus="script"

onhelp="script"

onresize="script"
onrowenter="script"

onrowexit="script"
onscroll="script"

onselectstart="script"

Attributes

ALIGN This attribute indicates how the tagged text should be horizontally aligned
on the page. The default value is LEFT. The JUSTIFY value is supported only by the
Microsoft implementation.

CHARSET This attribute defines the character encoding of the linked resource specified by the
HREF attribute. The value is a space- and/or comma-delimited list of character sets as defined in
RFC 2045. The default value is ISO-8859-1.

CLASS See “Core Attributes Reference,” earlier in this appendix.

744 H T M L : T h e C o m p l e t e R e f e r e n c e

DATAFLD This attribute specifies the column name from the data source object that supplies
the bound data.

DATAFORMATAS This attribute indicates if the bound data is plain text or HTML.

DATASRC This attribute indicates the ID of the data source object that supplies the data that
is bound to this element.

DIR See “Language Reference,” earlier in this appendix.

ID See “Core Attributes Reference,” earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

LANGUAGE This attribute specifies the language the current script is written in and invokes
the proper scripting engine. The default value is JAVASCRIPT. JAVASCRIPT and JSCRIPT
represent that the scripting language is written in JavaScript. VBS and VBSCRIPT represent that
the scripting language is written in VBScript.

STYLE See “Core Attributes Reference,” earlier in this appendix.

TITLE See “Core Attributes Reference,” earlier in this appendix.

Attribute and Event Support

NETSCAPE 4 ALIGN, CLASS, ID, LANG, and STYLE.

INTERNET EXPLORER 4 All attributes and events except DIR.

WEBTV ALIGN (CENTER | LEFT | RIGHT).

Event Handlers
See “Events Reference,” earlier in this appendix.

Examples

<DIV ALIGN="JUSTIFY">

All text within this division will be justified
(but only under Netscape 4).

</DIV>

<DIV CLASS="special" ID="div1" STYLE="background: yellow">
Get ready to animate and stylize this.

</DIV>

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 745

A
P

P
EN

D
IX

ES

Compatibility

HTML 3.2 and 4
Internet Explorer 2, 3, 4, and 5
Netscape 2, 3, 4, and 4.5
WebTV

Notes

■ Many users are confused about the proper use of the <DIV> element, since all it does
is create a block element. It is very useful for binding scripts or styles to an arbitrary
section of a document. In this sense, <DIV> complements , which is used
inline.

■ The HTML 4.0 specification specifies that the DATAFLD, DATAFORMATAS, and
DATASRC attributes are reserved for <DIV> and may be supported in the future.
Internet Explorer 4 already supports these reserved attributes.

■ Under the HTML 4.0 strict specification, the ALIGN attribute is not supported.

■ HTML 3.2 supports only the ALIGN attribute.

<DL> (Definition List)
This element encloses a list of terms and definition pairs. A common use for this element is to
implement a glossary.

Syntax

<DL

CLASS="class name(s)"
COMPACT

DIR="LTR | RTL"
ID="unique alphanumeric identifier"
LANG="language code"

STYLE="style information"

TITLE="advisory text"
onclick="script"

ondblclick="script"
onkeydown="script"

onkeypress="script"
onkeyup="script"
onmousedown="script"

onmousemove="script"

onmouseout="script"
onmouseover="script"
onmouseup="script">

</DL>

746 H T M L : T h e C o m p l e t e R e f e r e n c e

Attributes and Events Defined by Internet Explorer 4

LANGUAGE="JAVASCRIPT | JSCRIPT | VBS | VBSCRIPT"

ondragstart="script"

onhelp="script"

onselectstart="script"

Attributes

CLASS See “Core Attributes Reference,” earlier in this appendix.

COMPACT This attribute reduces the white space between list items.

DIR See “Language Reference,” earlier in this appendix.

ID See “Core Attributes Reference,” earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

LANGUAGE This attribute specifies the language the current script is written in and invokes
the proper scripting engine. The default value is JAVASCRIPT. JAVASCRIPT and JSCRIPT
represent that the scripting language is written in JavaScript. VBS and VBSCRIPT represent that
the scripting language is written in VBScript.

STYLE See “Core Attributes Reference,” earlier in this appendix.

TITLE See “Core Attributes Reference,” earlier in this appendix.

Attribute and Event Support

NETSCAPE 4 CLASS, COMPACT, ID, LANG, and STYLE.

INTERNET EXPLORER 4 All attributes and events except DIR.

Event Handlers
See “Events Reference,” earlier in this appendix.

Example

<DL>

<DT>Cat
<DD>A domestic animal that likes fish

<DT>Skunk
<DD>A wild animal that needs deodorant

</DL>

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 747

A
P

P
EN

D
IX

ES

Compatibility

HTML 2, 3.2, and 4
Internet Explorer 2, 3, 4, and 5
Netscape 1, 2, 3, 4, and 4.5
WebTV

Notes

■ The items in the list comprise two parts: the term, indicated by the <DT> element, and
its definition, indicated by the <DD> element.

■ Some page designers may use the <DL> element or element to help create text
indent. While this is a common practice on the Web, it is not advisable because it
confuses the meaning of the element by making it a physical layout device rather
than a list.

■ Under the HTML 4.0 strict specification, the COMPACT attribute is not allowed.

■ HTML 2 and 3.2 support only the COMPACT attribute for this element.

<DT> (Term in a Definition List)
This element identifies a definition list term in a definition list term-definition pair.

Syntax

<DT

CLASS="class name(s)"
DIR="LTR | RTL"

ID="unique alphanumeric identifier"
LANG="language code"
STYLE="style information"

TITLE="advisory text"

onclick="script"
ondblclick="script"

onkeydown="script"
onkeypress="script"

onkeyup="script"
onmousedown="script"
onmousemove="script"

onmouseout="script"

onmouseover="script"
onmouseup="script">

Attributes and Events Defined by Internet Explorer 4

LANGUAGE="JAVASCRIPT | JSCRIPT | VBS | VBSCRIPT"
ondragstart="script"

748 H T M L : T h e C o m p l e t e R e f e r e n c e

onhelp="script"

onselectstart="script"

Attributes

CLASS See “Core Attributes Reference,” earlier in this appendix.

DIR See “Language Reference,” earlier in this appendix.

ID See “Core Attributes Reference,” earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

LANGUAGE This attribute specifies the language the current script is written in and invokes
the proper scripting engine. The default value is JAVASCRIPT. JAVASCRIPT and JSCRIPT
represent that the scripting language is written in JavaScript. VBS and VBSCRIPT represent that
the scripting language is written in VBScript.

STYLE See “Core Attributes Reference,” earlier in this appendix.

TITLE See “Core Attributes Reference,” earlier in this appendix.

Attribute and Event Support

NETSCAPE 4 CLASS, ID, LANG, and STYLE.

INTERNET EXPLORER 4 All attributes and events except DIR.

Event Handlers
See “Events Reference,” earlier in this appendix.

Example

<DL>

<DT>Rake
<DD>A garden tool used to gather leaves and rubbish

<DT>Trowel
<DD>A small garden tool used to shovel earth

</DL>

Compatibility

HTML 2, 3.2, 4
Internet Explorer 2, 3, 4, and 5

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 749

A
P

P
EN

D
IX

ES

Netscape 1, 2, 3, 4, and 4.5
WebTV

Notes

■ This element occurs within a list of defined terms enclosed by the <DL> element. It is
generally used in conjunction with the <DD> element, which indicates its definition.
However, <DT> elements do not require a one-to-one correspondence with <DD>
elements.

■ The close tag for the element is optional but suggested when it will make things more
clear, particularly with multiple-line definitions.

■ HTML 2 and 3.2 support no attributes for this element.

 (Emphasis)
This element indicates emphasized text, which many browsers display as italic text.

Syntax

<EM

CLASS="class name(s)"
DIR="LTR | RTL"

ID="unique alphanumeric identifier"
LANG="language code"
STYLE="style information"

TITLE="advisory text"

onclick="script"
ondblclick="script"

onkeydown="script"
onkeypress="script"

onkeyup="script"
onmousedown="script"
onmousemove="script"

onmouseout="script"

onmouseover="script"
onmouseup="script">

Attributes and Events Defined by Internet Explorer 4

LANGUAGE="JAVASCRIPT | JSCRIPT | VBS | VBSCRIPT"

ondragstart="script"

onhelp="script"

onselectstart="script"

750 H T M L : T h e C o m p l e t e R e f e r e n c e

Attributes

CLASS See “Core Attributes Reference,” earlier in this appendix.

DIR See “Language Reference,” earlier in this appendix.

ID See “Core Attributes Reference,” earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

LANGUAGE This attribute specifies the language the current script is written in and invokes
the proper scripting engine. The default value is JAVASCRIPT. JAVASCRIPT and JSCRIPT
represent that the scripting language is written in JavaScript. VBS and VBSCRIPT represent that
the scripting language is written in VBScript.

STYLE See “Core Attributes Reference,” earlier in this appendix.

TITLE See “Core Attributes Reference,” earlier in this appendix.

Attribute and Event Support

NETSCAPE 4 CLASS, ID, LANG, and STYLE are implied.

INTERNET EXPLORER 4 All attributes and events except DIR.

Event Handlers
See “Events Reference,” earlier in this appendix.

Example

This is an important point to consider.

Compatibility

HTML 2, 3.2, and 4
Internet Explorer 2, 3, 4, and 5
Netscape 1, 2, 3, 4, and 4.5
WebTV

Notes

■ As a logical element, is a prime candidate to bind style information to. For
example, to define emphasis to mean a larger font size in the Impact font, you might use
a CSS rule like the following in a document-wide style sheet.

EM {font-size: larger; font-family: Impact;}

■ HTML 2 and 3.2 support no attributes for this element.

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 751

A
P

P
EN

D
IX

ES

<EMBED> (Embedded Object)
This widely supported but nonstandard element specifies an object, typically a multimedia
element, to be embedded in an HTML document.

Syntax (Defined by Internet Explorer 4)

<EMBED

ALIGN="ABSBOTTOM | ABSMIDDLE | BASELINE | BOTTOM |
LEFT | MIDDLE | RIGHT | TEXTTOP | TOP"

ALT="alternative text"
CLASS="class name(s)"
CODE="filename"

CODEBASE="URL"

HEIGHT="pixels"
HSPACE="pixels"

ID="unique alphanumeric identifier"
NAME="string"

SRC="URL"
STYLE="style information"
TITLE="advisory text"

VSPACE="pixels"

WIDTH="pixels">

</EMBED>

Attributes Defined by Netscape 4

BORDER="pixels"
HIDDEN="TRUE | FALSE"

PALETTE="BACKGROUND | FOREGROUND"
PLUGINSPAGE="URL"

TYPE="MIME type"

UNITS="EN | PIXELS"

Attributes

ALIGN This attribute controls the alignment of adjacent text with respect to the embedded
object. The default value is LEFT.

ALT This attribute indicates the text to be displayed if the applet cannot be executed.

BORDER This attribute specifies the size in pixels of the border around the embedded object.

CLASS See “Core Attributes Reference,” earlier in this appendix.

752 H T M L : T h e C o m p l e t e R e f e r e n c e

CODE This attribute specifies the name of the file containing the compiled Java class if the
<EMBED> element is used to include a Java applet. This is a strange alternate form of Java
inclusion documented by Microsoft.

CODEBASE This specifies the base URL for the plug-in or potential applet in the case of the
alternative form under Internet Explorer.

HEIGHT This attribute sets the height in pixels of the embedded object.

HIDDEN If this attribute is set to the value TRUE, the embedded object is not visible on the
page and implicitly has a size of zero.

HSPACE This attribute specifies in pixels the size of the left and right margin between the
embedded object and surrounding text.

ID See “Core Attributes Reference,” earlier in this appendix.

NAME This attribute specifies a name for the embedded object, which can be referenced by
client-side programs in an embedded scripting language.

PALETTE This attribute is used only on Windows systems to select the color palette
used for the plug-in and may be set to BACKGROUND or FOREGROUND. The default
is BACKGROUND.

PLUGINSPAGE This attribute contains the URL of instructions for installing the plug-in
required to render the embedded object.

SRC This attribute specifies the URL of source content for the embedded object.

STYLE See “Core Attributes Reference,” earlier in this appendix.

TITLE See “Core Attributes Reference,” earlier in this appendix.

TYPE This attribute specifies the MIME type of the embedded object. It is used by the browser
to determine an appropriate plug-in for rendering the object. It can be used instead of the SRC
attribute for plug-ins that have no content or that fetch it dynamically.

UNITS This Netscape-specific attribute is used to set the units for measurement for the
embedded object either in EN or in the default, PIXELS.

VSPACE This attribute specifies in pixels the size of the top and bottom margin between the
embedded object and surrounding text.

WIDTH This attribute sets the width in pixels of the embedded object.

Attribute and Event Support

NETSCAPE 4 ALIGN (BOTTOM | LEFT | RIGHT | TOP), HEIGHT, SRC, WIDTH, and
all Netscape-defined attributes. (CLASS, ID, LANG, and STYLE are implied.)

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 753

A
P

P
EN

D
IX

ES

INTERNET EXPLORER 4 All Microsoft-defined attributes and events.

WEBTV ALIGN (BOTTOM | LEFT | RIGHT | TOP), BORDER, HEIGHT, HIDDEN,
HSPACE, NAME, SRC, VSPACE, and WIDTH.

Event Handlers
See “Events Reference,” earlier in this appendix.

Examples

<!-- EMBED without a close tag -->

<EMBED SRC="testmovie.mov" HEIGHT="150" WIDTH="150">
<NOEMBED>

</NOEMBED>

<!-- EMBED with a close tag -->

<EMBED SRC="testmovie.mov" HEIGHT="150" WIDTH="150">

<NOEMBED>

</NOEMBED>
</EMBED>

Compatibility
Netscape 2, 3, 4, and 4.5
Internet Explorer 3, 4, and 5
WebTV

Notes
■ It is unclear whether or not the close tag for <EMBED> is required. Many sites tend not

to use it, and documentation is not consistent. Some people claim that a close tag is
required and should surround any alternative content in a <NOEMBED> element;
others do not use a close tag. Since this element should eventually be phased out in favor
of <OBJECT>, this may be a moot issue.

■ While WebTV may support the <EMBED> element, it can deal only with media types
the equipment knows how to handle, such as Macromedia Flash or certain standard
audio files. Other plug-ins cannot be added to the system.

■ The <EMBED> element is not favored by the W3C and is not part of any official HTML
specification; however, it is very common. The HTML specification says to use the
<OBJECT> element, which can be used in conjunction with the <EMBED> element to
provide backward compatibility.

■ Embedded objects are multimedia content files of arbitrary type, which are rendered by
browser plug-ins. The TYPE attribute uses a file’s MIME type to determine an
appropriate browser plug-in. Any attributes not defined are treated as object-specific
parameters and passed through to the embedded object. Consult the plug-in or object
documentation to determine these. The standard parameters supported by the Microsoft
implementation are HEIGHT, NAME, PALETTE, SRC, UNITS, and WIDTH.

754 H T M L : T h e C o m p l e t e R e f e r e n c e

<FIELDSET> (Form Field Set)
This element allows form designers to group thematically related controls together.

Syntax

<FIELDSET

CLASS="class name(s)"
DIR="LTR | RTL"

ID="unique alphanumeric identifier"
LANG="language code"
STYLE="style information"

TITLE="advisory text"

onclick="script"
ondblclick="script"

onkeydown="script"
onkeypress="script"

onkeyup="script"
onmousedown="script"
onmousemove="script"

onmouseout="script"

onmouseover="script"
onmouseup="script">

</FIELDSET>

Attributes and Events Defined by Internet Explorer 4

ALIGN="CENTER | LEFT | RIGHT"
LANGUAGE="JAVASCRIPT | JSCRIPT | VBS | VBSCRIPT"

onblur="script"
onchange="script"

ondragstart="script"

onfilterchange="script"
onfocus="script"

onhelp="script"
onresize="script"
onscroll="script"

onselect="script"

onselectstart="script"

Attributes

ALIGN Internet Explorer defines the ALIGN attribute, which sets how the element and its
contents are positioned in a table or the window.

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 755

A
P

P
EN

D
IX

ES

CLASS See “Core Attributes Reference,” earlier in this appendix.

DIR See “Language Reference,” earlier in this appendix.

ID See “Core Attributes Reference,” earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

LANGUAGE This attribute specifies the language the current script is written in and invokes
the proper scripting engine. The default value is JAVASCRIPT. JAVASCRIPT and JSCRIPT
represent that the scripting language is written in JavaScript. VBS and VBSCRIPT represent that
the scripting language is written in VBScript.

STYLE See “Core Attributes Reference,” earlier in this appendix.

TITLE See “Core Attributes Reference,” earlier in this appendix.

Attribute and Event Support

INTERNET EXPLORER 4 All attributes and events except DIR.

Event Handlers
See “Events Reference,” earlier in this appendix.

Example

<FIELDSET>

<LEGEND>Customer Identification </LEGEND>

<LABEL>Customer Name:
<INPUT TYPE="TEXT" ID="CustName" SIZE="25">

</FIELDSET>

Compatibility

HTML 4
Internet Explorer 4 and 5

Notes

■ Grouping controls makes it easier for users to understand the purposes of the controls
while simultaneously facilitating tabbing navigation for visual user agents and speech
navigation for speech-oriented user agents. The proper use of this element makes
documents more accessible to people with disabilities.

■ The caption for this element is defined by the <LEGEND> element within the
<FIELDSET> element.

756 H T M L : T h e C o m p l e t e R e f e r e n c e

<FN> (Footnote)
This WebTV-specific element indicates either a reference to a footnote or the footnote itself.

Syntax (Defined by WebTV)

<FN

HREF="URL"

ID="unique alphanumeric identifier">

</FN>

Attributes

HREF This attribute contains a URL that references the footnote. Typically the URL is a
fragment in the form of the pound sign (#) followed by the name of the footnote anchor. It
indicates that the tagged text is a reference to a footnote.

ID This attribute contains the name of the footnote anchor. It indicates that the tagged text
is a footnote.

Attribute and Event Support

WEBTV HREF and ID.

Event Handlers
None.

Example

This wonderful idea came from <FN HREF="#smith"> Smith. </FN>

<FN ID="smith"> Smith, Fred, Journal of Really Good Ideas </FN>

Compatibility

WebTV

Notes

■ Footnotes are implemented as internal links within a document. Use the HREF attribute
to indicate a reference to a footnote. Use the ID attribute to indicate the footnote itself.

■ Footnotes are not to be used outside the WebTV environment. They are a leftover of the
failed HTML 3 proposal.

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 757

A
P

P
EN

D
IX

ES

 (Font Definition)
This element allows specification of the size, color, and font of the text it encloses. Use of this
element is not encouraged as it is not part of the HTML 4.0 strict specification. Style sheets
provide a cleaner way of providing the same functionality when they are supported.

Syntax (Transitional Only)

<FONT

CLASS="class name(s)"
COLOR="color name | #RRGGBB"

DIR="LTR | RTL"
FACE="font name"
ID="unique alphanumeric identifier"

LANG="language code"

SIZE="1 to 7 | +1 to +6 | -1 to -6"
STYLE="style information"

TITLE="advisory text">

Attributes and Events Defined by Internet Explorer 4

LANGUAGE="JAVASCRIPT | JSCRIPT | VBS | VBSCRIPT"

onclick="script"
ondblclick="script"
ondragstart="script"

onhelp="script"

onkeydown="script"
onkeypress="script"
onkeyup="script"

onmousedown="script"
onmousemove="script"

onmouseout="script"

onmouseover="script"
onmouseup="script"

onselectstart="script"

Attributes Defined by Netscape 4

POINT-SIZE="point size for font"

WEIGHT="100 | 200 | 300 | 400 | 500 | 600 | 700 |

800 | 900"

758 H T M L : T h e C o m p l e t e R e f e r e n c e

Attributes Defined by WebTV

EFFECT="EMBOSS | RELIEF | SHADOW"

TRANSPARENCY="number (0-100)"

Attributes

CLASS See “Core Attributes Reference,” earlier in this appendix.

COLOR This attribute sets the text color using either a browser-dependent named color or a
color specified in the hexadecimal #RRGGBB format.

DIR See “Language Reference,” earlier in this appendix.

EFFECT In the WebTV implementation, this attribute renders the tagged text in a special way.
The RELIEF value causes the text to appear raised off the page. The EMBOSS value causes the
text to appear embossed into the page.

FACE This attribute contains a list of one or more font names separated by commas. The
user agent looks through the specified font names and renders the text in the first font that
is supported.

ID See “Core Attributes Reference,” earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

LANGUAGE This attribute specifies the language the current script is written in and invokes
the proper scripting engine. The default value is JAVASCRIPT. JAVASCRIPT and JSCRIPT
represent that the scripting language is written in JavaScript. VBS and VBSCRIPT represent that
the scripting language is written in VBScript.

POINT-SIZE This Netscape 4–specific attribute specifies the point size of text and is used with
downloadable fonts.

SIZE This attribute specifies the font size as either a numeric or relative value. Numeric values
range from 1 to 7 with 1 being the smallest and 3 the default. The relative values, + and −,
increment or decrement the font size relative to the current size. The value for increment or
decrement should range only from +1 to + 6 or −1 to −6.

STYLE See “Core Attributes Reference,” earlier in this appendix.

TITLE See “Core Attributes Reference,” earlier in this appendix.

TRANSPARENCY WebTV’s proprietary TRANSPARENCY attribute is used to set the
transparency level of the text. A value of 0 indicates the text is opaque; a value of 100 indicates
text is fully transparent, allowing the background to show through. The default value for this
attribute is 0.

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 759

A
P

P
EN

D
IX

ES

WEIGHT Under Netscape 4, this attribute specifies the weight of the font, with a value of 100
being lightest and 900 being heaviest.

Attribute and Event Support

NETSCAPE 4 COLOR, POINT-SIZE, SIZE, and WEIGHT. (CLASS, ID, LANG, and STYLE
are implied.)

INTERNET EXPLORER 4 All W3C-defined attributes and events except DIR, and all
attributes and events defined by Internet Explorer 4.

WEBTV COLOR, EFFECT, SIZE, and TRANSPARENCY.

Event Handlers
See “Events Reference,” earlier in this appendix.

Example

Relatively large red text in Helvetica or Times

Compatibility

HTML 3.2 and 4
Internet Explorer 2, 3, 4, and 5
Netscape 1.1, 2, 3, 4, and 4.5
WebTV

Notes

■ The default text size for a document can be set using the SIZE attribute of the
<BASEFONT> element.

■ The HTML 3.2 specification supports only the COLOR and SIZE attributes for
this element.

■ The HTML 4.0 transitional specification supports the CLASS, COLOR, DIR, FACE, ID,
LANG, SIZE, STYLE, and TITLE attributes.

■ The HTML 4.0 strict specification does not support the element at all.

<FORM> (Form for User Input)
The element defines a fill-in form to contain labels and form controls, such as menus and text
entry boxes that may be filled in by a user.

760 H T M L : T h e C o m p l e t e R e f e r e n c e

Syntax

<FORM

ACCEPT-CHARSET="list of supported character sets"
ACTION="URL"

CLASS="class name(s)"
DIR="LTR | RTL"
ENCTYPE="application/x-www-form-urlencoded |

multipart/form-data | text/plain |

Media Type as per RFC 2045"
ID="unique alphanumeric identifier"

LANG="language code"
METHOD="GET | POST"

STYLE="style information"
TARGET="_blank | frame name | _parent | _self |

_top" (transitional)

TITLE="advisory text"

onclick="script"
ondblclick="script"
onkeydown="script"

onkeypress="script"
onkeyup="script"

onmousedown="script"

onmousemove="script"
onmouseout="script"

onmouseover="script"
onmouseup="script"
onreset="script"

onsubmit="script">

</FORM>

Attributes and Events Defined by Internet Explorer 4

LANGUAGE="JAVASCRIPT | JSCRIPT | VBS | VBSCRIPT"
NAME="string"

ondragstart="script"

onhelp="script"
onselectstart="script"

Attributes

ACCEPT-CHARSET This attribute specifies the list of character encodings for input data that
must be accepted by the server processing form. The value is a space- or comma-delimited list
of character sets as defined in RFC 2045. The default value for this attribute is the reserved
value UNKNOWN.

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 761

A
P

P
EN

D
IX

ES

ACTION This attribute contains the URL of the server program, which will process the
contents of the form. Some browsers may also support a mailto URL, which may mail the results
to the specified address.

CLASS See “Core Attributes Reference,” earlier in this appendix.

DIR See “Language Reference,” earlier in this appendix.

ENCTYPE This attribute indicates how form data should be encoded before being sent to the
server. The default is application/x-www-form-urlencoded. This encoding replaces blank
characters in the data with a + and all other nonprinting characters with a % followed by the
character’s ASCII HEX representation. The multipart/form-data option does not perform
character conversion and transfers the information as a compound MIME document. This must
be used when using <INPUT TYPE="FILE">. It may also be possible to use another encoding
like text/plain to avoid any form of hex encoding which may be useful with mailed forms.

ID See “Core Attributes Reference,” earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

LANGUAGE This attribute specifies the language the current script is written in and invokes
the proper scripting engine. The default value is JAVASCRIPT. JAVASCRIPT and JSCRIPT
represent that the scripting language is written in JavaScript. VBS and VBSCRIPT represent that
the scripting language is written in VBScript.

METHOD This attribute indicates how form information should be transferred to the server.
The GET option appends data to the URL specified by the ACTION attribute. This approach
gives the best performance, but imposes a size limitation determined by the command line
length supported by the server. The POST option transfers data using a HTTP post transaction.
This approach is more secure and imposes no data size limitation.

NAME This attribute specifies a name for the form and can be used by client-side programs to
reference form data.

STYLE See “Core Attributes Reference,” earlier in this appendix.

TARGET In documents containing frames, this attribute specifies the target frame to display
the results of a form submission. In addition to named frames, several special values exist. The
_blank value indicates a new window. The _parent value indicates the parent frame set
containing the source link. The _self value indicates the frame containing the source link. The
_top value indicates the full browser window.

TITLE See “Core Attributes Reference,” earlier in this appendix.

Attribute and Event Support

NETSCAPE 4 ACTION, ENCTYPE, METHOD, NAME, TARGET, onreset, and onsubmit.
(CLASS, ID, LANG, and STYLE are implied.)

762 H T M L : T h e C o m p l e t e R e f e r e n c e

INTERNET EXPLORER 4 All attributes and events except ACCEPT-CHARSET and DIR.

WEBTV ACTION, METHOD, TARGET, onreset, and onsubmit.

Event Handlers
See “Events Reference,” earlier in this appendix.

Example

<FORM ACTION="http://www.bigcompany.com/cgi-bin/processit.exe"

METHOD="POST" NAME="testform" onsubmit="validate()">
Enter your comments here:

<TEXTAREA NAME="comments" COLS="30" ROWS="8"></TEXTAREA>

<INPUT TYPE="SUBMIT">

<INPUT TYPE="RESET">

</FORM>

Compatibility

HTML 2, 3.2, and 4
Internet Explorer 2, 3, 4, and 5
Netscape 1, 2, 3, 4, and 4.5
WebTV

Notes

■ Form content is defined using the <BUTTON>, <INPUT>, <SELECT>, and
<TEXTAREA> elements as well as other HTML formatting and structuring elements.
Special grouping elements like <FIELDSET>, <LABEL>, and <LEGEND> have been
introduced to provide better structuring for forms, but other HTML elements such as
<DIV> and <TABLE> may also be used to improve form layout.

■ HTML 2 and 3.2 support only the ACTION, ENCTYPE, and METHOD attributes for
the <FORM> element.

<FRAME> (Window Region)
This element defines a nameable window region, known as a frame, that can independently
display its own content.

Syntax (Transitional Only)

<FRAME

CLASS="class name(s)"

FRAMEBORDER="0 | 1"

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 763

A
P

P
EN

D
IX

ES

ID="unique alphanumeric identifier"

LONGDESC="URL of description"
MARGINHEIGHT="pixels"

MARGINWIDTH="pixels"
NAME="string"
NORESIZE

SCROLLING="AUTO | NO | YES"

SRC="URL" of frame contents"
STYLE="style information"

TITLE="advisory text">

Attributes and Events Defined by Internet Explorer 4

BORDERCOLOR="color name | #RRGGBB"
DATAFLD="name of column supplying bound data"
DATASRC="ID of data source object supplying data"
FRAMEBORDER="NO | YES | 0 | 1"
HEIGHT="pixels"
LANG="language code"
LANGUAGE="JAVASCRIPT | JSCRIPT | VBS | VBSCRIPT"
WIDTH="pixels"
onreadystatechange="script"

Attributes Defined by WebTV

ALIGN="BOTTOM | CENTER | LEFT | RIGHT | TOP"

Attributes

BORDERCOLOR This attribute sets the color of the frame’s border using either a named color
or a color specified in the hexadecimal #RRGGBB format.

CLASS See “Core Attributes Reference,” earlier in this appendix.

DATAFLD This Internet Explorer attribute specifies the column name from the data source
object that supplies the bound data.

DATASRC This Internet Explorer attribute indicates the ID of the data source object that
supplies the data that is bound to this element.

FRAMEBORDER This attribute determines whether the frame is surrounded by an outlined
three-dimensional border. The HTML specification prefers the use of 1 for the frame border on
and 0 for off; most browsers also acknowledge the use of NO and YES.

764 H T M L : T h e C o m p l e t e R e f e r e n c e

ID See “Core Attributes Reference,” earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

LANGUAGE This attribute specifies the language the current script is written in and invokes
the proper scripting engine. The default value is JAVASCRIPT. JAVASCRIPT and JSCRIPT
represent that the scripting language is written in JavaScript. VBS and VBSCRIPT represent that
the scripting language is written in VBScript.

LONGDESC This attribute specifies a URL of a document that contains a long description of
the frame’s content. This attribute should be used in conjunction with the <TITLE> element.

MARGINHEIGHT This attribute sets the height in pixels between the frame’s contents and its
top and bottom borders.

MARGINWIDTH This attribute sets the width in pixels between the frame’s contents and its
left and right borders.

NAME This attribute assigns the frame a name so that it can be the target destination of
hyperlinks as well as be a possible candidate for manipulation via a script.

NORESIZE This attribute overrides the default ability to resize frames and gives the frame a
fixed size.

SCROLLING This attribute determines if the frame has scroll bars. A YES value forces scroll
bars, a NO value prohibits them, and an AUTO value lets the browser decide. When not
specified, the default value of AUTO is used. Authors are recommended to leave the value as
AUTO. If you turn off scrolling and the contents end up being too large for the frame (due to
rendering differences, window size, etc.), the user will not be able to scroll to see the rest of the
contents. If you turn scrolling on and the contents all fit in the frame, the scroll bars will
needlessly consume screen space. With the AUTO value, scroll bars appear only when needed.

SRC This attribute contains the URL of the contents to be displayed in the frame. If absent,
nothing will be loaded in the frame.

STYLE See “Core Attributes Reference,” earlier in this appendix.

TITLE See “Core Attributes Reference,” earlier in this appendix.

Attribute and Event Support

NETSCAPE 4 BORDERCOLOR, FRAMEBORDER, MARGINHEIGHT, MARGINWIDTH,
NAME, NORESIZE, SCROLLING, and SRC. (CLASS, ID, LANG, and STYLE are implied.)

INTERNET EXPLORER 4 All W3C-defined attributes except LONGDESC and STYLE, and
all attributes and events defined by Internet Explorer 4. (Note: Internet Explorer 4 supports the
values NORESIZE and RESIZE.)

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 765

A
P

P
EN

D
IX

ES

WEBTV ALIGN, FRAMEBORDER (0 | 1), MARGINHEIGHT, MARGINWIDTH, NAME,
and SRC.

Event Handlers
See “Events Reference,” earlier in this appendix.

Example

<FRAMESET ROWS="20%,80%">

<FRAME SRC="controls.htm" NAME="controls" NORESIZE SCROLLING="NO">

<FRAME SRC="content.htm">

</FRAMESET>

Compatibility

HTML 4
Internet Explorer 2, 3, 4, and 5
Netscape 2, 3, 4, and 4.5
WebTV

Notes

■ A frame must be declared as part of a frame set as set by the <FRAMESET> element,
which specifies the frame’s relationship to other frames on a page. A frame set occurs in
a special HTML document in which the <FRAMESET> element replaces the <BODY>
element. Another form of frames called independent frames, or floating frames, is also
supported by Microsoft as well as the HTML 4.0 transitional specification. Floating
frames can be directly embedded in a document without belonging to a frameset. These
are defined with the <IFRAME> element.

■ Numerous browsers do not support frames and require the use of the <NOFRAMES>
element.

■ Frames introduce potential navigation difficulties; their use should be limited to
instances where they can be shown to help navigation rather than hinder it.

<FRAMESET> (Frameset Definition)
This element is used to define the organization of a set of independent window regions known
as frames as defined by the <FRAME> element. This element replaces the <BODY> element in
framing documents.

Syntax (Transitional Only)

<FRAMESET

CLASS="class name(s)"

COLS="list of columns"

766 H T M L : T h e C o m p l e t e R e f e r e n c e

ID="unique alphanumeric identifier"

ROWS="list of rows"
STYLE="style information"

TITLE="advisory text"
onload="script"

onunload="script">

<FRAME> elements and <NOFRAMES>

</FRAMESET>

Attributes and Events Defined by Internet Explorer 4

BORDER="pixels"
BORDERCOLOR="color name | #RRGGBB"
FRAMEBORDER="NO | YES | 0 | 1"
FRAMESPACING="pixels"
LANG="language code"
LANGUAGE="JAVASCRIPT | JSCRIPT | VBS | VBSCRIPT"

Attributes and Events Defined by Netscape 4

BORDER="pixels"
BORDERCOLOR="color name | #RRGGBB"
FRAMEBORDER="NO | YES | 0 | 1"
LANG="language code"
onblur="script"
onfocus="script"

Attributes Defined by WebTV

BORDER="pixels"
FRAMEBORDER="0 | 1"

Attributes

BORDER This attribute sets the width in pixels of frame borders within the frame set. Setting
BORDER="0" eliminates all frame borders. This attribute is not defined in the HTML
specification but is widely supported.

BORDERCOLOR This attribute sets the color for frame borders within the frame set using
either a named color or a color specified in the hexadecimal #RRGGBB format.

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 767

A
P

P
EN

D
IX

ES

CLASS See “Core Attributes Reference,” earlier in this appendix.

COLS This attribute contains a comma-delimited list, which specifies the number and size of
columns contained within a set of frames. List items indicate columns, left to right. Column size
is specified in three formats, which may be mixed. A column can be assigned a fixed width in
pixels. It can also be assigned a percentage of the available width, such as 50 percent. Lastly a
column can be set to expand to fill the available space by setting the value to *, which acts
as a wildcard.

FRAMEBORDER This attribute controls whether or not frame borders should be displayed.
Netscape supports NO and YES values. Microsoft uses 1 and 0 as well as NO and YES.

FRAMESPACING This attribute indicates the space between frames in pixels.

ID See “Core Attributes Reference,” earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

LANGUAGE This attribute specifies the language the current script is written in and invokes
the proper scripting engine. The default value is JAVASCRIPT. JAVASCRIPT and JSCRIPT
represent that the scripting language is written in JavaScript. VBS and VBSCRIPT represent that
the scripting language is written in VBScript.

ROWS This attribute contains a comma-delimited list, which specifies the number and size of
rows contained within a set of frames. The number of entries in the list indicates the number of
rows. Row size is specified with the same formats used for columns.

STYLE See “Core Attributes Reference,” earlier in this appendix.

TITLE See “Core Attributes Reference,” earlier in this appendix.

Attribute and Event Support

NETSCAPE 4 BORDER, BORDERCOLOR, COLS, FRAMEBORDER, ROWS, onblur,
onfocus, onload, and onunload. (CLASS, ID, LANG, and STYLE are implied.)

INTERNET EXPLORER 4 BORDER, BORDERCOLOR, CLASS, COLS, FRAMEBORDER,
ID, LANG, LANGUAGE, ROWS, and TITLE.

WEBTV BORDER, COLS, FRAMEBORDER (0 | 1), FRAMESPACING, ROWS, onload,
and onunload.

Event Handlers
See “Events Reference,” earlier in this appendix.

768 H T M L : T h e C o m p l e t e R e f e r e n c e

Examples

<!-- This example defines a frame set of three columns. The middle column

is 50 pixels wide. The first and last columns fill the remaining space.
The last column takes twice as much space as the first. -->

<FRAMESET COLS="*,50,*">
<FRAME SRC="column1.htm">
<FRAME SRC="column2.htm">

<FRAME SRC="column3.htm">

</FRAMESET>

<!-- This example defines a frame set of two columns, one of which is 20%

of the screen, and the other, 80%. -->

<FRAMESET COLS="20%, 80%">

<FRAME SRC="controls.htm">
<FRAME SRC="display.htm">

</FRAMESET>

<!-- This example defines two rows, one of which is 10% of the screen,

and the other, whatever space is left. -->

<FRAMESET ROWS="10%, *">
<FRAME SRC="adbanner.htm" NAME="ad_frame">

<FRAME SRC="contents.htm" NAME="content_frame">

</FRAMESET>

Compatibility

HTML 4 (transitional)
Internet Explorer 2, 3, 4, and 5
Netscape 2, 3, 4, and 4.5
WebTV

Notes

■ The <FRAMESET> element contains one or more <FRAME> elements, which are used
to indicate the framed contents. The <FRAMESET> element may also contain a
<NOFRAMES> element whose contents will be displayed on browsers that do not
support frames.

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 769

A
P

P
EN

D
IX

ES

■ The <FRAMESET> element replaces the <BODY> element in a framing document as
shown here:

<HTML>

<HEAD>
<TITLE> Collection of Frames </TITLE>

</HEAD>

<FRAMESET COLS="*,50,*">
<FRAME SRC="column1.htm" NAME="col1">

<FRAME SRC="column2.htm" NAME="col2">

<FRAME SRC="column3.htm" NAME="col3">
<NOFRAMES>

Please visit our <A HREF"noframes.htm"> no frames site.
</NOFRAMES

</FRAMESET>
</HTML>

<H1> Through <H6> (Headings)
These tags implement six levels of document headings; <H1> is the most prominent, and <H6>
is the least prominent.

Syntax

<H1
ALIGN="CENTER | JUSTIFY | LEFT | RIGHT"

(transitional)

CLASS="class name(s)"
DIR="LTR | RTL"
ID="unique alphanumeric identifier"

LANG="language code"
STYLE="style information"

TITLE="advisory text"

onclick="script"
ondblclick="script"

onkeydown="script"
onkeypress="script"
onkeyup="script"

onmousedown="script"
onmousemove="script"

onmouseout="script"

onmouseover="script"
onmouseup="script">

</H1>

770 H T M L : T h e C o m p l e t e R e f e r e n c e

Attributes and Events Defined by Internet Explorer 4

LANGUAGE="JAVASCRIPT | JSCRIPT | VBS | VBSCRIPT"

ondragstart="script"

onhelp="script"

onselectstart="script"

Attributes

ALIGN This attribute controls the horizontal alignment of the heading with respect to the
page. The default value is LEFT.

CLASS See “Core Attributes Reference,” earlier in this appendix.

DIR See “Language Reference,” earlier in this appendix.

ID See “Core Attributes Reference,” earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

LANGUAGE This attribute specifies the language the current script is written in and invokes
the proper scripting engine. The default value is JAVASCRIPT. JAVASCRIPT and JSCRIPT
represent that the scripting language is written in JavaScript. VBS and VBSCRIPT represent that
the scripting language is written in VBScript.

STYLE See “Core Attributes Reference,” earlier in this appendix.

TITLE See “Core Attributes Reference,” earlier in this appendix.

Attribute and Event Support

NETSCAPE 4 ALIGN. (CLASS, ID, LANG, and STYLE are implied.)

INTERNET EXPLORER 4 All attributes and events except DIR. (Note: The JUSTIFY value
for ALIGN is not supported.)

WEBTV ALIGN (CENTER | LEFT | RIGHT).

Event Handlers
See “Events Reference,” earlier in this appendix.

Example

<H1>This is a Major Document Heading </H1>

<H2 ALIGN="CENTER"> Second heading, aligned to the center </H2>

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 771

A
P

P
EN

D
IX

ES

<H3 ALIGN="RIGHT"> Third heading, aligned to the right </H3>

<H4>Fourth heading </H4>

<H5 STYLE="{font-size: 20pt}"> Fifth heading with style information </H5>

<H6>The smallest heading </H6>

Compatibility

HTML 2, 3.2, and 4
Internet Explorer 2, 3, 4, and 5
Netscape 1, 2, 3, 4, and 4.5
WebTV

Notes

■ In most implementations, heading numbers correspond inversely with the six font sizes
supported by the element. For example, <H1> corresponds to . The default font size is 3. However, this approach to layout is not
encouraged and page designers should consider using styles to set even relative sizes.

■ HTML 3.2 supports only the ALIGN attribute. HTML 2 does not support any attributes
for headings.

■ The HTML 4.0 strict specification does not include support for the ALIGN attribute.
Style sheets should be used instead.

<HEAD> (Document Head)
This element indicates the document head that contains descriptive information about the HTML
document as well as other supplementary information such as style rules or scripts.

Syntax

<HEAD

DIR="LTR | RTL"
LANG="language code"

PROFILE="URL">

</HEAD>

Attributes and Events Defined by Internet Explorer 4

CLASS="class name(s)"

ID="unique alphanumeric identifier"

TITLE="advisory text"

772 H T M L : T h e C o m p l e t e R e f e r e n c e

Attributes

CLASS See “Core Attributes Reference,” earlier in this appendix.

DIR See “Language Reference,” earlier in this appendix.

ID See “Core Attributes Reference,” earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

PROFILE This attribute specifies a URL for a meta-information dictionary. The specified
profile should indicate the format of allowed meta-data and the potential meaning of the data.

TITLE See “Core Attributes Reference,” earlier in this appendix.

Attribute and Event Support

INTERNET EXPLORER 4 CLASS, ID, and TITLE.

Event Handlers
None.

Example

<HEAD>

<TITLE> Big Company Home Page </TITLE>
<BASE HREF="http://www.bigcompany.com">

<META NAME="Keywords" CONTENT="BigCompany, SuperWidget">
</HEAD>

Compatibility

HTML 2, 3.2, and 4
Internet Explorer 2, 3, 4, and 5
Netscape 1, 2, 3, 4, and 4.5
WebTV

Notes

■ The <HEAD> element must contain a <TITLE> element. It may also contain the
<BASE>, <ISINDEX>, <LINK>, <META>, <SCRIPT>, and <STYLE> elements.
Internet Explorer 4 supports the inclusion of the <BASEFONT> element in the <HEAD>
element, but <BASEFONT> has been deprecated under HTML 4.

■ While the HTML 4.0 specification shows support for the PROFILE attribute, no
browsers appear to support it.

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 773

A
P

P
EN

D
IX

ES

■ Internet Explorer 4 defines the <BGSOUND> element as another legal element
within <HEAD>.

■ HTML 2 and 3.2 support no attributes for this element.

<HR> (Horizontal Rule)
This element is used to insert a horizontal rule to visually separate document sections. Rules are
usually rendered as a raised or etched line.

Syntax

<HR

ALIGN="CENTER | LEFT | RIGHT" (transitional)
CLASS="class name(s)"

ID="unique alphanumeric identifier"
NOSHADE (transitional)
SIZE="pixels" (transitional)

STYLE="style information"

TITLE="advisory information"
WIDTH="percentage | pixels" (transitional)

onclick="script"
ondblclick="script"

onkeydown="script"
onkeypress="script"
onkeyup="script"

onmousedown="script"

onmousemove="script"
onmouseout="script"
onmouseover="script"

onmouseup="script">

Attributes and Events Defined by Internet Explorer 4

COLOR="color name | #RRGGBB"
LANG="language code"
LANGUAGE="JAVASCRIPT | JSCRIPT | VBS | VBSCRIPT"
SRC="URL"
onbeforeupdate="script"
onblur="script"
ondragstart="script"
onfocus="script"
onhelp="script"
onresize="script"
onrowenter="script"
onrowexit="script"
onselectstart="script"

774 H T M L : T h e C o m p l e t e R e f e r e n c e

Attributes Defined by WebTV

INVERTBORDER

Attributes

ALIGN This attribute controls the horizontal alignment of the rule with respect to the page.
The default value is LEFT.

CLASS See “Core Attributes Reference,” earlier in this appendix.

COLOR This attribute sets the rule color using either a named color or a color specified in the
hexadecimal #RRGGBB format. This attribute is currently supported only by Internet Explorer.

ID See “Core Attributes Reference,” earlier in this appendix.

INVERTBORDER This WebTV-specific attribute creates a horizontal rule that appears raised,
as opposed to embossed, on the surface of the page.

LANG See “Language Reference,” earlier in this appendix.

LANGUAGE This attribute specifies the language the current script is written in and invokes
the proper scripting engine. The default value is JAVASCRIPT. JAVASCRIPT and JSCRIPT
represent that the scripting language is written in JavaScript. VBS and VBSCRIPT represent that
the scripting language is written in VBScript.

NOSHADE This attribute causes the rule to be rendered as a solid bar without shading.

SIZE This attribute indicates the height in pixels of the rule.

SRC This attribute specifies a URL for an associated file.

STYLE See “Core Attributes Reference,” earlier in this appendix.

TITLE See “Core Attributes Reference,” earlier in this appendix.

WIDTH This attribute indicates how wide the rule should be specified either in pixels or as a
percent of screen width, such as 80 percent.

Attribute and Event Support

NETSCAPE 4 ALIGN, NOSHADE, SIZE, and WIDTH. (CLASS, ID, and STYLE are
implied.)

INTERNET EXPLORER 4 All attributes and events defined by W3C and Internet Explorer 4.

WEBTV ALIGN, INVERTBORDER, NOSHADE, SIZE, and WIDTH.

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 775

A
P

P
EN

D
IX

ES

Event Handlers
See “Events Reference,” earlier in this appendix.

Examples

<HR ALIGN="LEFT" NOSHADE SIZE="1" WIDTH="420">

<HR ALIGN="CENTER" WIDTH="100%" SIZE="3" COLOR="#000000">

Compatibility

HTML 2, 3.2, and 4
Internet Explorer 2, 3, 4, and 5
Netscape 1, 2, 3, 4, and 4.5
WebTV

Notes
The HTML 4.0 strict specification removes support for the ALIGN, NOSHADE, SIZE, and
WIDTH attributes for horizontal rules. These effects are possible using style sheets.

<HTML> (HTML Document)
This element identifies a document as containing HTML-tagged content.

Syntax

<HTML

DIR="LTR | RTL"
LANG="language code"

VERSION="URL" (transitional)>

</HTML>

Attributes Defined by Internet Explorer 4

TITLE="advisory text"

Attributes

DIR See “Language Reference,” earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

TITLE See “Core Attributes Reference,” earlier in this appendix.

776 H T M L : T h e C o m p l e t e R e f e r e n c e

VERSION The VERSION attribute is used to set the URL of the location of the document type
definition (DTD) that the current document conforms to. The DTD is also specified by the
<!DOCTYPE> comment. Since few if any browsers support the VERSION attribute, it should be
used only in conjunction with a <!DOCTYPE> comment and not instead of one.

Attribute and Event Support

INTERNET EXPLORER 4 LANG and TITLE.

Event Handlers
None.

Example

<!-- Minimal HTML document -->

<HTML>
<HEAD><TITLE>Minimal Document </TITLE></HEAD>

<BODY></BODY>
</HTML>

Compatibility

HTML 4
Internet Explorer 4 and 5
Netscape 4 and 4.5
WebTV

Notes
The <HTML> element is the first element in an <HTML> document. Except for comments, the
only tags it directly contains are the <HEAD> element followed by either a <BODY> element or
a <FRAMESET> element.

<I> (Italic)
This element indicates that the enclosed text should be displayed in an italic typeface.

Syntax

<I
CLASS="class name(s)"

DIR="LTR | RTL"

ID="unique alphanumeric identifier"
LANG="language code"

STYLE="style information"
TITLE="advisory text"

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 777

A
P

P
EN

D
IX

ES

onclick="script"

ondblclick="script"
onkeydown="script"

onkeypress="script"
onkeyup="script"
onmousedown="script"

onmousemove="script"

onmouseout="script"
onmouseover="script"

onmouseup="script">

</I>

Attributes and Events Defined by Internet Explorer 4

LANGUAGE="JAVASCRIPT | JSCRIPT | VBS | VBSCRIPT"

ondragstart="script"

onhelp="script"

onselectstart="script"

Attributes

CLASS See “Core Attributes Reference,” earlier in this appendix.

DIR See “Language Reference,” earlier in this appendix.

ID See “Core Attributes Reference,” earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

LANGUAGE This attribute specifies the language the current script is written in and invokes
the proper scripting engine. The default value is JAVASCRIPT. JAVASCRIPT and JSCRIPT
represent that the scripting language is written in JavaScript. VBS and VBSCRIPT represent that
the scripting language is written in VBScript.

STYLE See “Core Attributes Reference,” earlier in this appendix.

TITLE See “Core Attributes Reference,” earlier in this appendix.

Attribute and Event Support

NETSCAPE 4 CLASS, ID, LANG, and STYLE are implied.

INTERNET EXPLORER 4 All attributes and events except DIR.

778 H T M L : T h e C o m p l e t e R e f e r e n c e

Event Handlers
See “Events Reference,” earlier in this appendix.

Example

Here is some <I> italicized </I> text.

Compatibility

HTML 4
Internet Explorer 4 and 5
Netscape 4 and 4.5
WebTV

<IFRAME> (Floating Frame)
This element indicates a floating frame, an independently controllable content region that can be
embedded in a page.

Syntax (Transitional Only)

<IFRAME

ALIGN="BOTTOM | LEFT | MIDDLE | RIGHT | TOP"
CLASS="class name(s)"

FRAMEBORDER="0 | 1"
HEIGHT="percentage | pixels"
ID="unique alphanumeric identifier"

LONGDESC="URL of description"

MARGINHEIGHT="pixels"
MARGINWIDTH="pixels"

NAME="string"
SCROLLING="AUTO | NO | YES"

SRC="URL of frame contents"
STYLE="style information"
TITLE="advisory text"

WIDTH="percentage | pixels">

</IFRAME>

Attributes Defined by Internet Explorer 4

ALIGN="ABSBOTTOM | ABSMIDDLE | BASELINE | TEXTTOP"

BORDER="pixels"

BORDERCOLOR="color name | #RRGGBB"

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 779

A
P

P
EN

D
IX

ES

DATAFLD="name of column supplying bound data"

DATASRC="ID of data source object supplying data"
FRAMEBORDER="No | YES | 0 | 1"

FRAMESPACING="pixels"
HSPACE="pixels"
LANG="language code"

LANGUAGE="JAVASCRIPT | JSCRIPT | VBS | VBSCRIPT"

NORESIZE="noresize | resize"
VSPACE="pixels"

Attributes

ALIGN This attribute controls the horizontal alignment of the floating frame with respect to
the page. The default is LEFT.

BORDER This attribute specifies the thickness of the border in pixels.

BORDERCOLOR This attribute specifies the color of the border.

CLASS See “Core Attributes Reference,” earlier in this appendix.

DATAFLD This attribute specifies the column name from the data source object that supplies
the bound data.

DATASRC This attribute indicates the ID of the data source object that supplies the data that
is bound to this element.

FRAMEBORDER This attribute determines whether the frame is surrounded by a border. The
HTML 4.0 specification defines 0 to be off and 1 to be on. The default value is 1. Internet Explorer
also defines the values NO and YES.

FRAMESPACING This attribute creates additional space between the frames.

HEIGHT The attribute sets the floating frame’s height in pixels.

HSPACE This attribute specifies margins for the frame.

ID See “Core Attributes Reference,” earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

LANGUAGE This attribute specifies the language the current script is written in and invokes
the proper scripting engine. The default value is JAVASCRIPT. JAVASCRIPT and JSCRIPT
represent that the scripting language is written in JavaScript. VBS and VBSCRIPT represent that
the scripting language is written in VBScript.

780 H T M L : T h e C o m p l e t e R e f e r e n c e

LONGDESC This attribute specifies a URL of a document which contains a long description of
the frame’s contents. This may be particularly useful as a complement to the <TITLE> element.

MARGINHEIGHT This attribute sets the height in pixels between the floating frame’s content
and its top and bottom borders.

MARGINWIDTH This attribute sets the width in pixels between the floating frame’s content
and its left and right borders.

NAME This attribute assigns the floating frame a name so that it can be the target destination
of hyperlinks.

NORESIZE When NORESIZE is included, the frame cannot be resized by the user.

SCROLLING This attribute determines if the frame has scroll bars. A YES value forces scroll
bars; a NO value prohibits them.

SRC This attribute contains the URL of the content to be displayed in the floating frame. If
absent, the frame is blank.

STYLE See “Core Attributes Reference,” earlier in this appendix.

TITLE See “Core Attributes Reference,” earlier in this appendix.

VSPACE This attribute specifies margins for the frame.

WIDTH This attribute sets the floating frame’s width in pixels.

Attribute and Event Support

INTERNET EXPLORER 4 All attributes and events except LONGDESC.

Event Handlers
See “Events Reference,” earlier in this appendix.

Example

<IFRAME SRC="http://www.bigcompany.com" HEIGHT="150" WIDTH="200"

NAME="FloatingFrame1">

Sorry, your browser doesn't support inline frames.

</IFRAME>

Compatibility

HTML 4 (transitional)
Internet Explorer 3, 4, and 5

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 781

A
P

P
EN

D
IX

ES

Notes

■ A floating frame does not need to be declared by the <FRAMESET> element as part of a
frame set.

■ WebTV and Netscape 4 do not support floating frames.

■ Under the HTML 4.0 strict specification, the <IFRAME> element is not defined. Floating
frames may be imitated using the <DIV> element and CSS positioning facilities.

<ILAYER> (Inflow Layer)
This Netscape-specific element allows the definition of overlapping content layers that can be
positioned, hidden or shown, rendered transparent or opaque, reordered front to back, and
nested. An inflow layer is a layer with a relative position that appears where it would naturally
occur in the document, in contrast to a general layer, which may be positioned absolutely
regardless of its location in a document. The functionality of layers is available using CSS
positioning, and page developers are advised not to use this element.

Syntax (Defined by Netscape 4)

<ILAYER
ABOVE="layer"

BACKGROUND="URL of image"

BELOW="layer"
BGCOLOR="color name | #RRGGBB"

CLASS="class name(s)"
CLIP="x1, y1, x2, y2"

HEIGHT="percentage | pixels"
ID="unique alphanumeric identifier"
LEFT="pixels"

NAME="string"

PAGEX="pixels"
PAGEY="pixels"
SRC="URL of layer contents"

STYLE="style information"
TOP="pixels"

VISIBILITY="HIDE | INHERIT | SHOW"

WIDTH="percentage | pixels"
Z-INDEX="number"

onblur="script"
onfocus="script"
onload="script"

onmouseout="script"
onmouseover="script">

</ILAYER>

782 H T M L : T h e C o m p l e t e R e f e r e n c e

Attributes

ABOVE This attribute contains the name of the layer to be rendered above the current layer.

BACKGROUND This attribute contains the URL of a background image for the layer.

BELOW This attribute contains the name of the layer to be rendered below the current layer.

BGCOLOR This attribute specifies a layer’s background color. Its value can be either a named
color or a color specified in the hexadecimal #RRGGBB format.

CLASS This attribute specifies the class name(s) for access via a style sheet.

CLIP This attribute specifies the clipping region or viewable area of the layer. All layer content
outside that rectangle will be rendered as transparent. The CLIP rectangle is defined by two x,y
pairs: top x, left y, bottom x, and right y. Coordinates are relative to the layer’s origin point, 0,0 in
its top-left corner.

HEIGHT This attribute specifies the height of a layer in pixels or percentage values.

ID See “Core Attributes Reference,” earlier in this appendix.

LEFT This attribute specifies in pixels the horizontal offset of the layer. The offset is relative to
its parent layer if it has one or to the left page margin if it does not.

NAME This attribute assigns the layer a name that can be referenced by programs in a
client-side scripting language. The ID attribute can also be used.

PAGEX This attribute specifies the horizontal position of the layer relative to the
browser window.

PAGEY This attribute specifies the vertical position of the layer relative to the
browser window.

SRC This attribute is used to set the URL of a file that contains the content to load into
the layer.

STYLE This attribute specifies an inline style for the layer.

TOP This attribute specifies in pixels the top offset of the layer. The offset is relative to its
parent layer if it has one or the top page margin if it does not.

VISIBILITY This attribute specifies whether a layer is hidden, shown, or inherits its visibility
from the layer that includes it.

WIDTH This attribute specifies a layer’s width in pixels.

Z-INDEX This attribute specifies a layer’s stacking order relative to other layers. Position is
specified with positive integers, with 1 indicating the bottommost layer.

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 783

A
P

P
EN

D
IX

ES

Attribute and Event Support

NETSCAPE 4 All attributes.

Event Handlers
None.

Example

<P>Content comes before. </P>

<ILAYER NAME="background" BGCOLOR="green">
<P>Layered information goes here. </P>

</ILAYER>
<P>Content comes after. </P>

Compatibility

Netscape 4 and 4.5

Notes

■ This element will likely fall out of fashion because of its lack of cross-browser
compatibility. The functionality of <ILAYER> is possible using the positioning features
in CSS, and page developers are encouraged not to use this element.

■ Applets, plug-ins, and other embedded media forms, generically called objects, may be
included in a layer; however, they will float to the top of all other layers even if their
containing layer is obscured.

 (Image)
This element indicates a media object to include in an HTML document. Usually, the object is a
graphic image, but some implementations support movies and animations.

Syntax

<IMG
ALIGN="BOTTOM | LEFT | MIDDLE | RIGHT | TOP"

(transitional)

ALT="alternative text"
BORDER="pixels" (transitional)

CLASS="class name(s)"
DIR="LTR | RTL"

HEIGHT="pixels"
HSPACE="pixels" (transitional)

ID="unique alphanumeric identifier"

784 H T M L : T h e C o m p l e t e R e f e r e n c e

ISMAP

LANG="language code"
LONGDESC="URL of description file"

SRC="URL of image"
STYLE="style information"
TITLE="advisory text"

USEMAP="URL of map file"

VSPACE="pixels" (transitional)
WIDTH="pixels"

onclick="script"
ondblclick="script"

onkeydown="script"
onkeypress="script"
onkeyup="script"

onmousedown="script"

onmousemove="script"
onmouseout="script"
onmouseover="script"

onmouseup="script">

Attributes and Events Defined by Internet Explorer 4

ALIGN="ABSBOTTOM | ABSMIDDLE | BASELINE | TEXTTOP"
DATAFLD="name of column supplying bound data"
DATASRC="ID of data source object supplying data"
DYNSRC="URL of movie"
LANGUAGE="JAVASCRIPT | JSCRIPT | VBS | VBSCRIPT"
LOOP="INFINITE | number"
LOWSRC="URL of low-resolution image"
NAME="unique alphanumeric identifier"
onabort="script"
onafterupdate="script"
onbeforeupdate="script"
onblur="script"
ondragstart="script"
onerror="script"
onfocus="script"
onhelp="script"
onload="script"
onresize="script"
onrowenter="script"
onrowexit="script"
onselectstart="script"

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 785

A
P

P
EN

D
IX

ES

Attributes Defined by Netscape 4

ALIGN="ABSBOTTOM | ABSMIDDLE | BASELINE | TEXTTOP"

LOWSRC="URL of low-resolution image"

NAME="unique alphanumeric identifier"

SUPPRESS="TRUE | FALSE"

Attributes Defined by WebTV

CONTROLS
NAME="unique alphanumeric identifier"
RELOAD="seconds"
SELECTED="x,y pair"
TRANSPARENCY="number (1–100)"

Attributes

ALIGN This attribute controls the horizontal alignment of the image with respect to the page.
The default value is LEFT. Only the Netscape, Internet Explorer 4, and WebTV implementations
support the ABSBOTTOM, ABSMIDDLE, BASELINE, and TEXTTOP values.

ALT This attribute contains a string to display instead of the image for browsers that cannot
display images.

BORDER This attribute indicates the width in pixels of the border surrounding the image.

CLASS See “Core Attributes Reference,” earlier in this appendix.

CONTROLS Under Internet Explorer 3 and WebTV, it is possible to set the controls to show by
placing this attribute in the element. This attribute does not appear to be supported
under Internet Explorer 4, and users are encouraged to use the <OBJECT> element to embed
video for Internet Explorer.

DATAFLD This attribute specifies the column name from the data source object that supplies
the bound data to set the SRC of the element.

DATASRC This attribute indicates the ID of the data source object that supplies the data that
is bound to this element.

DIR See “Language Reference,” earlier in this appendix.

DYNSRC In the Microsoft and WebTV implementations, this attribute indicates the URL of a
movie file and is used instead of the SRC attribute.

HEIGHT This attribute indicates the height in pixels of the image.

786 H T M L : T h e C o m p l e t e R e f e r e n c e

HSPACE This attribute indicates the horizontal space in pixels between the image and
surrounding text.

ID See “Core Attributes Reference,” earlier in this appendix.

ISMAP This attribute indicates that the image is a server-side image map. User mouse actions
over the image are sent to the server for processing.

LANG See “Language Reference,” earlier in this appendix.

LANGUAGE This attribute specifies the language the current script is written in and invokes
the proper scripting engine. The default value is JAVASCRIPT. JAVASCRIPT and JSCRIPT
represent that the scripting language is written in JavaScript. VBS and VBSCRIPT represent that
the scripting language is written in VBScript.

LONGDESC This attribute specifies a URL of a document which contains a long description of
the image. This attribute is used as a complement to the ALT attribute.

LOOP In the Microsoft implementation, this attribute is used with the DYNSRC attribute to
cause a movie to loop. Its value is either a numeric loop count or the keyword INFINITE.

LOWSRC In the Netscape implementation, this attribute contains the URL of an image to be
initially loaded. Typically, the LOWSRC image is a low-resolution or black-and-white image that
provides a quick preview of the image to follow. Once the primary image is loaded, it replaces
the LOWSRC image.

NAME This common attribute is used to bind a name to the image. Older browsers
understand the NAME field, and in conjunction with scripting languages it is possible to
manipulate images by their defined names to create effects such as “rollover” buttons. The ID
attribute under HTML 4 specifies element identifiers; for backward compatibility, NAME may
still be used.

RELOAD In the WebTV implementation, this attribute indicates in seconds how frequently an
image should be reloaded.

SELECTED In the WebTV implementation, this attribute indicates the initial x,y coordinate
location on the image. The cursor is placed at that location when the image is loaded. It requires
either the ISMAP or the USEMAP attribute.

SRC This attribute indicates the URL of an image file to be displayed.

STYLE See “Core Attributes Reference,” earlier in this appendix.

SUPPRESS This Netscape-specific attribute determines if a placeholder icon will appear
during image loading. Values are TRUE and FALSE. SUPPRESS="TRUE" will suppress display
of the placeholder icon as well as display of any ALT information until the image is loaded.
SUPPRESS="FALSE" will allow the placeholder icon and any tool tips defined by the ALT
information to display while the image is loading. The default value is FALSE. If the browser is
set to not load images automatically, the SUPPRESS attribute is ignored.

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 787

A
P

P
EN

D
IX

ES

TITLE See “Core Attributes Reference,” earlier in this appendix.

TRANSPARENCY In the WebTV implementation, this attribute allows the background to
show through the image. It takes a numeric argument indicating the degree of transparency,
from fully opaque (0) to fully transparent (100).

USEMAP This attribute makes the image support client-side image mapping. Its argument is
a URL specifying the map file, which associates image regions with hyperlinks.

VSPACE This attribute indicates the vertical space in pixels between the image and
surrounding text.

WIDTH This attribute indicates the width in pixels of the image.

Attribute and Event Support

NETSCAPE 4 ALIGN, ALT, BORDER, HEIGHT, HSPACE, ISMAP, LOWSRC, NAME,
SRC, SUPPRESS, USEMAP, VSPACE, and WIDTH.

INTERNET EXPLORER 4 All W3C-defined attributes and events except DIR and
LONGDESC, and all attributes and events defined by Internet Explorer 4.

WEBTV ALIGN, BORDER, HEIGHT, HSPACE, ID, ISMAP, NAME, SELECTED, SRC,
START, TRANSPARENCY, USEMAP, VSPACE, WIDTH, onabort, onerror, and onload.

Event Handlers
See “Events Reference,” earlier in this appendix.

Examples

<IMG SRC="lakers.jpg" LOWSRC="lakersbw.jpg" ALT="Los Angeles Lakers"

HEIGHT="100" WIDTH="300">

<IMG SRC="hugeimagemap.gif" USEMAP="mainmap" BORDER="0" HEIGHT="200"

WIDTH="200" ALT="Image Map Here">

<IMG SRC="homebutton.gif" WIDTH="50" HEIGHT="20"

ALT="Link to Home Page">

Compatibility

HTML 2, 3.2, and 4
Internet Explorer 2, 3, 4, and 5
Netscape 1, 2, 3, 4, and 4.5
WebTV

788 H T M L : T h e C o m p l e t e R e f e r e n c e

Notes

■ No browser currently appears to support LONGDESC.

■ Typically, when you use the USEMAP attribute, the URL is a fragment, such as #map1,
rather than a full URL. Some browsers do not support external client-side map files.

■ Under the HTML 4.0 strict specification, the element does not support ALIGN,
BORDER, HEIGHT, HSPACE, VSPACE, and WIDTH. The functionality of these
attributes should be possible using style sheet rules.

■ While the HTML 4.0 specification reserves data-binding attributes like DATAFLD or
DATASRC, it is not specified for , although Internet Explorer provides support
for these attributes.

<INPUT> (Input Form Control)
This element specifies an input control for a form. The type of input is set by the TYPE attribute
and may be a variety of different types, including single-line text field, multiline text field,
password style, check box, radio button, or push button.

Syntax

<INPUT

ACCEPT="MIME TYPES"
ACCESSKEY="character"

ALIGN="BOTTOM | LEFT | MIDDLE | RIGHT | TOP"
(transitional)

ALT="text"

CHECKED

CLASS="class name(s)"
DIR="LTR | RTL"

DISABLED
ID="unique alphanumeric identifier"

LANG="language code"
MAXLENGTH="maximum field size"
NAME="field name"

READONLY

SIZE="field size"
SRC="URL of image file"
STYLE="style information"

TABINDEX="number"
TITLE="advisory text"

TYPE="BUTTON | CHECKBOX | FILE | HIDDEN | IMAGE |

PASSWORD | RADIO | RESET | SUBMIT | TEXT"
USEMAP="URL of map file"

VALUE="field value"
onblur="script"

onchange="script"

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 789

A
P

P
EN

D
IX

ES

onclick="script"

ondblclick="script"
onfocus="script"

onkeydown="script"
onkeypress="script"
onkeyup="script"

onmousedown="script"

onmousemove="script"
onmouseout="script"

onmouseover="script"
onmouseup="script"

onselect="script">

Attributes and Events Defined by Internet Explorer 4

ALIGN="CENTER"
LANGUAGE="JAVASCRIPT | JSCRIPT | VBS | VBSCRIPT"
onafterupdate="script"
onbeforeupdate="script"
ondragstart="script"
onhelp="script"
onselectstart="script"

Attributes Defined by Netscape 4

ALIGN="ABSBOTTOM | ABSMIDDLE | BASELINE | TEXTTOP"

Attributes Defined by WebTV

BGCOLOR="color name | #RRGGBB"
BORDERIMAGE="URL"
CURSOR="color name | #RRGGBB"
USESTYLE
WIDTH="pixels"

Attributes

ACCEPT This attribute is used to list the MIME types accepted for file uploads when <INPUT
TYPE="FILE">.

ACCESSKEY This attribute specifies a keyboard navigation accelerator for the element.
Pressing ALT or a similar key in association with the specified character selects the form control

790 H T M L : T h e C o m p l e t e R e f e r e n c e

correlated with that key sequence. Page designers are forewarned to avoid key sequences
already bound to browsers.

ALIGN With image form controls (TYPE="IMAGE"), this attribute aligns the image with
respect to surrounding text. The HTML 4.0 transitional specification defines BOTTOM, LEFT,
MIDDLE, RIGHT, and TOP as allowable values. Netscape and Microsoft browsers may also
allow the use of attribute values like ABSBOTTOM or ABSMIDDLE. Like other
presentation-specific aspects of HTML, the ALIGN attribute is dropped under the HTML 4.0
strict specification.

ALT This attribute is used to display an alternative description of image buttons for text-only
browsers. The meaning of ALT for forms of <INPUT> beyond TYPE="INPUT" is unclear.

BGCOLOR In the WebTV implementation, this attribute specifies the background color of a
text form control (TYPE="TEXT"). The value of the attribute can be either a named color or a
color specified in the hexadecimal #RRGGBB format.

BORDERIMAGE In the WebTV implementation, this attribute allows specification of a
graphical border for RESET, SUBMIT, and TEXT controls. Its value is the URL of a .bif (Border
Image File) graphics file that specifies the border. Border image files tend to reside in WebTV
ROM; the common values are file://ROM/Border/ButtonBorder2.bif and file://ROM/Border/
ButtonBorder3.bif, though other values may be present under later versions of WebTV.

CHECKED This attribute should be used only for check box (TYPE="CHECKBOX") and radio
(TYPE="RADIO") form controls. The presence of this attribute indicates that the control should
be displayed in its checked state.

CLASS See “Core Attributes Reference,” earlier in this appendix.

CURSOR In the WebTV implementation, this attribute sets the cursor color for a text form
control (TYPE="TEXT"). The attribute’s value is either a named color or a color specified in the
hexadecimal #RRGGBB format.

DIR See “Language Reference,” earlier in this appendix.

DISABLED This attribute is used to turn off a form control. Elements will not be submitted,
nor may they receive any focus from the keyboard or mouse. Disabled form controls will not be
part of the tabbing order. The browser may also gray out the form that is disabled, in order to
indicate to the user that the form control is inactive. This attribute requires no value.

ID See “Core Attributes Reference,” earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

LANGUAGE In the Microsoft implementation, this attribute specifies the scripting language to
be used with an associated script bound to the element typically through an event handler
attribute. Possible values may include JAVASCRIPT, JSCRIPT, VBS and VBSCRIPT. Other
values that include the version of the language used, such as JavaScript1.1, may also be possible.

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 791

A
P

P
EN

D
IX

ES

MAXLENGTH This attribute indicates the maximum content length that can be entered in a
text form control (TYPE="TEXT"). The maximum number of characters allowed differs from the
visible dimension of the form control, which is set with the SIZE attribute.

NAME This attribute allows a form control to be assigned a name so that it can be referenced
by a scripting language. NAME is supported by older browsers such as Netscape 2–generation
browsers, but the W3C encourages the use of the ID attribute. For compatibility purposes, both
may have to be used.

READONLY This attribute prevents the form control’s value from being changed. Form
controls with this attribute set may receive focus from the user but may not be modified.
Since it receives focus, a READONLY form control will be part of the form’s tabbing order.
Last, the control’s value will be sent on form submission. This attribute can only be used
with <INPUT> when TYPE is set to TEXT or PASSWORD. The attribute is also used with
the <TEXTAREA> element.

SIZE This attribute indicates the visible dimension, in characters, of a text form control
(TYPE="TEXT"). This differs from the maximum length of content, which can be entered in a
form control set by the MAXLENGTH attribute.

SRC This attribute is used with image form controls (TYPE="IMAGE") to specify the URL of
the image file to load.

STYLE See “Core Attributes Reference,” earlier in this appendix.

TABINDEX This attribute takes a numeric value that indicates the position of the form control
in the tabbing index for the form. Tabbing proceeds from the lowest positive TABINDEX value
to the highest. Negative values for TABINDEX will leave the form control out of the tabbing
order. When tabbing is not explicitly set, the browser may tab through items in the order they are
encountered. Form controls that are disabled due to the presence of the DISABLED attribute
will not be part of the tabbing index, though read-only controls will be.

TITLE See “Core Attributes Reference,” earlier in this appendix.

TYPE This attribute specifies the type of the form control. A value of BUTTON indicates a
general-purpose button with no well-defined meaning. However, an action can be associated
with the button using an event handler attribute, such as onclick. A value of CHECKBOX
indicates a check box control. Check box form controls have a checked and nonchecked set, but
even if these controls are grouped together, they allow a user to select multiple check boxes at
once. In contrast, a value of RADIO indicates a radio button control. When grouped, radio
buttons allow only one of the many choices to be selected at a given time.

A form control type of HIDDEN indicates a field that is not visible to the viewer but is used
to store information. A hidden form control is often used to preserve state information between
pages. A value of FILE for the TYPE attribute indicates a control that allows the viewer to upload
a file to a server. The filename can be entered in a displayed field, or a user agent may provide a
special browse button allowing the user to locate the file. A value of IMAGE indicates a graphic
image form control that a user can click on to invoke an associated action. A value of
PASSWORD for the TYPE attribute indicates a password entry field. A password field will not

792 H T M L : T h e C o m p l e t e R e f e r e n c e

display text entered as it is typed; it may instead show a series of dots. Note that password-
entered data is not transferred to the server in any secure fashion. A value of RESET for the
TYPE attribute is used to insert a button that resets all controls within a form to their default
values. A value of SUBMIT inserts a special submission button that, when pressed, sends the
contents of the form to the location indicated by the ACTION attribute of the enclosing
<FORM> element. Last, a value of TEXT (the default) for the TYPE attribute indicates a
single-line text input field.

USEMAP This HTML 4 attribute is used to indicate the map file to be associated with an
image when the form control is set with TYPE="IMAGE". The value of the attribute should be a
URL of a map file, but will generally be in the form of a URL fragment referencing a map file
within the current file.

USESTYLE In the WebTV implementation, the presence of this attribute causes control text to
be rendered in the default text style for the page. This attribute requires no value.

VALUE This attribute has two different uses, depending on the value for the TYPE attribute.
With data entry controls (TYPE="TEXT" and TYPE="PASSWORD"), this attribute is used to set
the default value for the control. When used with check box or radio form controls, this attribute
specifies the return value for the control when it is turned on, rather than the default Boolean
value submitted.

WIDTH This WebTV attribute is used to set the size of the form control in pixels.

Attribute and Event Support

NETSCAPE 4 NAME, VALUE, and onclick. (CLASS, ID, LANG, and STYLE are implied.)

INTERNET EXPLORER 4 All W3C-defined attributes and events except ACCEPT,
CHECKED, DIR, and USEMAP, and all attributes and events defined by Internet Explorer 4.
(Note: Internet Explorer 4 supports only the CENTER, LEFT, and RIGHT values for the
ALIGN attribute.)

WEBTV ALIGN, BGCOLOR, CHECKED, CURSOR, ID, MAXLENGTH, NAME, SIZE,
TYPE, USESTYLE, VALUE, WIDTH, onblur, onchange, onclick, onfocus, and onselect.

Event Handlers
See “Events Reference,” earlier in this appendix.

Examples

<FORM>

Which is your favorite food?
<INPUT TYPE="RADIO" NAME="favorite" VALUE="Mexican"> Mexican
<INPUT TYPE="RADIO" NAME="favorite" VALUE="Russian"> Russian

<INPUT TYPE="RADIO" NAME="favorite" VALUE="Japanese"> Japanese

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 793

A
P

P
EN

D
IX

ES

794 H T M L : T h e C o m p l e t e R e f e r e n c e

<INPUT TYPE="RADIO" CHECKED NAME="favorite" VALUE="Other"> Other

</FORM>

<FORM>

Enter your name: <INPUT TYPE="TEXT" MAXLENGTH="35" SIZE="20">

Enter your password: <INPUT TYPE="PASSWORD" MAXLENGTH="35" SIZE="20">

<INPUT TYPE="SUBMIT" VALUE="Submit">

<INPUT TYPE="RESET" VALUE="Reset">
</FORM>

Compatibility

HTML 2, 3.2, and 4
Internet Explorer 2, 3, 4, and 5
Netscape 1, 2, 3, 4, and 4.5
WebTV

Notes

■ The <INPUT> element is an empty element and requires no closing tag.

■ Some documents suggest the use of TYPE="TEXTAREA". Even if this style is supported,
it should be avoided in favor of the <TEXTAREA> element, which is common to all
browsers.

■ The HTML 2.0 and 3.2 specifications support only the ALIGN, CHECKED,
MAXLENGTH, NAME, SIZE, SRC, TYPE, and VALUE attributes for the <INPUT>
element.

■ The HTML 4.0 specification also reserves the use of the DATAFLD,
DATAFORMATAS, and DATASRC data-binding attributes.

■ Under the HTML strict specification, the ALIGN attribute is not allowed.

<INS> (Inserted Text)
This element is used to indicate that text has been added to the document.

Syntax

<INS

CITE="URL"
CLASS="class name(s)"

DATETIME="date"
ID="unique alphanumeric identifier"

LANG="language code"

STYLE="style information"
TITLE="advisory text"

onclick="script"
ondblclick="script"
onkeydown="script"

onkeypress="script"

onkeyup="script"
onmousedown="script"

onmousemove="script"
onmouseout="script"

onmouseover="script"
onmouseup="script">

</INS>

Attributes and Events Defined by Internet Explorer 4

LANGUAGE="JAVASCRIPT | JSCRIPT | VBS | VBSCRIPT"

ondragstart="script"

onhelp="script"

Attributes

CITE The value of this attribute is a URL that designates a source document or message for the
information inserted. This attribute is intended to point to information explaining why the text
was changed.

CLASS See “Core Attributes Reference,” earlier in this appendix.

DATETIME This attribute is used to indicate the date and time the insertion was made. The
value of the attribute is a date in a special format, as defined by ISO 8601. The basic date format is

YYYY-MM-DDThh:mm:ssTZD

where the following is true:

YYYY=four-digit year such as 1999
MM=two-digit month (01=January, 02=February, and so on)

DD=two-digit day of the month (01 through 31)

hh=two-digit hour (00 to 23) (24-hour clock not AM or PM)
mm=two-digit minute (00 to 59)
ss=two-digit second (00 to 59)

TZD=time zone designator

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 795

A
P

P
EN

D
IX

ES

The time zone designator is either Z, which indicates UTC (Universal Time Coordinate, or
coordinated universal time format), or +hh:mm, which indicates that the time is a local time that is
hh hours and mm minutes ahead of UTC. Alternatively, the format for the time zone designator
could be -hh:mm, which indicates that the local time is behind UTC. Note that the letter “T”
actually appears in the string, all digits must be used, and 00 values for minutes and seconds may
be required. An example value for the DATETIME attribute might be 1999-10-6T09:15:00-05:00,
which corresponds to October 6, 1999, 9:15 A.M., U.S. Eastern Standard Time.

ID See “Core Attributes Reference,” earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

LANGUAGE In the Microsoft implementation, this attribute specifies the scripting language
to be used with an associated script bound to the element, typically through an event handler
attribute. Possible values may include JAVASCRIPT, JSCRIPT, VBS, and VBSCRIPT. Other
values that include the version of the language used, such as JavaScript1.1, may also be possible.

STYLE See “Core Attributes Reference,” earlier in this appendix.

TITLE See “Core Attributes Reference,” earlier in this appendix.

Attribute and Event Support

INTERNET EXPLORER 4 All attributes and events except CITE and DATETIME.

Event Handlers
See “Events Reference,” earlier in this appendix.

Example

<INS CITE="http://www.bigcompany.com/changes/oct99.htm"

DATE="1999-10-06T09:15:00-05:00">

The penalty clause applies to client lateness as well.

</INS>

Compatibility
HTML 4
Internet Explorer 4

Notes

■ Browsers may render inserted (<INS>) or deleted () text in a different style to
show the changes that have been made to the document. Eventually, a browser may
have a way to show a revision history on a document. User agents that do not
understand or <INS> will show the information anyway, so there is no harm
in adding information, only in deleting it.

■ The <INS> element is not supported under the HTML 2 and 3.2 specifications.

796 H T M L : T h e C o m p l e t e R e f e r e n c e

<ISINDEX> (Index Prompt)
This element indicates that a document has an associated searchable keyword index. When a
browser encounters this element, it inserts a query entry field at that point in the document. The
viewer can enter query terms to perform a search. This element is deprecated under the strict
HTML 4 specification and should not be used.

Syntax (Transitional Only)

<ISINDEX

CLASS="class name(s)"
DIR="LTR | RTL"

HREF="URL" (nonstandard but common)
ID="unique alphanumeric identifier"
LANG="language code"

PROMPT="string"

STYLE="style information"
TITLE="advisory text">

Attributes Defined by Internet Explorer 4

LANGUAGE="JAVASCRIPT | JSCRIPT | VBS | VBSCRIPT"

Attributes

ACTION This attribute specifies the URL of the query action to be executed when the viewer
presses the ENTER key. While this attribute is not defined under any HTML specification, it is
common to many browsers, particularly Internet Explorer 3, which defined it.

CLASS See “Core Attributes Reference,” earlier in this appendix.

DIR See “Language Reference,” earlier in this appendix.

HREF The HREF attribute is used with the <ISINDEX> element as a way to indicate what the
search document is. Another approach is to use the <BASE> element for the document. The
HTML 2 documentation suggests that this is a legal approach and browsers appear to support it;
however, it is poorly documented at best.

ID See “Core Attributes Reference,” earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

LANGUAGE In the Microsoft implementation, this attribute specifies the scripting language
to be used with an associated script bound to the element, typically through an event handler
attribute. Possible values may include JAVASCRIPT, JSCRIPT, VBS, and VBSCRIPT. Other
values that include the version of the language used, such as JavaScript1.1, may also be possible.

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 797

A
P

P
EN

D
IX

ES

PROMPT This attribute allows a custom query prompt to be defined. The default prompt is
“This is a searchable index. Enter search keywords.” WebTV does not implement this attribute.

STYLE See “Core Attributes Reference,” earlier in this appendix.

TITLE See “Core Attributes Reference,” earlier in this appendix.

Attribute and Event Support

NETSCAPE 4 PROMPT. (CLASS, ID, LANG, and STYLE are implied.)

INTERNET EXPLORER 4 CLASS, ID, LANG, LANGUAGE, PROMPT, and STYLE.

Event Handlers
None.

Examples

<ISINDEX ACTION="cgi-bin/search" PROMPT="Enter search terms">

<ISINDEX HREF="cgi-bin/search" PROMPT="Keywords:">

<BASE HREF="cgi-bin/search">

<ISINDEX PROMPT="Enter search terms">

Compatibility

HTML 2, 3.2, and 4 (transitional)
Internet Explorer 2, 3, 4, and 5
Netscape 1, 2, 3, 4, and 4.5
WebTV

Notes

■ As an empty element, <ISINDEX> requires no closing tag.

■ The HTML 3.2 specification only allows the PROMPT attribute, while HTML 2 expected
a text description to accompany the search field.

■ Netscape 1.1 originated the use of the PROMPT attribute. WebTV does not support
this attribute.

■ Originally, the W3C intended this element to be used in a document’s header. Browser
vendors have relaxed this usage to allow the element in a document’s body. Early
implementations did not support the ACTION attribute and used the <BASE> element
or an HREF attribute to specify a search function’s URL.

■ Older versions of Internet Explorer also support the ACTION attribute, which specifies
the URL to use for the query rather than relying on the URL set in the <BASE> element.

798 H T M L : T h e C o m p l e t e R e f e r e n c e

Internet Explorer 4 does not support the ACTION, DIR, HREF, or TITLE attributes.
Microsoft documentation suggests using <INPUT> instead of this deprecated element.

<KBD> (Keyboard Input)
This element logically indicates text as keyboard input. A browser generally renders text
enclosed by this element in a monospaced font.

Syntax

<KBD

CLASS="class name(s)"
DIR="LTR | RTL"

ID="unique alphanumeric identifier"
LANG="language code"
STYLE="style information"

TITLE="advisory text"

onclick="script"
ondblclick="script"

onkeydown="script"
onkeypress="script"

onkeyup="script"
onmousedown="script"
onmousemove="script"

onmouseout="script"

onmouseover="script"
onmouseup="script">

</KBD>

Attributes and Events Defined by Internet Explorer 4

LANGUAGE="JAVASCRIPT | JSCRIPT | VBS | VBSCRIPT"

ondragstart="script"

onhelp="script"

onselectstart="script"

Attributes

CLASS See “Core Attributes Reference,” earlier in this appendix.

DIR See “Language Reference,” earlier in this appendix.

ID See “Core Attributes Reference,” earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 799

A
P

P
EN

D
IX

ES

LANGUAGE In the Microsoft implementation, this attribute specifies the scripting language
to be used with an associated script bound to the element, typically through an event handler
attribute. Possible values may include JAVASCRIPT, JSCRIPT, VBS, and VBSCRIPT. Other
values that include the version of the language used, such as JavaScript1.1, may also be possible.

STYLE See “Core Attributes Reference,” earlier in this appendix.

TITLE See “Core Attributes Reference,” earlier in this appendix.

Attribute and Event Support

NETSCAPE 4 CLASS, ID, LANG, and STYLE are implied.

INTERNET EXPLORER 4 All attributes and events except DIR.

Event Handlers
See “Events Reference,” earlier in this appendix.

Example

Enter the change directory command at the prompt as shown below:

<KBD>CD ... </KBD>

Compatibility

HTML 2, 3.2, and 4
Internet Explorer 2, 3, 4, and 5
Netscape 1, 2, 3, 4, and 4.5
WebTV

Notes
The HTML 2 and 3.2 specifications support no attributes for this element.

<LABEL> (Form Control Label)
This HTML 4 element is used to relate descriptions to form controls.

Syntax

<LABEL

ACCESSKEY="key"
CLASS="class name(s)"

DIR="LTR | RTL"
FOR="ID of control"

800 H T M L : T h e C o m p l e t e R e f e r e n c e

ID="unique alphanumeric identifier"

LANG="language code"
STYLE="style information"

TITLE="advisory text"
onblur="script"
onclick="script"

ondblclick="script"

onfocus="script"
onkeydown="script"

onkeypress="script"
onkeyup="script"

onmousedown="script"
onmousemove="script"
onmouseout="script"

onmouseover="script"

onmouseup="script">

</LABEL>

Attributes and Events Defined by Internet Explorer 4

DATAFLD="column name"
DATAFORMATAS="HTML | TEXT"

DATASRC="data source ID"
LANGUAGE="JAVASCRIPT | JSCRIPT | VBS | VBSCRIPT"

ondragstart="script"

onhelp="script"
onselectstart="script"

Attributes

ACCESKEY This attribute specifies a keyboard navigation accelerator for the element.
Pressing ALT or a similar key in association with the specified key selects the anchor element
correlated with that key.

CLASS See “Core Attributes Reference,” earlier in this appendix.

DATAFLD This attribute is used to indicate the column name in the data source that is bound
to the content of the <LABEL> element.

DATAFORMATAS This attribute indicates if the bound data is plain text (TEXT) or HTML
(HTML). The data bound with <LABEL> is used to set the content of the label.

DATASRC The value of this attribute is an identifier indicating the data source to pull
data from.

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 801

A
P

P
EN

D
IX

ES

DIR See “Language Reference,” earlier in this appendix.

FOR This attribute specifies the ID for the form control element the label references. This is
optional when the label encloses the form control it is bound to. In many cases, particularly when
a table is used to structure the form, the <LABEL> element cannot enclose the associated form
control, so the FOR attribute should be used. This attribute allows more than one label to be
associated with the same control by creating multiple references.

ID See “Core Attributes Reference,” earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

LANGUAGE In the Microsoft implementation, this attribute specifies the scripting language
to be used with an associated script bound to the element, typically through an event handler
attribute. Possible values may include JAVASCRIPT, JSCRIPT, VBS, and VBSCRIPT. Other
values that include the version of the language used, such as JavaScript1.1, may also be possible.

STYLE See “Core Attributes Reference,” earlier in this appendix.

TITLE See “Core Attributes Reference,” earlier in this appendix.

Attribute and Event Support

INTERNET EXPLORER 4 All W3C-defined attributes and events except DIR, onblur, and
onfocus, and all attributes and events defined by Internet Explorer 4.

Event Handlers
See “Events Reference,” earlier in this appendix.

Examples

<FORM>
<LABEL ID="usernamelabel"> Name

<INPUT TYPE="TEXT" ID="username">

</LABEL>
</FORM>

<FORM>
<TABLE>

<TR>
<TD><LABEL FOR="username"> Name</LABEL></TD>
<TD><INPUT TYPE="TEXT" ID="username"></TD>

</TR>

</TABLE>
</FORM>

802 H T M L : T h e C o m p l e t e R e f e r e n c e

Compatibility

HTML 4
Internet Explorer 4 and 5

Notes

■ To associate a label with another control implicitly, make the control the contents of the
LABEL. In this case, a <LABEL> element may only contain one other control element.
The label itself may be positioned before or after the associated control. If it is impossible
to enclose the associated form control, the FOR attribute may be used.

■ The HTML 4 specification defines the onblur and onfocus events for <LABEL>.
However, Internet Explorer 4 does not document their use.

<LAYER> (Content Layers)
This Netscape-specific element allows the definition of overlapping content layers that can be
exactly positioned, hidden or shown, rendered transparent or opaque, reordered front to back,
and nested. The functionality of layers is available using CSS positioning facilities; page
developers are advised not to use the <LAYER> element.

Syntax (Defined by Netscape 4)

<LAYER

ABOVE="layer name"
BACKGROUND="URL of background image"

BELOW="layer name"
BGCOLOR="color value"
CLASS="class name(s)"

CLIP="clip region coordinates in x1, y1, x2, y2 form"

HEIGHT="percentage | pixels"
ID="unique alphanumeric identifier"

LEFT="pixels"
NAME="string"

PAGEX="horizontal pixel position of layer"
PAGEY="vertical pixel position of layer"
SRC="URL of layer's contents"

STYLE="style information"

TITLE="advisory text"
TOP="pixels"
VISIBILITY="HIDE | INHERIT | SHOW"

WIDTH="percentage | pixels"
Z-INDEX="number"

onblur="script"

onfocus="script"
onload="script"

onmouseout="script"
onmouseover="script">

</LAYER>

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 803

A
P

P
EN

D
IX

ES

Attributes

ABOVE This attribute contains the name of the layer (as set with the NAME attribute) to be
rendered directly above the current layer.

BACKGROUND This attribute contains the URL of a background pattern for the layer. Like
backgrounds for the document as a whole, the image may tile.

BELOW This value of this attribute is the name of the layer to be rendered below the
current layer.

BGCOLOR This attribute specifies a layer’s background color. The attribute’s value can be
either a named color, such as red, or a color specified in the hexadecimal #RRGGBB format, such
as #FF0000.

CLASS See “Core Attributes Reference,” earlier in this appendix.

CLIP This attribute clips a layer’s content to a specified rectangle. All layer content outside
that rectangle is rendered transparent. The CLIP rectangle is defined by two x,y pairs that
correspond to the top x, left y, bottom x, and right y coordinate of the rectangle. The coordinates
are relative to the layer’s origin point, 0,0 in its top-left corner, and may have nothing to do with
the pixel coordinates of the screen.

HEIGHT This attribute is used to set the height of the layer either in pixels or as a percentage
of the screen or region the layer is contained within.

ID See “Core Attributes Reference,” earlier in this appendix.

LEFT This attribute specifies in pixels the left offset of the layer. The offset is relative to its
parent layer, if it has one, or to the left browser margin if it does not.

NAME This attribute assigns the layer a name that can be referenced by programs in a
client-side scripting language. The ID attribute can also be used.

PAGEX This attribute is used to set the horizontal pixel position of the layer relative to the
document window rather than any enclosing layer.

PAGEY This attribute is used to set the vertical pixel position of the layer relative to the
document window rather than any enclosing layer.

SRC This attribute specifies the URL that contains the content to include in the layer. Using
this attribute with an empty element is a good way to preserve layouts under older browsers.

STYLE See “Core Attributes Reference,” earlier in this appendix.

TITLE See “Core Attributes Reference,” earlier in this appendix.

TOP This attribute specifies in pixels the top offset of the layer. The offset is relative to its
parent layer if it has one, or the top browser margin if it is not enclosed in another layer.

804 H T M L : T h e C o m p l e t e R e f e r e n c e

VISIBILITY This attribute specifies whether a layer is hidden (HIDDEN), shown (SHOW), or
inherits (INHERITS) its visibility from the layer enclosing it.

WIDTH This attribute specifies a layer’s width in pixels or as a percentage value of the
enclosing layer or browser width.

Z-INDEX This attribute specifies a layer’s stacking order relative to other layers. Position is
specified with positive integers, with “1” indicating the bottommost layer.

Attribute and Event Support

NETSCAPE 4 All attributes.

Event Handlers
See “Events Reference,” earlier in this appendix.

Examples

<LAYER NAME="scene" BGCOLOR="#00FFFF>

<LAYER NAME="Shaq" LEFT="100" TOP="100">

</LAYER>

<LAYER NAME="Kobe" LEFT="200" TOP="100"
VISIBLITY="HIDDEN">

</LAYER>
</LAYER>

<!-- The better way to do layers -->
<LAYER SRC="contents.htm" LEFT="20" TOP="20"

HEIGHT="80%" WIDTH="80%">
</LAYER>

Compatibility

Netscape 4 and 4.5

Notes

■ This element will likely fall out of fashion because it lacks cross-browser compatibility.
The functionality of <LAYER> is possible using the positioning features in CSS; page
developers are encouraged not to use the <LAYER> element.

■ Applets, plug-ins, and other embedded media forms, generically called objects, may be
included in a layer; however, they float to the top of all other layers even if their
containing layer is obscured.

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 805

A
P

P
EN

D
IX

ES

<LEGEND> (Field Legend)
This HTML 4 element is used to assign a caption to a set of form fields, as defined by the
<FIELDSET> element.

Syntax

<LEGEND

ACCESSKEY="character"
ALIGN="BOTTOM | LEFT | RIGHT | TOP" (transitional)

CLASS="class name(s)"
DIR="LTR | RTL"
ID="unique alphanumeric identifier"

LANG="language code"

STYLE="style information"
TITLE="advisory text"

onclick="script"
ondblclick="script"

onkeydown="script"
onkeypress="script"
onkeyup="script"

onmousedown="script"

onmousemove="script"
onmouseout="script"
onmouseover="script"

onmouseup="script">

</LEGEND>

Attributes and Events Defined by Internet Explorer 4

ALIGN="CENTER"
LANGUAGE="JAVASCRIPT | JSCRIPT | VBS | VBSCRIPT"

VALIGN="BOTTOM | TOP"

ondragstart="script"
onhelp="script"

Attributes

ACCESKEY This attribute specifies a keyboard navigation accelerator for the element.
Pressing ALT or a similar key in association with the specified key selects the form section or the
legend itself.

ALIGN This attribute indicates where the legend value should be positioned within the border
created by a <FIELDSET> element. The default position for the legend is the upper-left corner. It

806 H T M L : T h e C o m p l e t e R e f e r e n c e

is also possible to position the legend to the right by setting the attribute to RIGHT. The
specification defines BOTTOM and TOP as well. Microsoft defines the use of the CENTER and
also defines another attribute, VALIGN, to set the vertical alignment separately. Future support
for VALIGN is unclear; page designers are encouraged to use only the ALIGN attribute and to
eventually rely on style sheets for legend positioning.

CLASS See “Core Attributes Reference,” earlier in this appendix.

DIR See “Language Reference,” earlier in this appendix.

ID See “Core Attributes Reference,” earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

LANGUAGE In the Microsoft implementation, this attribute specifies the scripting language
to be used with an associated script bound to the element, typically through an event handler
attribute. Possible values may include JAVASCRIPT, JSCRIPT, VBS, and VBSCRIPT. Other
values that include the version of the language used, such as JavaScript1.1, may also be possible.

STYLE See “Core Attributes Reference,” earlier in this appendix.

TITLE See “Core Attributes Reference,” earlier in this appendix.

VALIGN This Microsoft-specific attribute is used to set whether the legend appears on the
BOTTOM or the TOP of the border defined by the enclosing <FIELDSET> element. The
attribute will probably be dropped, as it is nonstandard.

Attribute and Event Support

INTERNET EXPLORER 4 All attributes and events except ACCESSKEY and DIR.

Event Handlers
See “Events Reference,” earlier in this appendix.

Example

<FORM>

<FIELDSET>

<LEGEND ALIGN="TOP">User Information </LEGEND>
First Name: <INPUT TYPE="TEXT" ID="firstname"

SIZE="20">

Last Name: <INPUT TYPE="TEXT" ID="lastname"
SIZE="20">

</FIELDSET >

</FORM>

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 807

A
P

P
EN

D
IX

ES

Compatibility

HTML 4
Internet Explorer 4 and 5

Notes

■ The <LEGEND> element should occur only within the <FIELDSET> element. There
should be only one <LEGEND> per <FIELDSET> element.

■ The legend improves accessibility when the FIELDSET is rendered nonvisually.

■ The Microsoft implementation can use the CENTER option in the ALIGN attribute.
Microsoft also defines the VALIGN attribute for legend positioning. However, the
VALIGN attribute does not appear to work consistently.

■ WebTV and Netscape do not yet support this element.

 (List Item)
This element is used to indicate a list item as contained in an ordered list (), unordered list
(), or older list styles such as <DIR> and <MENU>.

Syntax

<LI

CLASS="class name(s)"
DIR="LTR | RTL"

ID="unique alphanumeric identifier"
LANG="language code"
STYLE="style information"

TITLE="advisory text"

TYPE="CIRCLE | DISC | SQUARE | a | A | i | I | 1"
(transitional)

VALUE="number" (transitional)
onclick="script"

ondblclick="script"
onkeydown="script"
onkeypress="script"

onkeyup="script"

onmousedown="script"
onmousemove="script"
onmouseout="script"

onmouseover="script"

onmouseup="script">

808 H T M L : T h e C o m p l e t e R e f e r e n c e

Attributes and Events Defined by Internet Explorer 4

LANGUAGE="JAVASCRIPT | JSCRIPT | VBS | VBSCRIPT"

ondragstart="script"

onhelp="script"

onselectstart="script"

Attributes

CLASS See “Core Attributes Reference,” earlier in this appendix.

DIR See “Language Reference,” earlier in this appendix.

ID See “Core Attributes Reference,” earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

LANGUAGE In the Microsoft implementation, this attribute specifies the scripting language
to be used with an associated script bound to the element, typically through an event handler
attribute. Possible values may include JAVASCRIPT, JSCRIPT, VBS, and VBSCRIPT. Other
values that include the version of the language used, such as JavaScript1.1, may also be possible.

STYLE See “Core Attributes Reference,” earlier in this appendix.

TITLE See “Core Attributes Reference,” earlier in this appendix.

TYPE This attribute indicates the bullet type used in unordered lists or the numbering type
used in ordered lists. For ordered lists, a value of a indicates lowercase letters, A indicates
uppercase letters, i indicates lowercase Roman numerals, I indicates uppercase Roman numerals,
and 1 indicates numbers. For unordered lists, values are used to specify bullet types. While the
browser is free to set bullet styles, a value of DISC generally specifies a filled circle, a value of
CIRCLE specifies an empty circle, and a value of b specifies a filled square. Browsers such as
WebTV may include other bullet shapes such as triangles.

VALUE This attribute indicates the current number of items in an ordered list, as defined by
the element. Regardless of the value of TYPE being used to set Roman numerals or letters,
the only allowed value for this attribute is a number. List items that follow continue numbering
from the value set. The VALUE attribute has no meaning for unordered lists.

Attribute and Event Support

NETSCAPE 4 CLASS, ID, LANG, STYLE, TYPE, and VALUE.

INTERNET EXPLORER 4 All attributes and events except DIR.

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 809

A
P

P
EN

D
IX

ES

WEBTV TYPE and VALUE.

Event Handlers
See “Events Reference,” earlier in this appendix.

Examples

<LI TYPE="CIRCLE"> First list item is a circle

<LI TYPE="SQUARE"> Second list item is a square

<LI TYPE="DISC" >Third list item is a square

<LI TYPE="I"> Roman Numerals
<LI TYPE="A" VALUE="3"> Second list item is letter C
<LI TYPE="a"> Continue list in lowercase letters

Compatibility

HTML 2, 3.2, and 4
Internet Explorer 2, 3, 4, and 5
Netscape 1, 2, 3, 4, and 4.5
WebTV

Notes

■ Under the strict HTML 4.0 definition, the element loses the TYPE and VALUE
attributes, as these functions can be performed with style sheets.

■ While bullet style can be set explicitly, browsers tend to change styles for bullets when
 lists are nested. However, ordered lists generally do not change style
automatically, nor do they support outline style numbers (1.1, 1.1.1, and so on).

■ The closing tag is optional and is not commonly used.

<LINK> (Link to External Files or Set Relationships)
This empty element specifies relationships between the current document and other documents.
Possible uses for this element include defining a relational framework for navigation and linking
the document to a style sheet.

Syntax

<LINK

CHARSET="charset list from RFC 2045"

810 H T M L : T h e C o m p l e t e R e f e r e n c e

CLASS="class name(s)"

DIR="LTR | RTL"
HREF="URL"

HREFLANG="language code"
ID="unique alphanumeric identifier"
LANG="language code"

MEDIA="ALL | AURAL | BRAILLE | PRINT | PROJECTION |

SCREEN | other"
REL="relationship value"

REV="relationship value"
STYLE="style information"

TARGET="frame name" (transitional)
TITLE="advisory information"
TYPE="content type"

onclick="script"

ondblclick="script"
onkeydown="script"
onkeypress="script"

onkeyup="script"
onmousedown="script"

onmousemove="script"

onmouseout="script"
onmouseover="script"

onmouseup="script">

Attributes Defined by Internet Explorer 4

DISABLED

Attributes Defined by Netscape 4

SRC="URL"

Attributes

CHARSET This attribute specifies the character set used by the linked document. Allowed
values for this attribute are character set names, such as EUC-JP, as defined in RFC 2045.

CLASS See “Core Attributes Reference,” earlier in this appendix.

DIR See “Language Reference,” earlier in this appendix.

DISABLED This Microsoft-defined attribute is used to disable a link relationship. The
presence of the attribute is all that is required to remove a linking relationship. In conjunction
with scripting, this attribute could be used to turn on and off various style sheet relationships.

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 811

A
P

P
EN

D
IX

ES

HREF This attribute specifies the URL of the linked resource. A URL may be absolute
or relative.

HREFLANG This attribute is used to indicate the language of the linked resource. See
“Language Reference,” earlier in this appendix for information on allowed values.

ID See “Core Attributes Reference,” earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

MEDIA This attribute specifies the destination medium for any linked style information, as
indicated when the REL attribute is set to STYLESHEET. The value of the attribute may be a
single media descriptor such as SCREEN or a comma-separated list. Possible values for this
attribute include ALL, AURAL, BRAILLE, PRINT, PROJECTION, and SCREEN. Other values
may also be defined, depending on the browser. Internet Explorer supports ALL, PRINT, and
SCREEN as values for this attribute.

REL This attribute names a relationship between the linked document and the current
document. Possible values for this attribute include ALTERNATE, BOOKMARK, CHAPTER,
CONTENTS, COPYRIGHT, GLOSSARY, HELP, INDEX, NEXT, PREV, SECTION, START,
STYLESHEET, and SUBSECTION.

The most common use of this attribute is to specify a link to an external style sheet. The REL
attribute is set to STYLESHEET, and the HREF attribute is set to the URL of an external style
sheet to format the page. WebTV also supports the use of the value NEXT for REL to preload the
next page in a document series.

REV The value of the REV attribute shows the relationship of the current document to the
linked document, as defined by the HREF attribute. The attribute thus defines the reverse
relationship compared to the value of the REL attribute. Values for the REV attribute are similar
to the possible values for REL. They may include ALTERNATE, BOOKMARK, CHAPTER,
CONTENTS, COPYRIGHT, GLOSSARY, HELP, INDEX, NEXT, PREV, SECTION, START,
STYLESHEET, and SUBSECTION.

STYLE See “Core Attributes Reference,” earlier in this appendix.

TARGET The value of the TARGET attribute is used to define the frame or window name that
has the defined linking relationship or that will show the rendering of any linked resource.

TITLE See “Core Attributes Reference,” earlier in this appendix.

TYPE This attribute is used to define the type of the content linked to. The value of the
attribute should be a MIME type such as text/html, text/css, and so on. The common use of this
attribute is to define the type of style sheet linked and the most common current value is text/css,
which indicates a Cascading Style Sheet format.

812 H T M L : T h e C o m p l e t e R e f e r e n c e

Attribute and Event Support

NETSCAPE 4 REL, SRC, and TYPE. (CLASS, ID, LANG, and STYLE are implied.)

INTERNET EXPLORER 4 DISABLED, HREF, ID, MEDIA (ALL | PRINT | SCREEN), REL,
REV, TITLE, and TYPE.

WEBTV HREF and REL (value="NEXT").

Event Handlers
See “Event Reference,” earlier in this appendix.

Examples

<LINK HREF="products.htm" REL="parent">

<LINK HREF="corpstyle.css" REL="stylesheet" TYPE="text/css" MEDIA="ALL">

<LINK HREF="nextpagetoload.htm" REL="next">

Compatibility

HTML 2, 3.2, and 4
Internet Explorer 3, 4, and 5
Netscape 4 and 4.5
WebTV

Notes

■ As an empty element <LINK> has no closing tag.

■ The <LINK> element can occur only in the <HEAD> element; there may be multiple
occurrences of the element.

■ HTML 3.2 defines only the HREF, REL, REV, and TITLE attributes for the <LINK>
element.

■ HTML 2 defines the HREF, METHODS, REL, REV, TITLE, and URN attributes for the
<LINK> element. The METHODS and URN attributes were later removed from
specifications.

■ The HTML 4.0 specification defines event handlers for the <LINK> element, but it is
unclear how they would be used.

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 813

A
P

P
EN

D
IX

ES

<LISTING> (Code Listing)
This deprecated element from HTML 2 is used to indicate a code listing; it is no longer part of the
HTML standard. Text tends to be rendered in a smaller size within this element. Otherwise, the
<PRE> element should be used instead of <LISTING> to indicate preformatted text.

Syntax (HTML 2; Deprecated)

<LISTING>

</LISTING>

Attributes and Events Defined by Internet Explorer 4

CLASS="class name(s)"
ID="unique alphanumeric string"
LANG="language code"
LANGUAGE="JAVASCRIPT | JSCRIPT | VBS | VBSCRIPT"
STYLE="style information"
TITLE="advisory text"
onclick="script"
ondblclick="script"
ondragstart="script"
onhelp="script"
onkeydown="script"
onkeypress="script"
onkeyup="script"
onmousedown="script"
onmousemove="script"
onmouseout="script"
onmouseover="script"
onmouseup="script"
onselectstart="script">

Attributes

CLASS See “Core Attributes Reference,” earlier in this appendix.

ID See “Core Attributes Reference,” earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

LANGUAGE In the Microsoft implementation, this attribute specifies the scripting language
to be used with an associated script bound to the element, typically through an event handler

814 H T M L : T h e C o m p l e t e R e f e r e n c e

attribute. Possible values may include JAVASCRIPT, JSCRIPT, VBS, and VBSCRIPT. Other
values that include the version of the language used, such as JavaScript1.1, may also be possible.

STYLE See “Core Attributes Reference,” earlier in this appendix.

TITLE See “Core Attributes Reference,” earlier in this appendix.

Attribute and Event Support

INTERNET EXPLORER 4 All attributes.

Event Handlers
See “Events Reference,” earlier in this appendix.

Example

<LISTING>

This is a code listing. The preformatted text element <PRE>

should be used instead of this deprecated element.

</LISTING>

Compatibility

HTML 2
Internet Explorer 2, 3, 4, and 5
Netscape 1, 2, 3, 4, and 4.5
WebTV

Notes

■ As a deprecated element, this element should not be used. This element is not supported
by HTML 4. It is still documented by many browser vendors, however, and does creep
into some pages. The <PRE> element should be used instead of <LISTING>.

■ It appears that Netscape and Internet Explorer browsers also make text within
<LISTING> one size smaller than normal text, probably because the HTML 2.0
specification suggested that 132 characters fit to a typical line rather than 80.

■ Netscape does not document support for this element, though it is still supported.

<MAP> (Client-Side Image Map)
This element is used to implement client-side image maps. The element is used to define a map
to associate locations on an image with a destination URL. Each hot region or hyperlink mapping
is defined by an enclosed <AREA> element. A map is bound to a particular image through the
use of the USEMAP attribute in the element, which is set to the name of the map.

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 815

A
P

P
EN

D
IX

ES

Syntax

<MAP

CLASS="class name(s)"
DIR="LTR | RTL"

ID="unique alphanumeric identifier"
LANG="language code"
NAME="unique alphanumeric identifier"

STYLE="style information"

TITLE="advisory text"
onclick="script"

ondblclick="script"
onkeydown="script"

onkeypress="script"
onkeyup="script"
onmousedown="script"

onmousemove="script"

onmouseout="script"
onmouseover="script"

onmouseup="script">

<AREA> elements

</MAP>

Events Defined by Internet Explorer 4

ondragstart="script"

onhelp="script"

onselectstart="script"

Attributes

CLASS See “Core Attributes Reference,” earlier in this appendix.

DIR See “Language Reference,” earlier in this appendix.

ID See “Core Attributes Reference,” earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

NAME Like ID, this attribute is used to define a name associated with the element. In the case
of the <MAP> element, the NAME attribute is the common way to define the name of the image
map to be referenced by the USEMAP attribute within the element.

816 H T M L : T h e C o m p l e t e R e f e r e n c e

STYLE See “Core Attributes Reference,” earlier in this appendix.

TITLE See “Core Attributes Reference,” earlier in this appendix.

Attribute and Event Support

NETSCAPE 4 NAME. (CLASS, ID, LANG, and STYLE are implied.)

INTERNET EXPLORER 4 All attributes and events except DIR.

WEBTV NAME.

Event Handlers
See “Events Reference,” earlier in this appendix.

Example

<MAP NAME="mainmap">

<AREA SHAPE="CIRCLE" COORDS="200,250,25"
HREF="file1.htm">

<AREA SHAPE="RECTANGLE" COORDS="50,50,100,100"
HREF="file2.htm#important">

<AREA SHAPE="DEFAULT" NOHREF>

</MAP>

Compatibility

HTML 3.2 and 4
Internet Explorer 2, 3, 4, and 5
Netscape 1, 2, 3, 4, and 4.5
WebTV

Notes

■ HTML 3.2 supports only the NAME attribute for the <MAP> element.

■ Client-side image maps are not supported under HTML 2. They were first suggested by
Spyglass and later incorporated in Netscape and other browsers.

<MARQUEE> (Marquee Display)
This proprietary element specifies a scrolling, sliding, or bouncing text marquee. This is primarily a
Microsoft-specific element, though a few other browsers, notably WebTV, support it as well.

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 817

A
P

P
EN

D
IX

ES

Syntax (Defined by Internet Explorer 4)

<MARQUEE

BEHAVIOR="ALTERNATE | SCROLL | SLIDE"
BGCOLOR="color name | #RRGGBB"

CLASS="class name(s)"
DATAFLD="column name"
DATAFORMATAS="HTML | TEXT"

DATASRC="data source ID"

DIRECTION="DOWN | LEFT | RIGHT | UP"
HEIGHT="pixels or percentage"

HSPACE="pixels"
ID="unique alphanumeric identifier"

LANG="language code"
LANGUAGE="JAVASCRIPT | JSCRIPT | VBS | VBSCRIPT"
LOOP="INFINITE | number"

SCROLLAMOUNT="pixels"

SCROLLDELAY="milliseconds"
STYLE="style information"
TITLE="advisory text"

TRUESPEED
VSPACE="pixels"

WIDTH="pixels or percentage"

onafterupdate="script"
onblur="script"

onbounce="script"
onclick="script"
ondblclick="script"

ondragstart="script"
onfinish="script"

onfocus="script"

onhelp="script"
onkeydown="script"

onkeypress="script"
onkeyup="script"
onmousedown="script"

onmousemove="script"

onmouseout="script"
onmouseover="script"

onmouseup="script"
onresize="script"

onrowenter="script"
onrowexit="script"
onselectstart="script"

onstart="script">

Marquee text

</MARQUEE>

818 H T M L : T h e C o m p l e t e R e f e r e n c e

Attributes Defined by WebTV

ALIGN="BOTTOM | CENTER | LEFT | RIGHT | TOP"

TRANSPARENCY="number (0-100)"

Attributes

ALIGN This WebTV-specific attribute is used to indicate how the marquee should be aligned
with surrounding text. The alignment values and rendering are similar to other embedded
objects, such as images. The default value for this attribute under WebTV is LEFT. Microsoft
Internet Explorer no longer supports this attribute.

BEHAVIOR This attribute controls the movement of marquee text across the marquee. The
ALTERNATE option causes text to completely cross the marquee field in one direction and then
cross in the opposite direction. A value of SCROLL for the attribute causes text to wrap around and
start over again. This is the default value for a marquee. A value of SLIDE for this attribute causes
text to cross the marquee field and stop when its leading character reaches the opposite side.

BGCOLOR This attribute specifies the marquee’s background color. The value for the attribute
can either be a color name or a color value defined in the hexadecimal #RRGGBB format.

CLASS See “Core Attributes Reference,” earlier in this appendix.

DATAFLD This attribute is used to indicate the column name in the data source that is bound
to the <MARQUEE> element.

DATAFORMATAS This attribute indicates if the bound data is plain text (TEXT) or HTML
(HTML). The data bound with <MARQUEE> is used to set the message that is scrolled.

DATASRC The value of this attribute is set to an identifier indicating the data source to pull
data from. Bound data is used to set the message that is scrolled in the <MARQUEE>.

DIRECTION This attribute specifies the direction in which the marquee should scroll. The
default is LEFT. Other possible values for DIRECTION include DOWN, RIGHT, and UP.
WebTV does not support the DOWN and UP values.

HEIGHT This attribute specifies the height of the marquee in pixels or as a percentage of
the window.

HSPACE This attribute indicates the horizontal space in pixels between the marquee and
surrounding content.

ID See “Core Attributes Reference,” earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

LANGUAGE In the Microsoft implementation, this attribute specifies the scripting language
to be used with an associated script bound to the element, typically through an event handler

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 819

A
P

P
EN

D
IX

ES

attribute. Possible values may include JAVASCRIPT, JSCRIPT, VBS, and VBSCRIPT. Other
values that include the version of the language used, such as JavaScript1.1, may also be possible.

LOOP This attribute indicates the number of times the marquee content should loop. By
default, a marquee loops infinitely unless the BEHAVIOR attribute is set to SLIDE. It is also
possible to use a value of INFINITE or −1 to set the text to loop indefinitely.

SCROLLAMOUNT This attribute specifies the width in pixels between successive displays of
the scrolling text in the marquee.

SCROLLDELAY This attribute specifies the delay in milliseconds between successive displays
of the text in the marquee.

STYLE See “Core Attributes Reference,” earlier in this appendix.

TITLE See “Core Attributes Reference,” earlier in this appendix.

TRANSPARENCY In the WebTV implementation, this attribute specifies the marquee’s
degree of transparency. Values range from 0 (totally opaque) to 100 (totally transparent). A value
of 50 is optimized for fast rendering.

TRUESPEED When this attribute is present, it indicates that the SCROLLDELAY value
should be honored for its exact value. If the attribute is not present, any values less than 60 are
rounded up to 60 milliseconds.

VSPACE This attribute indicates the vertical space in pixels between the marquee and
surrounding content.

WIDTH This attribute specifies the width of the marquee in pixels or as a percentage of the
enclosing window.

Attribute and Event Support

INTERNET EXPLORER 4 All Microsoft-defined attributes and events.

WEBTV ALIGN, BEHAVIOR, BGCOLOR, DIRECTION, HEIGHT, HSPACE, LOOP,
SCROLLAMOUNT, SCROLLDELAY, TRANSPARENCY, VSPACE, and WIDTH. (Note:
WebTV supports only the LEFT and RIGHT values for the DIRECTION attribute.)

Event Handlers
The <MARQUEE> element has a few unique events. For example, an event is triggered when
the text bounces off one side or another on the marquee. This can be caught with the onbounce
event handler attribute. When the text first starts scrolling, the start event fires, which can be
caught with onstart; when the marquee is done, a finish event fires, which can be caught with
onfinish. The other events are common to HTML 4 elements with Microsoft extensions.

820 H T M L : T h e C o m p l e t e R e f e r e n c e

Examples

<MARQUEE BEHAVIOR="ALTERNATE">

SPECIAL VALUE !!! This week only !!!
</MARQUEE>

<MARQUEE ID="marquee1" BGCOLOR="RED" DIRECTION="RIGHT" HEIGHT="30"
WIDTH="80%" HSPACE="10" VSPACE="10">

The super scroller scrolls again!!

More fun than a barrel of <BLINK> elements.

</MARQUEE>

Compatibility

Internet Explorer 3, 4, and 5
WebTV

Notes

■ The <MARQUEE> element is supported only by Microsoft and WebTV.

<MENU> (Menu List)
This element is used to indicate a short list of items that might occur in a menu of choices.
Like the ordered and unordered lists, the individual items in the list are indicated by the
element. Most browsers render the <MENU> element exactly the same as the unordered
list, so there is little reason to use it. Under the HTML 4.0 strict specification, <MENU> is no
longer supported.

Syntax (Transitional Only)

<MENU

CLASS="class name(s)"
COMPACT
DIR="LTR | RTL"

ID="unique alphanumeric string"

LANG="language code"
STYLE="style information"
TITLE="advisory text"

onclick="script"
ondblclick="script"

onkeydown="script"

onkeypress="script"
onkeyup="script"

onmousedown="script"

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 821

A
P

P
EN

D
IX

ES

onmousemove="script"

onmouseout="script"
onmouseover="script"

onmouseup="script">

</MENU>

Events Defined by Internet Explorer 4

ondragstart="script"

onhelp="script"

onselectstart="script"

Attributes

CLASS See “Core Attributes Reference,” earlier in this appendix.

COMPACT This attribute indicates that the list should be rendered in a compact style. Few
browsers actually change the rendering of the list regardless of the presence of this attribute. The
COMPACT attribute requires no value.

DIR See “Language Reference,” earlier in this appendix.

ID See “Core Attributes Reference,” earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

STYLE See “Core Attributes Reference,” earlier in this appendix.

TITLE See “Core Attributes Reference,” earlier in this appendix.

Attribute and Event Support

NETSCAPE 4 CLASS, ID, LANG, and STYLE.

INTERNET EXPLORER 4 All attributes and events except COMPACT and DIR.

Event Handlers
See “Events Reference,” earlier in this appendix.

Example

<H2>Taco List </H2>

<MENU>

822 H T M L : T h e C o m p l e t e R e f e r e n c e

 Fish

 Pork
 Beef

 Chicken
</MENU>

Compatibility

HTML 2, 3.2, and 4 (transitional)
Internet Explorer 2, 3, 4, and 5
Netscape 1, 2, 3, 4, and 4.5
WebTV

Notes

■ Under the HTML 4.0 strict specification, this element is not defined. Since most
browsers simply render this style of list as an unordered list, using the element
instead is preferable.

■ Most browsers tend not to support the COMPACT attribute.

■ The HTML 2.0 and 3.2 specifications support only the COMPACT attribute.

<META> (Meta-Information)
This element specifies general information about a document, which can be used in document
indexing. It also allows a document to define fields in the HTTP response header when it is sent
from the server. A common use of this element is for client-pull page loading, which allows a
document automatically to load another document after a specified delay.

Syntax

<META
CONTENT="string"

DIR="LTR | RTL"

HTTP-EQUIV="http header string"
LANG="language code"

NAME="name of meta-information"
SCHEME="scheme type">

Attributes Defined by WebTV

URL="url"

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 823

A
P

P
EN

D
IX

ES

Attributes

CONTENT This attribute contains the actual meta-information. The form of the actual
meta-information varies greatly, depending on the value set for NAME.

DIR This attribute defines the text direction (left to right or right to left) of the content of the
<META> element, as defined by the CONTENT attribute.

HTTP-EQUIV This attribute binds the meta-information in the CONTENT attribute to an HTTP
response header. If this attribute is present, the NAME attribute should not be used. The
HTTP-EQUIV attribute is often used to create a document that automatically loads another
document after a set time. This is called client-pull. An example of a client-pull <META> element is

<META HTTP-EQUIV="REFRESH" CONTENT="10;URL='nextpage.htm'">

Note that the CONTENT attribute contains two values. The first is the number of seconds to
wait, and the second is the identifier URL and the URL to load after the specified time.

LANG This attribute is the language code associated with the language used in the
CONTENT attribute.

NAME This attribute associates a name with the meta-information contained in the
CONTENT attribute. If present, the HTTP-EQUIV attribute should not be used.

SCHEME The scheme attribute is used to indicate the expected format of the value of the
CONTENT attribute. The particular scheme may also be used in conjunction with the meta-data
profile as indicated by the PROFILE attribute for the <HEAD> element.

Attribute and Event Support

NETSCAPE 4 CONTENT, HTTP-EQUIV, and NAME.

INTERNET EXPLORER 4 All attributes except DIR.

WEBTV CONTENT, HTTP-EQUIV, and URL.

Event Handlers
None.

Examples

<!-- Use of the META element to assist in document indexing -->

<META NAME="KEYWORDS" CONTENT="HTML, SCRIPTING"
SCHEME="Lycos">

<!-- Use of the META element to implement client-pull to
automatically load a page -->

824 H T M L : T h e C o m p l e t e R e f e r e n c e

<META HTTP-EQUIV="REFRESH"

CONTENT="3;URL='http://www.pint.com/'">

<!-- Use of the META element to add rating information -->

<META HTTP-EQUIV="PICS-Label" CONTENT="(PICS-1.1
'http://www.rsac.org/ratingsv01.html'

1 gen true comment 'RSACi North America

Server' by 'webmaster@bigcompany.com'

for 'http://www.bigcompany.com' on
'1999.05.26T13:05-0500'

r (n 0 s 0 v 0 l 1))">

Compatibility

HTML 2, 3.2, and 4
Internet Explorer 2, 3, 4, and 5
Netscape 1.1, 2, 3, 4, and 4.5
WebTV

Notes

■ The <META> element can occur only in the <HEAD> element. It may be defined
multiple times.

■ The <META> element is an empty element and does not have a closing tag nor contain
any content.

■ A common use of the <META> element is to set information for indexing tools such as
search engines. The common values for the NAME attribute when performing this
function include AUTHOR, DESCRIPTION, and KEYWORDS; other attributes may
also be possible.

■ Along the same line as indexing, meta-information is also used for rating pages.

■ The HTML 2.0 and 3.2 specifications define only the CONTENT, HTTP-EQUIV, and
NAME attributes.

<MULTICOL> (Multiple Column Text)
This Netscape-specific element renders the enclosed content in multiple columns. This element
should not be used in favor of a table, which is a more standard way to render multiple columns of
text across browsers. It is likely that style sheets will provide for multicolumn rendering in the future.

Syntax (Defined by Netscape)

<MULTICOL

CLASS="class name(s)"

COLS="number of columns"

A p p e n d i x A : 825

A
P

P
EN

D
IX

ES

GUTTER="pixels"

ID="unique alphanumeric identifier"
STYLE="style information"

WIDTH="pixels">

</MULTICOL>

Attributes

CLASS See “Core Attributes Reference,” earlier in this appendix.

COLS This attribute indicates the number of columns in which to display the text. The
browser attempts to fill the columns evenly.

GUTTER This attribute indicates the width in pixels between the columns. The default value
for this attribute is 10 pixels.

ID See “Core Attributes Reference,” earlier in this appendix.

STYLE See “Core Attributes Reference,” earlier in this appendix.

WIDTH This attribute indicates the column width for all columns. The width of each column is
set in pixels and is equivalent for all columns in the group. When the attribute is not specified,
the width of columns is determined by taking the available window size, subtracting the number
of pixels for the gutter between the columns as specified by the GUTTER attribute, and evenly
dividing the result by the number of columns in the group as set by the COLS attribute.

Attribute and Event Support

NETSCAPE 4 All attributes.

Event Handlers
None.

Example

<MULTICOL COLS="3" GUTTER="20">

Put a long piece of text here....

</MULTICOL>

Compatibility

Netscape 3, 4, and 4.5

826 H T M L : T h e C o m p l e t e R e f e r e n c e

Notes

■ Do not attempt to use images or other embedded media within a multicolumn layout, as
defined by <MULTICOL>.

■ Do not set the number of columns to high or resize the browser window very small, as
this will cause text to overwrite other lines.

<NOBR> (No Breaks)
This proprietary element renders enclosed text without line breaks. Break points for where text
may wrap can be inserted using the <WBR> element.

Syntax

<NOBR

CLASS="class name(s)"
ID="unique alphanumeric identifier"

STYLE="style information"
TITLE="advisory text">

</NOBR>

Attributes

CLASS See “Core Attributes Reference,” earlier in this appendix.

ID See “Core Attributes Reference,” earlier in this appendix.

STYLE See “Core Attributes Reference,” earlier in this appendix.

TITLE See “Core Attributes Reference,” earlier in this appendix.

Attribute and Event Support

NETSCAPE 4 All attributes.

INTERNET EXPLORER 4 ID, STYLE, and TITLE.

Event Handlers
None.

Examples

<NOBR>This really long text ... will not be broken. </NOBR>

<NOBR>With this element it is often important to hint where a line may

be broken using <WBR>. <WBR>This element acts as a soft return. </NOBR>

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 827

A
P

P
EN

D
IX

ES

Compatibility

Internet Explorer 2, 3, 4, and 5
Netscape 1.1, 2, 3, 4, and 4.5
WebTV

Notes
While many browsers support this attribute, it is not part of any W3C standard.

<NOEMBED> (No Embedded Media Support)
This Netscape-specific element is used to indicate alternative content to display on browsers that
cannot support an embedded media object. It should occur in conjunction with the <EMBED>
element.

Syntax

<NOEMBED>

Alternative content here

</NOEMBED>

Attributes
Netscape does not specifically define attributes for this element; however, Netscape
documentation suggests that CLASS, ID, STYLE, and TITLE may be supported for this element.

Event Handlers
None.

Example

<EMBED SRC="trailer.mov" HEIGHT="150" WIDTH="150">

<NOEMBED>

Sorry, this browser is not configured to display video.
</NOEMBED>

</EMBED>

Compatibility

Netscape 2, 3, 4, and 4.5
WebTV

828 H T M L : T h e C o m p l e t e R e f e r e n c e

Notes
This element will disappear as the <OBJECT> style of inserting media into a page becomes more
common.

<NOFRAMES> (No Frame Support Content)
This element is used to indicate alternative content to display on browsers that do not
support frames.

Syntax (Transitional Only)

<NOFRAMES

CLASS="class name(s)"
DIR="LTR | RTL"

ID="unique alphanumeric identifier"
LANG="language code"
STYLE="style information"

TITLE="advisory text"

onclick="script"
ondblclick="script"

onkeydown="script"
onkeypress="script"

onkeyup="script"
onmousedown="script"
onmousemove="script"

onmouseout="script"

onmouseover="script"
onmouseup="script">

Alternative content for non-frame-supporting browsers

</NOFRAMES>

Attributes

CLASS See “Core Attributes Reference,” earlier in this appendix.

DIR See “Language Reference,” earlier in this appendix.

ID See “Core Attributes Reference,” earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

STYLE See “Core Attributes Reference,” earlier in this appendix.

TITLE See “Core Attributes Reference,” earlier in this appendix.

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 829

A
P

P
EN

D
IX

ES

Attribute and Event Support

NETSCAPE 4 CLASS, ID, LANG, and STYLE are implied.

INTERNET EXPLORER 4 ID, STYLE, and TITLE.

Event Handlers
It is interesting to note that while the <NOFRAMES> element does support the common events
for nearly all HTML 4 elements, their value seems unclear. The only time that content within a
<NOFRAMES> could be rendered is on a browser that does not support frames; however,
browsers that do not support frames are unlikely to support an event model or similar features.
There might be some possibility with clever scripting to access framed and nonframed content,
but for now the benefit of the events seems unclear. For more information, see “Events
Reference,” earlier in this appendix.

Example

<FRAMESET ROWS="100,*">

<FRAME SRC="controls.htm">
<FRAME SRC="content.htm">

<NOFRAMES>
Sorry, this browser does not support frames.

</NOFRAMES>
</FRAMESET>

Compatibility

HTML 4 (transitional)
Internet Explorer 2, 3, 4, and 5
Netscape 2, 3, 4, and 4.5
WebTV

Notes

■ This element should be used within the scope of the <FRAMESET> element.

■ The benefit of events and sophisticated attributes such as STYLE is unclear for browsers
that would use content within <NOFRAMES>, given that older browsers that don’t
support frames would probably not support these features.

<NOSCRIPT> (No Script Support Content)
This element is used to enclose content that should be rendered on browsers that do not support
scripting or that have scripting turned off.

830 H T M L : T h e C o m p l e t e R e f e r e n c e

Syntax

<NOSCRIPT

CLASS="class name(s)"
DIR="LTR | RTL"

ID="unique alphanumeric identifier"
LANG="language code"
STYLE="style information"

TITLE="advisory text"

onclick="script"
ondblclick="script"

onkeydown="script"
onkeypress="script"

onkeyup="script"
onmousedown="script"
onmousemove="script"

onmouseout="script"

onmouseover="script"
onmouseup="script">

Alternative content for non-script-supporting browsers

</NOSCRIPT>

Attributes

CLASS See “Core Attributes Reference,” earlier in this appendix.

DIR See “Language Reference,” earlier in this appendix.

ID See “Core Attributes Reference,” earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

STYLE See “Core Attributes Reference,” earlier in this appendix.

TITLE See “Core Attributes Reference,” earlier in this appendix.

Attribute and Event Support

NETSCAPE 4 CLASS, ID, LANG, and STYLE are implied.

Event Handlers
As defined in the preliminary specification of HTML 4, the benefits of event handlers are not
very obvious, considering that content within the <NOSCRIPT> element assumes the browser

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 831

A
P

P
EN

D
IX

ES

does not support scripting, while the script handlers themselves are for browsers that support
scripting. These are standard events for nearly all HTML 4 elements. For definitions, see “Events
Reference,” earlier in this appendix.

Example

Last Updated:

<SCRIPT LANGUAGE="JAVASCRIPT">
<!-- document.writeln(document.lastodified); // -->

</SCRIPT>

<NOSCRIPT>
1999

</NOSCRIPT>

Compatibility

HTML 4
Internet Explorer 3, 4, and 5
Netscape 2, 3, 4, and 4.5
WebTV

Notes
Improved functionality for the <NOSCRIPT> element may come if it is extended to deal with
the lack of support for one scripting language or another. Currently, the element is used only
to indicate if any scripting is supported or not. It is also useful to “comment out” scripting
information so non-scripting-aware browsers will not read it.

<OBJECT> (Embedded Object)
This element specifies an arbitrary object to be included into an HTML document. Initially, this
element was used to insert ActiveX controls, but according to the HTML 4.0 specification, an
object may be any media object, document, applet, ActiveX control, or even image.

Syntax

<OBJECT

ALIGN="BOTTOM | LEFT | MIDDLE | RIGHT | TOP"
(transitional)

ARCHIVE="URL"
BORDER="percentage | pixels" (transitional)

CLASS="class name(s)"
CLASSID="ID"
CODEBASE="URL"

CODETYPE="MIME Type"

DATA="URL of data"

832 H T M L : T h e C o m p l e t e R e f e r e n c e

DECLARE

DIR="LTR | RTL"
HEIGHT="percentage | pixels"

HSPACE="percentage | pixels" (transitional)
ID="unique alphanumeric identifier"
LANG="language code"

NAME="unique alphanumeric name"

STANDBY="standby text string"
STYLE="style information"

TABINDEX="number"
TITLE="advisory text"

TYPE="MIME Type"
USEMAP="URL"
VSPACE="percentage | pixels" (transitional)

WIDTH="percentage | pixels"

onclick="script"
ondblclick="script"
onkeydown="script"

onkeypress="script"
onkeyup="script"

onmousedown="script"

onmousemove="script"
onmouseout="script"

onmouseover="script"
onmouseup="script">

</OBJECT>

Attributes and Events Defined by Internet Explorer 4

ACCESSKEY="character"
ALIGN="ABSBOTTOM | ABSMIDDLE | BASELINE | TEXTTOP"

CODE="URL"
DATAFLD="column name"

DATASRC="ID for bound data"

LANGUAGE="JAVASCRIPT | JSCRIPT | VBS | VBSCRIPT"
onafterupdate="script"

onbeforeupdate="script"
onblur="script"
ondragstart="script"

onfocus="script"

onhelp="script"
onreadystatechange="script"

onresize="script"
onrowenter="script"

onrowexit="script"
onselectstart="script"

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 833

A
P

P
EN

D
IX

ES

Attributes

ACCESSKEY This Microsoft attribute specifies a keyboard navigation accelerator for the
element. Pressing ALT or a similar key in association with the specified character selects the form
control correlated with that key sequence. Page designers are forewarned to avoid key sequences
already bound to browsers.

ALIGN This attribute aligns the object with respect to the surrounding text. The default is
LEFT. The HTML 4.0 specification defines BOTTOM, MIDDLE, RIGHT, and TOP as well.
Browsers may provide an even richer set of alignment values. The behavior of alignment for
objects is similar to images. Under the strict HTML 4.0 specification, the <OBJECT> element
does not support this attribute.

ARCHIVE This attribute contains a URL for the location of an archive file. An archive file is
typically used to contain multiple object files to improve the efficiency of access.

BORDER This attribute specifies the width of the object’s borders in pixels or as a percentage.

CLASS See “Core Attributes Reference,” earlier in this appendix.

CLASSID This attribute contains a URL for an object’s implementation. The URL syntax
depends upon the object’s type. With ActiveX controls, the value of this attribute does not
appear to be a URL but something of the form CLSID: object-id; for example, CLSID:
99B42120-6EC7-11CF-A6C7-00AA00A47DD2.

CODE Under the old Microsoft implementation, this attribute contains the URL referencing a
Java applet class file. The way to access a Java applet under the HTML 4.0 specification is to use
<OBJECT CLASSID="java<: classname.class">. The pseudo URL java: is used to indicate a Java
applet. Microsoft Internet Explorer 4 and beyond support this style, so CODE should not be used.

CODEBASE This attribute contains a URL to use as a relative base to access the object
specified by the CLASSID attribute.

CODETYPE This attribute specifies an object’s MIME type. Do not confuse this attribute with TYPE,
which specifies the MIME type of the data the object may use as defined by the DATA attribute.

DATA This attribute contains a URL for data required by an object.

DATAFLD This attribute is used to indicate the column name in the data source that is bound
to the <OBJECT> element.

DATASRC The value of this attribute is set to an identifier indicating the data source to
pull data from.

DECLARE This attribute declares an object without instantiating it. This is useful when the
object will be a parameter to another object.

DIR See “Language Reference,” earlier in this appendix.

834 H T M L : T h e C o m p l e t e R e f e r e n c e

HEIGHT This attribute specifies the height of the object in pixels or as a percentage of the
enclosing window.

HSPACE This attribute indicates the horizontal space in pixels or percentages between the
object and surrounding content.

ID See “Core Attributes Reference,” earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

LANGUAGE In the Microsoft implementation, this attribute specifies the scripting language
to be used with an associated script bound to the element, typically through an event handler
attribute. Possible values may include JAVASCRIPT, JSCRIPT, VBS, and VBSCRIPT. Other
values that include the version of the language used, such as JavaScript1.1, may also be possible.

NAME This attribute under the Microsoft definition defines the name of the control so
scripting can access it. The HTML 4.0 specification suggests that it is a name for form
submission, but this meaning is unclear and not supported by browsers.

STANDBY This attribute contains a text message to be displayed while the object is loading.

STYLE See “Core Attributes Reference,” earlier in this appendix.

TABINDEX This attribute takes a numeric value indicating the position of the object in the
tabbing index for the document. Tabbing proceeds from the lowest positive TABINDEX value to
the highest. Negative values for TABINDEX will leave the object out of the tabbing order. When
tabbing is not explicitly set, the browser may tab through items in the order they are
encountered.

TITLE See “Core Attributes Reference,” earlier in this appendix.

TYPE This attribute specifies the MIME type for the object’s data. This is different from the
CODETYPE, which is the MIME type of the object and not the data it uses.

USEMAP This attribute contains the URL of the image map to be used with the object.
Typically, the URL is a fragment identifier referencing a <MAP> element somewhere
else within the file. The presence of this attribute indicates that the type of object being
included is an image.

VSPACE This attribute indicates the vertical space in pixels or percentages between the object
and surrounding text.

WIDTH This attribute specifies the width of the object in pixels or as a percentage of the
enclosing window.

Attribute and Event Support

NETSCAPE 4 ALIGN, CLASSID, CODEBASE, DATA, HEIGHT, TYPE, and WIDTH.
(CLASS, ID, LANG, and STYLE are implied.)

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 835

A
P

P
EN

D
IX

ES

INTERNET EXPLORER 4 ALIGN, CLASS, CLASSID, CODE, CODEBASE, CODETYPE,
DATA, HEIGHT, ID, LANG, NAME, STYLE, TABINDEX, TITLE, TYPE, WIDTH, all
W3C-defined events, and all attributes and events defined by Internet Explorer 4.

Event Handlers
See “Events Reference,” earlier in this appendix.

Examples

<OBJECT ID="IeLabel1" WIDTH="325" HEIGHT="65"

CLASSID="CLSID:99B42120-6EC7-11CF-A6C7-00AA00A47DD2">
<PARAM NAME="_ExtentX" VALUE="6879">

<PARAM NAME="_ExtentY" VALUE="1376">
<PARAM NAME="Caption" VALUE="Hello World">
<PARAM NAME="Alignment" VALUE="4">

<PARAM NAME="Mode" VALUE="1">

<PARAM NAME="ForeColor" VALUE="#FF0000">
<PARAM NAME="FontName" VALUE="Arial">

<PARAM NAME="FontSize" VALUE="36">
Hello World for non-ActiveX users!

</OBJECT>

<OBJECT CLASSID="java:Blink.class"
STANDBY="Here it comes"

HEIGHT="100" WIDTH="300">

<PARAM NAME="LBL" VALUE="Java is fun, exciting, and new.">
<PARAM NAME="SPEED" VALUE="2">

This will display in non-Java-aware or -enabled

browsers.
</OBJECT>

<OBJECT DATA="pullinthisfile.html">

Data not included!
</OBJECT>

<OBJECT DATA="bigimage.gif" SHAPES>

Page 1

Page 2

</OBJECT>

Compatibility

HTML 4
Internet Explorer 3, 4, and 5
Netscape 4 and 4.5

836 H T M L : T h e C o m p l e t e R e f e r e n c e

Notes

■ Under the strict HTML 4.0 specification the <OBJECT> element loses most of its
presentation attributes, including ALIGN, BORDER, HEIGHT, HSPACE, VSPACE,
and WIDTH. These attributes are replaced by style sheet rules.

■ The HTML 4.0 specification reserves the DATAFLD, DATAFORMATAS, and
DATASRC attributes for future use.

■ Alternative content should be defined within the <OBJECT> element after the
<PARAM> elements.

■ The <OBJECT> element is still mainly used to include binaries in pages. While the
specification defines that it can load in HTML files and create image maps, few, if any,
browsers support this.

 (Ordered List)
This element is used to define an ordered or numbered list of items. The numbering style comes
in many forms, including letters, Roman numerals, and regular numerals. The individual items
within the list are specified by elements included with the element.

Syntax

<OL

CLASS="class name(s)"
COMPACT (transitional)

DIR="LTR | RTL"
ID="unique alphanumeric identifier"
LANG="language code"

START="number" (transitional)

STYLE="style information"
TITLE="advisory text"

TYPE="a | A | i | I | 1" (transitional)
onclick="script"

ondblclick="script"
onkeydown="script"
onkeypress="script"

onkeyup="script"

onmousedown="script"
onmousemove="script"
onmouseout="script"

onmouseover="script"
onmouseup="script">

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 837

A
P

P
EN

D
IX

ES

Attributes and Events Defined by Internet Explorer 4

LANGUAGE="JAVASCRIPT | JSCRIPT | VBS | VBSCRIPT"

ondragstart="script"

onhelp="script"

onselectstart="script"

Attributes

CLASS See “Core Attributes Reference,” earlier in this appendix.

COMPACT This attribute indicates that the list should be rendered in a compact style. Few
browsers actually change the rendering of the list regardless of the presence of this attribute. The
COMPACT attribute requires no value.

DIR See “Language Reference,” earlier in this appendix.

ID See “Core Attributes Reference,” earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

LANGUAGE In the Microsoft implementation, this attribute specifies the scripting language
to be used with an associated script bound to the element, typically through an event handler
attribute. Possible values may include JAVASCRIPT, JSCRIPT, VBS, and VBSCRIPT. Other
values that include the version of the language used, such as JavaScript1.1, may also be possible.

START This attribute is used to indicate the value to start numbering the individual list items
from. While the ordering type of list elements may be Roman numerals such as XXXI or letters,
the value of START is always represented as a number. To start numbering elements from the
letter “C,” use <OL TYPE="A" START="3">.

STYLE See “Core Attributes Reference,” earlier in this appendix.

TITLE See “Core Attributes Reference,” earlier in this appendix.

TYPE This attribute indicates the numbering type: “a” indicates lowercase letters, “A”
indicates uppercase letters, “i” indicates lowercase Roman numerals, “I” indicates uppercase
Roman numerals, and “1” indicates numbers. Type set in the element is used for the entire
list unless a TYPE attribute is used within an enclosed element.

Attribute and Event Support

NETSCAPE 4 CLASS, ID, LANG, START, STYLE, and TYPE.

INTERNET EXPLORER 4 All attributes and events except COMPACT and DIR.

WEBTV START and TYPE.

838 H T M L : T h e C o m p l e t e R e f e r e n c e

Event Handlers
See “Events Reference,” earlier in this appendix.

Examples

<OL TYPE="1">

 First step
 Second step

 Third step

<OL COMPACT TYPE="I" START="30">

 Clause 30

 Clause 31
 Clause 32

Compatibility

HTML 2, 3.2, 4
Internet Explorer 2, 3, 4, and 5
Netscape 1, 2, 3, 4, and 4.5
WebTV

Notes

■ Under the strict HTML 4.0 specification, the element no longer supports the
COMPACT, START, and TYPE attributes. These aspects of lists can be controlled
with style sheet rules.

■ The HTML 3.2 specification supports only the COMPACT, START, and TYPE
attributes. The HTML 2.0 specification supports only the COMPACT attribute.

<OPTGROUP> (Option Grouping)
This element specifies a grouping of items in a selection list defined by <OPTION> elements so
that the menu choices may be presented in a hierarchical menu or similar alternative fashion to
improve access via nonvisual browsers.

Syntax

<OPTGROUP

CLASS="class name(s)"
DIR="LTR | RTL"

DISABLED
ID="unique alphanumeric identifier"

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 839

A
P

P
EN

D
IX

ES

LABEL="text description"

LANG="language code"
STYLE="style information"

TITLE="advisory text"
onclick="script"
ondblclick="script"

onkeydown="script"

onkeypress="script"
onkeyup="script"

onmousedown="script"
onmousemove="script"

onmouseout="script"
onmouseover="script"

onmouseup="script">

<OPTION> elements

</OPTGROUP>

Attributes

CLASS See “Core Attributes Reference,” earlier in this appendix.

DIR See “Language Reference,” earlier in this appendix.

DISABLED Occurrence of this attribute indicates that the enclosed set of options is disabled.

ID See “Core Attributes Reference,” earlier in this appendix.

LABEL This attribute contains a short label that may be more appealing to use when the
selection list is rendered as items in a hierarchy.

LANG See “Language Reference,” earlier in this appendix.

STYLE See “Core Attributes Reference,” earlier in this appendix.

TITLE See “Core Attributes Reference,” earlier in this appendix.

Attribute and Event Support
None.

Event Handlers
See “Events Reference,” earlier in this appendix.

840 H T M L : T h e C o m p l e t e R e f e r e n c e

Example

Where would you like to go for your vacation?

<SELECT>
<OPTION ID="ch1" VALUE="China"> The Great Wall

<OPTGROUP LABEL="Mexico">
<OPTION ID="ch2" LABEL="Los Cabos" VALUE="Los Cabos">

Los Cabos, Mexico

<OPTION ID="ch3" LABEL="Leon" VALUE="Leon"> Leon, Mexico

<OPTION ID="ch4" VALUE="MXC"> Mexico City
</OPTGROUP>

<OPTION ID="ch5" VALUE="home" SELECTED> Your backyard
</SELECT>

Compatibility

HTML 4

Notes
This element should only occur within the context of a <SELECT> element.

<OPTION> (Option in Selection List)
This element specifies an item in a selection list defined by the <SELECT> element.

Syntax

<OPTION

CLASS="class name(s)"
DIR="LTR | RTL"
DISABLED

ID="unique alphanumeric identifier"

LABEL="text description"
LANG="language code"
SELECTED

STYLE="style information"
TITLE="advisory text"

VALUE="option value"

onclick="script"
ondblclick="script"

onkeydown="script"
onkeypress="script"
onkeyup="script"

onmousedown="script"

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 841

A
P

P
EN

D
IX

ES

onmousemove="script"

onmouseout="script"
onmouseover="script"

onmouseup="script">

</OPTION>

Attributes and Events Defined by Internet Explorer 4

LANGUAGE="JAVASCRIPT | JSCRIPT | VBS | VBSCRIPT"

ondragstart="script"

onselectstart="script"

Attributes

CLASS See “Core Attributes Reference,” earlier in this appendix.

DIR See “Language Reference,” earlier in this appendix.

DISABLED Presence of this attribute indicates that the particular item is not selectable.

ID See “Core Attributes Reference,” earlier in this appendix.

LABEL This attribute contains a short label that may be more appealing to use when the
selection list is rendered as a hierarchy due to the presence of an <OPTGROUP> element.

LANG See “Language Reference,” earlier in this appendix.

LANGUAGE In the Microsoft implementation, this attribute specifies the scripting language
to be used with an associated script bound to the element, typically through an event handler
attribute. Possible values may include JAVASCRIPT, JSCRIPT, VBS, and VBSCRIPT. Other
values that include the version of the language used, such as JavaScript1.1, may also be possible.

SELECTED This attribute indicates that the associated item is the default selection. If not
included, the first item in the selection list is the default. If the <SELECT> element enclosing the
<OPTION> elements has the MULTIPLE attribute, the SELECTED attribute may occur in
multiple entries. Otherwise, it should occur only in one entry.

STYLE See “Core Attributes Reference,” earlier in this appendix.

TITLE See “Core Attributes Reference,” earlier in this appendix.

VALUE This attribute indicates the value to include with the form result when the item
is selected.

842 H T M L : T h e C o m p l e t e R e f e r e n c e

Attribute and Event Support

NETSCAPE 4 SELECTED and VALUE. (CLASS, ID, LANG, and STYLE are implied.)

INTERNET EXPLORER 4 CLASS, ID, LANGUAGE, SELECTED, VALUE, ondragstart, and
onselectstart.

WEBTV SELECTED and VALUE.

Event Handlers
See “Events Reference,” earlier in this appendix.

Examples

Where would you like to go for your vacation?

<SELECT>
<OPTION ID="choice1" VALUE="China"> The Great Wall

<OPTION ID="choice2" VALUE="Mexico"> Los Cabos
<OPTION ID="choice3" VALUE="Home" SELECTED> Your backyard

</SELECT>

Compatibility

HTML 2, 3.2, and 4
Internet Explorer 2, 3, 4, and 5
Netscape 1, 2, 3, 4, and 4.5
WebTV

Notes

■ The closing tag for <OPTION> is optional.

■ This element should only occur within the context of a <SELECT> element.

■ The HTML 2.0 and 3.2 specifications define only the SELECTED and VALUE attributes
for this element.

<P> (Paragraph)
This element is used to define a paragraph of text. Browsers typically insert a blank line before
and after a paragraph of text.

Syntax

<P

ALIGN="CENTER | JUSTIFY | LEFT | RIGHT"

(transitional)

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 843

A
P

P
EN

D
IX

ES

CLASS="class name(s)"

DIR="LTR | RTL"
ID="unique alphanumeric identifier"

LANG="language code"
STYLE="style information"
TITLE="advisory text"

onclick="script"

ondblclick="script"
onkeydown="script"

onkeypress="script"
onkeyup="script"

onmousedown="script"
onmousemove="script"
onmouseout="script"

onmouseover="script"

onmouseup="script">

</P>

Attributes and Events Defined by Internet Explorer 4

LANGUAGE="JAVASCRIPT | JSCRIPT | VBS | VBSCRIPT"

ondragstart="script"

onhelp="script"

onselectstart="script"

Attributes

ALIGN This attribute specifies the alignment of text within a paragraph. The default value is
LEFT. The transitional specification of HTML 4.0 also defines CENTER, JUSTIFY, and RIGHT.
However, under the strict specification of HTML 4.0 text alignment can be handled through a
style sheet rule.

CLASS See “Core Attributes Reference,” earlier in this appendix.

DIR See “Language Reference,” earlier in this appendix.

ID See “Core Attributes Reference,” earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

LANGUAGE In the Microsoft implementation, this attribute specifies the scripting language
to be used with an associated script bound to the element, typically through an event handler
attribute. Possible values may include JAVASCRIPT, JSCRIPT, VBS, and VBSCRIPT. Other
values that include the version of the language used, such as JavaScript1.1, may also be possible.

844 H T M L : T h e C o m p l e t e R e f e r e n c e

STYLE See “Core Attributes Reference,” earlier in this appendix.

TITLE See “Core Attributes Reference,” earlier in this appendix.

Attribute and Event Support

NETSCAPE 4 ALIGN. (CLASS, ID, LANG, and STYLE are implied.)

INTERNET EXPLORER 4 All attributes and events except DIR. (Note: The JUSTIFY value
for ALIGN is not supported by Internet Explorer 4.)

WEBTV ALIGN (CENTER | LEFT | RIGHT).

Event Handlers
See “Events Reference,” earlier in this appendix.

Examples

<P ALIGN="RIGHT"> A right-aligned paragraph </P>

<P ID="Para1" CLASS="defaultParagraph"
TITLE="Introduction Paragraph">

This is the introductory paragraph for a very long paper about nothing.
</P>

Compatibility

HTML 2, 3.2, and 4
Internet Explorer 2, 3, 4, and 5
Netscape 1, 2, 3, 4, and 4.5
Web TV

Notes

■ Under the strict HTML 4.0 specification the ALIGN attribute is not supported.
Alignment of text can be accomplished using style sheets.

■ The closing tag for the <P> element is optional.

■ As a logical element, empty paragraphs are ignored by browsers, so do not try to use
multiple <P> elements in a row like <P><P><P><P> to add blank lines to a Web page.
This will not work; use the
 element instead.

■ The HTML 3.2 specification supports only the ALIGN attribute with values of CENTER,
LEFT, and RIGHT.

■ The HTML 2.0 specification supports no attributes for the <P> element.

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 845

A
P

P
EN

D
IX

ES

<PARAM> (Object Parameter)
This element specifies a parameter to pass to an embedded object using the <OBJECT> or
<APPLET> element. This element should occur only within the scope of one of these elements.

Syntax

<PARAM

ID="unique alphanumeric identifier"
NAME="parameter name"

TYPE="MIME Type"
VALUE="parameter value"
VALUETYPE="DATA | OBJECT | REF">

</PARAM>

Attributes Defined by Internet Explorer 4

DATAFLD="column name"

DATAFORMATAS="HTML | TEXT"

DATASRC="data source ID"

Attributes

DATAFLD This Internet Explorer–specific attribute is used to indicate the column name in the
data source that is bound to the <PARAM> element’s value.

DATAFORMATAS This Internet Explorer–specific attribute indicates if the bound data is plain
text (TEXT) or HTML (HTML).

DATASRC The value of this attribute is set to an identifier indicating the data source to pull
data from. Bound data is used to set the value of the parameters passed to the object or applet
with which this <PARAM> element is associated.

ID See “Core Attributes Reference,” earlier in this appendix.

NAME This attribute contains the parameter’s name. The name of the parameter depends on
the particular object being inserted into the page, and it is assumed that the object knows how to
handle the passed data. Do not confuse the NAME attribute with the NAME attribute used for
form elements. In the latter case, the NAME attribute does not have a similar meaning as ID, but
rather specifies the name of the data to be passed to an enclosing <OBJECT> element.

TYPE When the VALUETYPE attribute is set to REF, the TYPE attribute can be used to
indicate the type of the information to be retrieved. Legal values for this attribute are in the form
of MIME types such as text/html.

846 H T M L : T h e C o m p l e t e R e f e r e n c e

VALUE This attribute contains the parameter’s value. The actual contents of this attribute
depend on the object and the particular parameter being passed in, as determined by the
NAME attribute.

VALUETYPE This HTML 4–specific attribute specifies the type of the VALUE attribute being
passed in. Possible values for this attribute include DATA, OBJECT, and REF. A value of DATA
specifies that the information passed in through the VALUE parameter should be treated just as
data. A value of REF indicates that the information being passed in is a URL that indicates where
the data to use is located. The information is not retrieved, but the URL is passed to the object
which may then retrieve the information if necessary. The last value of OBJECT indicates that
the value being passed in is the name of an object as set by its ID attribute. In practice, the DATA
attribute is used by default.

Attribute and Event Support

NETSCAPE 4 NAME and VALUE. (ID may be implied.)

INTERNET EXPLORER 4 NAME, DATAFLD, DATAFORMATAS, DATASRC, and
VALUE.

Event Handlers
None.

Examples

<APPLET CODE="plot.class">

<PARAM NAME="min" VALUE="5">
<PARAM NAME="max" VALUE="30">

<PARAM NAME="ticks" VALUE=".5">
<PARAM NAME="line-style" VALUE="dotted">

</APPLET>

<OBJECT CLASSID="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"
CODEBASE="swflash.cab#version=2,0,0,0"

HEIGHT="100" WIDTH="100">

<PARAM ID="param1" NAME="Movie" VALUE="SplashLogo.swf">
<PARAM ID="param2" NAME="Play" VALUE="True">

</OBJECT>

Compatibility

HTML 3.2 and 4
Internet Explorer 3, 4, and 5
Netscape 2, 3, 4, and 4.5

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 847

A
P

P
EN

D
IX

ES

Notes

■ The closing tag for this element is forbidden.

■ The HTML 3.2 specification supports only the NAME and VALUE attributes for this
element.

<PLAINTEXT> (Plain Text)
This deprecated element from the HTML 2.0 specification renders the enclosed text as plain text
and forces the browser to ignore any enclosed HTML. Typically, information affected by the
<PLAINTEXT> element is rendered in monospaced font. This element is no longer part of the
HTML standard.

Syntax (HTML 2; Deprecated Under HTML 4)

<PLAINTEXT>

Attributes and Events Defined by Internet Explorer 4

CLASS="class name(s)"

DIR="LTR | RTL"
ID="unique alphanumeric identifier"

LANG="language code"
LANGUAGE="JAVASCRIPT | JSCRIPT | VBS | VBSCRIPT"
STYLE="style information"

TITLE="advisory text"

onclick="script"
ondblclick="script"

ondragstart="script"
onhelp="script"

onkeydown="script"
onkeypress="script"
onkeyup="script"

onmousedown="script"

onmousemove="script"
onmouseout="script"
onmouseover="script"

onmouseup="script"

onselectstart="script"

Attributes

CLASS See “Core Attributes Reference,” earlier in this appendix.

DIR See “Language Reference,” earlier in this appendix.

848 H T M L : T h e C o m p l e t e R e f e r e n c e

ID See “Core Attributes Reference,” earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

LANGUAGE In the Microsoft implementation, this attribute specifies the scripting language
to be used with an associated script bound to the element, typically through an event handler
attribute. Possible values may include JAVASCRIPT, JSCRIPT, VBS, and VBSCRIPT. Other
values that include the version of the language used, such as JavaScript1.1, may also be possible.

STYLE See “Core Attributes Reference,” earlier in this appendix.

TITLE See “Core Attributes Reference,” earlier in this appendix.

Attribute and Event Support

NETSCAPE 4 CLASS, ID, LANG, and STYLE are implied.

INTERNET EXPLORER 4 All attributes and events.

Event Handlers
See “Events Reference,” earlier in this appendix.

Example

<HTML>

<HEAD><TITLE>Plaintext Example </TITLE></HEAD>
<BODY>

The rest of this file is in plain text.
<PLAINTEXT>
Even though this is supposed to be bold , the tags still show.

There is no way to turn plain text off once it is on. </PLAINTEXT>

does nothing to help. Even </BODY> and </HTML> will show up.

Compatibility

HTML 2
Internet Explorer 2, 3, 4, and 5
Netscape 1, 2, 3, 4, and 4.5

Notes

■ No closing tag for this element is necessary, since the browser will ignore all tags after
the starting tag.

■ This element should not be used. Plain text information can be indicated by a file type,
and information can be inserted in a preformatted fashion using the <PRE> element.

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 849

A
P

P
EN

D
IX

ES

<PRE> (Preformatted Text)
This element is used to indicate that the enclosed text is preformatted, meaning that spaces,
returns, tabs, and other formatting characters are preserved. Browsers do, however,
acknowledge most HTML elements that are found with the <PRE> element. Preformatted
text is generally rendered by the browsers in a monospaced font.

Syntax

<PRE

CLASS="class name(s)"
DIR="LTR | RTL"

ID="unique alphanumeric value"
LANG="language code"
STYLE="style information"

TITLE="advisory text"

WIDTH="number" (transitional)
onclick="script"

ondblclick="script"
onkeydown="script"

onkeypress="script"
onkeyup="script"
onmousedown="script"

onmousemove="script"

onmouseout="script"
onmouseover="script"
onmouseup="script">

</PRE>

Attributes and Events Defined by Internet Explorer 4

LANGUAGE="JAVASCRIPT | JSCRIPT | VBS | VBSCRIPT"

ondragstart="script"

onhelp="script"

onselectstart="script"

Attributes and Events Defined by Netscape 4

COL="columns"

WRAP

Attributes

CLASS See “Core Attributes Reference,” earlier in this appendix.

850 H T M L : T h e C o m p l e t e R e f e r e n c e

DIR See “Language Reference,” earlier in this appendix.

ID See “Core Attributes Reference,” earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

LANGUAGE In the Microsoft implementation, this attribute specifies the scripting language
to be used with an associated script bound to the element, typically through an event handler
attribute. Possible values may include JAVASCRIPT, JSCRIPT, VBS, and VBSCRIPT. Other
values that include the version of the language used, such as JavaScript1.1, may also be possible.

STYLE See “Core Attributes Reference,” earlier in this appendix.

TITLE See “Core Attributes Reference,” earlier in this appendix.

WIDTH This attribute should be set to the WIDTH of the preformatted region. The value of
the attribute should be the number of characters to display. In practice, this attribute is not
supported and is dropped under the strict HTML 4.0 specification.

Attribute and Event Support

NETSCAPE 4 CLASS, COLS, ID, LANG, STYLE, and WRAP.

INTERNET EXPLORER 4 All attributes and events except DIR and WIDTH.

Event Handlers
See “Events Reference,” earlier in this appendix.

Example

<PRE>

Within PREFORMATTED text A L L formatting IS PRESERVED
NO m a t t e r how wild it is. Remember that some

HTML markup is allowed within the <PRE> element.
</PRE>

Compatibility

HTML 2, 3.2, and 4
Internet Explorer 2, 3, 4, and 5
Netscape 1, 2, 3, 4, and 4.5
WebTV

Notes

■ The HTML 4.0 transitional specification states that the <APPLET>, <BASEFONT>,
<BIG>, , , <OBJECT>, <SMALL>, <SUB>, and <SUP> elements
should not be used within the <PRE> element. The strict HTML 4.0 specification states

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 851

A
P

P
EN

D
IX

ES

that only the <BIG>, , <OBJECT>, <SMALL>, <SUB>, and <SUP> elements
should not be used within the <PRE> element. The other excluded elements are missing,
as they are deprecated from the strict specification. While these attributes should not be
used, it appears that the two most popular browsers render them anyway.

■ The strict HTML 4.0 specification drops support for the WIDTH attribute, which was
not generally supported anyway.

■ The HTML 2.0 and 3.2 specifications support only the WIDTH attribute for <PRE>.

<Q> (Quote)
This element indicates that the enclosed text is a short inline quotation.

Syntax

<Q

CITE="URL of source"
CLASS="class name(s)"

DIR="LTR | RTL"
ID="unique alphanumeric string"
LANG="language code"

STYLE="style information"

TITLE="advisory text"
onclick="script"

ondblclick="script"
onkeydown="script"

onkeypress="script"
onkeyup="script"
onmousedown="script"

onmousemove="script"

onmouseout="script"
onmouseover="script"
onmouseup="script">

</Q>

Attributes and Events Defined by Internet Explorer 4

LANGUAGE="JAVASCRIPT | JSCRIPT | VBS | VBSCRIPT"

ondragstart="script"

onhelp="script"

onselectstart="script"

852 H T M L : T h e C o m p l e t e R e f e r e n c e

Attributes

CITE The value of this attribute is a URL that designates a source document or message for the
information quoted. This attribute is intended to point to information explaining the context or
the reference for the quote.

CLASS See “Core Attributes Reference,” earlier in this appendix.

DIR See “Language Reference,” earlier in this appendix.

ID See “Core Attributes Reference,” earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

LANGUAGE In the Microsoft implementation, this attribute specifies the scripting language
to be used with an associated script bound to the element, typically through an event handler
attribute. Possible values may include JAVASCRIPT, JSCRIPT, VBS, and VBSCRIPT. Other
values that include the version of the language used, such as JavaScript1.1, may also be possible.

STYLE See “Core Attributes Reference,” earlier in this appendix.

TITLE See “Core Attributes Reference,” earlier in this appendix.

Attribute and Event Support

INTERNET EXPLORER 4 All attributes and events except CITE and DIR.

Event Handlers
See “Events Reference,” earlier in this appendix.

Example

<Q STYLE="color: green"> "A few green balls and a rainbow bar will give

you an exciting Web page Christmas tree!" </Q>

Compatibility

HTML 4
Internet Explorer 4 and 5

Notes

■ This element is intended for short quotations that don’t require paragraph breaks, as
compared to text that would be contained within <BLOCKQUOTE>. Microsoft
documentation continues to indicate this is a block element, when it is not.

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 853

A
P

P
EN

D
IX

ES

■ Internet Explorer does not make any sort of style change for quotations, but it is possible
to apply a style rule.

<S> (Strikethrough)
This element renders the enclosed text with a line drawn through it.

Syntax (Transitional Only)

<S

CLASS="class name(s)"
DIR="LTR | RTL"

ID="unique alphanumeric identifier"
LANG="language code"
STYLE="style information"

TITLE="advisory text"

onclick="script"
ondblclick="script"

onkeydown="script"
onkeypress="script"

onkeyup="script"
onmousedown="script"
onmousemove="script"

onmouseout="script"

onmouseover="script"
onmouseup="script">

</S>

Attributes and Events Defined by Internet Explorer 4

LANGUAGE="JAVASCRIPT | JSCRIPT | VBS | VBSCRIPT"

ondragstart="script"

onhelp="script"

onselectstart="script"

Attributes

CLASS See “Core Attributes Reference,” earlier in this appendix.

DIR See “Language Reference,” earlier in this appendix.

ID See “Core Attributes Reference,” earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

854 H T M L : T h e C o m p l e t e R e f e r e n c e

LANGUAGE In the Microsoft implementation, this attribute specifies the scripting language
to be used with an associated script bound to the element, typically through an event handler
attribute. Possible values may include JAVASCRIPT, JSCRIPT, VBS, and VBSCRIPT. Other
values that include the version of the language used, such as JavaScript1.1, may also be possible.

STYLE See “Core Attributes Reference,” earlier in this appendix.

TITLE See “Core Attributes Reference,” earlier in this appendix.

Attribute and Event Support

NETSCAPE 4 CLASS, ID, LANG, and STYLE are implied.

INTERNET EXPLORER 4 All attributes and events except DIR.

Event Handlers
See “Events Reference,” earlier in this appendix.

Examples

This line contains a <S>misstake </S> .

<S ID="strike1"

onmouseover="this.style.color='red'"

onmouseout="this.style.color='black'"> Fastball </S>

Compatibility

HTML 4 (transitional)
Internet Explorer 2, 3, 4, and 5
Netscape 3, 4, and 4.5
WebTV

Notes

■ This element should act the same as the <STRIKE> element.

■ This HTML 3 element was eventually adopted by Netscape and Microsoft and was later
incorporated into the HTML 4.0 transitional specification.

■ The strict HTML 4.0 specification does not include the <S> element or the <STRIKE>
element. It is possible to indicate strikethrough text using a style sheet.

<SAMP> (Sample Text)
This element is used to indicate sample text. Enclosed text is generally rendered in a
monospaced font.

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 855

A
P

P
EN

D
IX

ES

Syntax

<SAMP

CLASS="class name(s)"
DIR="LTR | RTL"

ID="unique alphanumeric string"
LANG="language code"
STYLE="style information"

TITLE="advisory text"

onclick="script"
ondblclick="script"

onkeydown="script"
onkeypress="script"

onkeyup="script"
onmousedown="script"
onmousemove="script"

onmouseout="script"

onmouseover="script"
onmouseup="script">

</SAMP>

Attributes and Events Defined by Internet Explorer 4

LANGUAGE="JAVASCRIPT | JSCRIPT | VBS | VBSCRIPT"

ondragstart="script"

onhelp="script"

onselectstart="script"

Attributes

CLASS See “Core Attributes Reference,” earlier in this appendix.

DIR See “Language Reference,” earlier in this appendix.

ID See “Core Attributes Reference,” earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

LANGUAGE In the Microsoft implementation, this attribute specifies the scripting language
to be used with an associated script bound to the element, typically through an event handler
attribute. Possible values may include JAVASCRIPT, JSCRIPT, VBS, and VBSCRIPT. Other
values that include the version of the language used, such as JavaScript1.1, may also be possible.

STYLE See “Core Attributes Reference,” earlier in this appendix.

856 H T M L : T h e C o m p l e t e R e f e r e n c e

TITLE See “Core Attributes Reference,” earlier in this appendix.

Attribute and Event Support

INTERNET EXPLORER 4 All attributes and events except DIR.

Event Handlers
See “Events Reference,” earlier in this appendix.

Example

Use the following salutation in all e-mail messages to the boss:

<SAMP>Please excuse the interruption, oh exalted manager. </SAMP>

Compatibility

HTML 2, 3.2, and 4
Internet Explorer 2, 3, 4, and 5
Netscape 1, 2, 3, 4, and 4.5
WebTV

Notes

■ As a logical element, <SAMP> is useful to bind style rules to.

■ The HTML 2.0 and 3.2 specifications supported no attributes for this element.

<SCRIPT> (Scripting)
This element encloses statements in a scripting language for client-side processing. Scripting
statements can either be included inline or loaded from an external file and may be commented
out to avoid execution by non-scripting-aware browsers.

Syntax

<SCRIPT

CHARSET="character set"
DEFER

EVENT="event name" (reserved)
FOR="element ID" (reserved)
LANGUAGE="scripting language name"

SRC="URL of script code"

TYPE="MIME type">

</SCRIPT>

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 857

A
P

P
EN

D
IX

ES

Attributes Defined by Internet Explorer 4

CLASS="class name(s)"

ID="unique alphanumeric identifier"

TITLE="advisory text"

Attributes

CHARSET This attribute defines the character encoding of the script. The value is a space-
and/or comma-delimited list of character sets as defined in RFC 2045. The default value is
ISO-8859-1.

CLASS This Microsoft-defined attribute does not make much sense given that scripting code
would not be bound by style sheet rules. Its meaning as defined in the “Core Attributes
Reference” in this appendix is unclear within the context of the <SCRIPT> element.

DEFER The presence of this attribute indicates that the browser may defer execution of the
script enclosed by the <SCRIPT> element. In practice, deferring code may be more up to the
position of the <SCRIPT> element or the contents. This attribute was added very late to the
HTML 4.0 specification and its support is currently minimal.

EVENT This Microsoft attribute is used to define a particular event that the script should react
to. It must be used in conjunction with the FOR attribute. Event names are the same as event
handler attributes, for example, onclick, ondblclick, and so on.

FOR The FOR attribute is used to define the name or ID of the element to which an event
defined by the EVENT attribute is related. For example, <SCRIPT EVENT="onclick"
FOR="button1" LANGUAGE="VBSCRIPT"> defines a VBScript that executes when a click
event is issued for an element named button1.

ID See “Core Attributes Reference,” earlier in this appendix.

LANGUAGE This attribute specifies the scripting language being used. The Netscape
implementation supports JavaScript. The Microsoft implementation supports JScript (a
JavaScript clone) as well as VBScript, which can be indicated by either VBS or VBSCRIPT.
Other values that include the version of the language used, such as JavaScript1.1 and
JavaScript1.2, may also be possible and are useful to exclude browsers from executing script
code that is not supported.

SRC This attribute specifies the URL of a file containing scripting code. Typically, files
containing JavaScript code have a .js extension, and a server attaches the appropriate MIME type;
if not, the TYPE attribute may be used to explicitly set the content type of the external script file.
The LANGUAGE attribute may also be helpful in determining this.

TITLE See “Core Attributes Reference,” earlier in this appendix.

858 H T M L : T h e C o m p l e t e R e f e r e n c e

TYPE This attribute should be set to the MIME type corresponding to the scripting language
used. For JavaScript, for example, this would be text/javascript. In practice, the LANGUAGE
attribute is the more common way to indicate which scripting language is in effect.

Attribute and Event Support

NETSCAPE 4 LANGUAGE and SRC.

INTERNET EXPLORER 4 All attributes and events except CHARSET and DEFER.

WEBTV LANGUAGE and SRC.

Event Handlers
There are no events directly associated with the <SCRIPT> element. However, the Microsoft
implementation does allow the EVENT attribute to be used to indicate what event a particular
script may be associated with.

Examples
<SCRIPT LANGUAGE="JavaScript">

<!-- alert("Hello World !!!"); // -->
</SCRIPT>

<!-- code in external file -->
<SCRIPT LANGUAGE="JavaScript1.2" SRC="superrollover.js">
</SCRIPT>

<SCRIPT FOR="myButton" EVENT="onclick"

LANGUAGE="JavaScript">
<!-- alert("I've been clicked!"); // -->

</SCRIPT>

<FORM>

<INPUT TYPE="BUTTON" NAME="myButton" VALUE="Click me">
</FORM>

Compatibility

HTML 4
Internet Explorer 3, 4, and 5
Netscape 2, 3, 4, and 4.5

Notes

■ It is common practice to “comment out” statements enclosed by the <SCRIPT> element.
Without commenting, scripts are displayed as page content by browsers that do not
support scripting. The particular comment style may be dependent on the language
being used. For example, in JavaScript use the following style.

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 859

A
P

P
EN

D
IX

ES

<SCRIPT LANGUAGE="JavaScript">

<!-- JavaScript code here // -- >

</SCRIPT>

and in VBScript use

<SCRIPT LANGUAGE="VBSCRIPT">

<!-- VBScript code here // -->

</SCRIPT>

■ The HTML 3.2 specification defined a placeholder <SCRIPT> element, but otherwise
the element is new to HTML 4.

■ Refer to the <NOSCRIPT> element in this appendix to see how content may be
identified for non-scripting-aware browsers.

<SELECT> (Selection List)
This element defines a selection list within a form. Depending on the form of the selection list,
the control allows the user to select one or more list options.

Syntax

<SELECT

CLASS="class name(s)"
DIR="LTR | RTL"

DISABLED
ID="unique alphanumeric identifier"
LANG="language code"

MULTIPLE

NAME="unique alphanumeric name"
SIZE="number"

STYLE="style information"
TABINDEX="number"

TITLE="advisory text"
onblur="script"
onchange="script"

onclick="script"

ondblclick="script"
onfocus="script"
onkeydown="script"

onkeypress="script"
onkeyup="script"

onmousedown="script"

onmousemove="script"
onmouseout="script"

onmouseover="script"

860 H T M L : T h e C o m p l e t e R e f e r e n c e

onmouseup="script">

<OPTION> elements

</SELECT>

Attributes and Events Defined by Internet Explorer 4

ACCESSKEY="character"

ALIGN="ABSBOTTOM | ABSMIDDLE | BASELINE | BOTTOM |
LEFT | MIDDLE | RIGHT | TEXTTOP | TOP"

DATAFLD="column name"
DATASRC="data source ID"
LANGUAGE="JAVASCRIPT | JSCRIPT | VBS | VBSCRIPT"

onafterupdate="script"

onbeforeupdate="script"
ondragstart="script"

onhelp="script"
onresize="script"

onrowenter="script"
onrowexit="script"

onselectstart="script"

Attributes Defined by WebTV

AUTOACTIVATE
BGCOLOR="color name | #RRGGBB"
EXCLUSIVE
SELCOLOR="color name | #RRGGBB"
TEXT="color name | #RRGGBB"
USESTYLE

Attributes

ACCESSKEY This Microsoft attribute specifies a keyboard navigation accelerator for the
element. Pressing ALT or a similar key in association with the specified character selects the form
control correlated with that key sequence. Page designers are forewarned to avoid key sequences
already bound to browsers.

ALIGN This Microsoft-specific attribute controls the alignment of the image with respect to
the content on the page. The default value is LEFT, but other values such as ABSBOTTOM,
ABSMIDDLE, BASELINE, BOTTOM, MIDDLE, RIGHT, TEXTTOP, and TOP may also be
supported. The meaning of these values should be similar to inserted objects such as images.

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 861

A
P

P
EN

D
IX

ES

AUTOACTIVATE In the WebTV implementation, this attribute causes the selection list control
to immediately activate when the user selects it, allowing the user to quickly use the arrow keys
to move up and down. Without this attribute, the process is a two-step procedure to select the
control and then move around.

BGCOLOR In the WebTV implementation, this attribute specifies the background color of the
selection list. The value for this attribute can be either a named color, such as red, or a color
specified in the hexadecimal #RRGGBB format, such as #FF0000.

CLASS See “Core Attributes Reference,” earlier in this appendix.

DATAFLD This attribute is used to indicate the column name in the data source that is bound
to the options in the <SELECT> element.

DATASRC The value of this attribute is set to an identifier indicating the data source to
pull data from.

DIR See “Language Reference,” earlier in this appendix.

DISABLED This attribute is used to turn off a form control so that elements will not be
submitted, and will not receive any focus from the keyboard or mouse. Disabled form controls
will not be part of the tabbing order. The browser may also gray out the form that is disabled, in
order to indicate to the user that the form control is inactive. This attribute requires no value.

EXCLUSIVE In the WebTV implementation, this attribute prevents duplicate entries in the
selection list. The attribute requires no value.

ID See “Core Attributes Reference,” earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

LANGUAGE In the Microsoft implementation, this attribute specifies the scripting language
to be used with an associated script bound to the element, typically through an event handler
attribute. Possible values may include JAVASCRIPT, JSCRIPT, VBS, and VBSCRIPT. Other
values that include the version of the language used, such as JavaScript1.1, may also be possible.

MULTIPLE This attribute allows the selection of multiple items in the selection list. The
default is single-item selection.

NAME This attribute allows a form control to be assigned a name so that it can be referenced
by a scripting language. NAME is supported by older browsers such as Netscape 2-generation
browsers, but the W3C encourages the use of the ID attribute. For compatibility purposes both
may have to be used.

SELCOLOR In the WebTV implementation, this attribute specifies the background color
for selected items. Its value can be either a named color, such as green, or a color specified
in the hexadecimal #RRGGBB format, such as #00FF00. The default for this attribute in WebTV
is #EAEAEA.

862 H T M L : T h e C o m p l e t e R e f e r e n c e

SIZE This attribute sets the number of visible items in the selection list. When the MULTIPLE
attribute is not present, only one entry should show; however, when MULTIPLE is present, this
attribute is useful to set the size of the scrolling list box.

STYLE See “Core Attributes Reference,” earlier in this appendix.

TABINDEX This attribute takes a numeric value indicating the position of the form control in
the tabbing index for the form. Tabbing proceeds from the lowest positive TABINDEX value to
the highest. Negative values for TABINDEX will leave the form control out of the tabbing order.
When tabbing is not explicitly set, the browser may tab through items in the order they are
encountered. Form controls that are disabled due to the presence of the DISABLED attribute
will not be part of the tabbing index, though read-only controls will be.

TEXT In the WebTV implementation, this attribute specifies the text color for items in the list.
Its value can be either a named color, such as blue, or a color specified in the hexadecimal
#RRGGBB format, such as #0000FF.

TITLE See “Core Attributes Reference,” earlier in this appendix.

USESTYLE This WebTV-specific attribute causes text to be rendered in the style in effect for
the page. The attribute requires no value.

Attribute and Event Support

NETSCAPE 4 MULTIPLE, NAME, SIZE, onblur, onchange, and onfocus. (CLASS, ID,
LANG, and STYLE are implied.)

INTERNET EXPLORER 4 All W3C-defined attributes and events except DIR and TITLE, and
all attributes and events defined by Internet Explorer 4.

WEBTV AUTOACTIVATE, BGCOLOR, MULTIPLE, NAME, SELCOLOR, SIZE, TEXT,
USESTYLE, onblur, onchange, onfocus, and onclick.

Event Handlers
See “Events Reference,” earlier in this appendix.

Examples

Choose your favorite colors
<SELECT MULTIPLE SIZE="2">

<OPTION>Red

<OPTION>Blue
<OPTION>Green

<OPTION>Yellow
</SELECT>

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 863

A
P

P
EN

D
IX

ES

Taco Choices

<SELECT NAME="tacomenu">
<OPTION VALUE="SuperChicken"> Chicken

<OPTION VALUE="Baja"> Fish
<OPTION VALUE="RX-Needed"> Carnitas

</SELECT>

Compatibility

HTML 2, 3.2, and 4
Internet Explorer 2, 3, 4, and 5
Netscape 1, 2, 3, 4, and 4.5
WebTV

Notes

■ The HTML 4.0 specification reserves the attributes DATAFLD and DATASRC for
future use.

■ The HTML 2.0 and 3.2 specifications define only MULTIPLE, NAME, and SIZE
attributes.

<SMALL> (Small Text)
This element renders the enclosed text one font size smaller than a document’s base font size
unless it is already set to the smallest size.

Syntax

<SMALL
CLASS="class name(s)"

DIR="LTR | RTL"

ID="unique alphanumeric string"
LANG="language code"

STYLE="style information"
TITLE="advisory text"

onclick="script"
ondblclick="script"
onkeydown="script"

onkeypress="script"

onkeyup="script"
onmousedown="script"
onmousemove="script"

onmouseout="script"
onmouseover="script"

onmouseup="script">

</SMALL>

864 H T M L : T h e C o m p l e t e R e f e r e n c e

Attributes and Events Defined by Internet Explorer 4

LANGUAGE="JAVASCRIPT | JSCRIPT | VBS | VBSCRIPT"

ondragstart="script"

onhelp="script"

onselectstart="script"

Attributes

CLASS See “Core Attributes Reference,” earlier in this appendix.

DIR See “Language Reference,” earlier in this appendix.

ID See “Core Attributes Reference,” earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

LANGUAGE In the Microsoft implementation, this attribute specifies the scripting language
to be used with an associated script bound to the element, typically through an event handler
attribute. Possible values may include JAVASCRIPT, JSCRIPT, VBS, and VBSCRIPT. Other
values that include the version of the language used, such as JavaScript1.1, may also be possible.

STYLE See “Core Attributes Reference,” earlier in this appendix.

TITLE See “Core Attributes Reference,” earlier in this appendix.

Attribute and Event Support

NETSCAPE 4 CLASS, ID, LANG, and STYLE are implied.

INTERNET EXPLORER 4 All attributes and events except DIR.

Event Handlers
See “Events Reference,” earlier in this appendix.

Examples

Here is some <SMALL>small text </SMALL>.

This element can be applied <SMALL><SMALL><SMALL>multiple

times </SMALL></SMALL></SMALL> to make things even smaller.

Compatibility

HTML 3.2 and 4
Internet Explorer 2, 3, 4, and 5

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 865

A
P

P
EN

D
IX

ES

Netscape 2, 3, 4, and 4.5
WebTV

Notes

■ The <SMALL> element can be used multiple times to decrease the size of text to a
greater degree. Using more than six <SMALL> elements together doesn’t make sense,
since browsers currently only support relative font sizes from 1 to 7. As style sheets
become more common, this element may fall out of favor.

■ The default base font size for a document is typically 3, although it can be changed with
the <BASEFONT> element.

<SPACER> (Extra Space)
This proprietary element specifies an invisible region for pushing content around a page.

Syntax (Defined by Netscape 3)

<SPACER

ALIGN="ABSMIDDLE | ABSBOTTOM | BASELINE | BOTTOM |
LEFT | MIDDLE | RIGHT | TEXTTOP | TOP"

HEIGHT="pixels"
SIZE="pixels"
TYPE="BLOCK | HORIZONTAL | VERTICAL"

WIDTH="pixels">

Attributes

ALIGN This attribute specifies the alignment of the spacer with respect to surrounding text.
It is only used with spacers with TYPE="BLOCK". The default value for the ALIGN attribute
is BOTTOM. The meanings of the ALIGN values are similar to those used with the
element.

HEIGHT This attribute specifies the height of the invisible region in pixels. It is only used with
spacers with TYPE="BLOCK".

SIZE Used with TYPE="BLOCK" and TYPE="HORIZONTAL" spacers, this attribute sets the
spacer’s width in pixels. Used with a TYPE="VERTICAL" spacer, this attribute is used to set the
spacer’s height.

TYPE This attribute indicates the type of invisible region. A HORIZONTAL spacer adds
horizontal space between words and objects. A VERTICAL spacer is used to add space between
lines. A BLOCK spacer defines a general-purpose positioning rectangle like an invisible image
that text may flow around.

WIDTH This attribute is used only with the TYPE="BLOCK" spacer and is used to set the
width of the region in pixels.

866 H T M L : T h e C o m p l e t e R e f e r e n c e

Attribute and Event Support

NETSCAPE 4 All attributes.

WEBTV All attributes.

Examples

A line of text with two <SPACER TYPE="HORIZONTAL" SIZE="20"> words

separated by 20 pixels. Here is a line of text .

<SPACER TYPE="VERTICAL" SIZE="50">

Here is another line of text with a large space between the two
lines. <SPACER ALIGN="LEFT" TYPE="BLOCK" HEIGHT="100" WIDTH="100"> This
is a bunch of text that flows around an invisible block region. You

could have easily performed this layout with a table.

Compatibility

Netscape 3, 4, and 4.5
WebTV

Notes

■ This element should not be used. If the effect of this element is required and style sheets
cannot be used, an invisible pixel trick may be a more appropriate choice. The invisible
pixel trick requires a transparent image, which is then resized with the HEIGHT and
WIDTH attributes of the element:

■ This is an empty element; no closing tag is allowed.

 (Text Span)
This element is used to group inline text, typically so scripting or style rules can be applied to
the content. As it has no preset or rendering meaning, this is the most useful inline element for
associating style and script with content.

Syntax

<SPAN

CLASS="class name(s)"
DATAFLD="column name" (reserved)
DATAFORMATAS="HTML | TEXT" (reserved)

DATASRC="data source ID" (reserved)

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 867

A
P

P
EN

D
IX

ES

DIR="LTR | RTL"

ID="unique alphanumeric string"
LANG="language code"

STYLE="style information"
TITLE="advisory text"
onclick="script"

ondblclick="script"

onkeydown="script"
onkeypress="script"

onkeyup="script"
onmousedown="script"

onmousemove="script"
onmouseout="script"
onmouseover="script"

onmouseup="script">

Attributes and Events Defined by Internet Explorer 4

LANGUAGE="JAVASCRIPT | JSCRIPT | VBS | VBSCRIPT"

ondragstart="script"

onhelp="script"

onselectstart="script"

Attributes

CLASS See “Core Attributes Reference,” earlier in this appendix.

DATAFLD This attribute is used to indicate the column name in the data source that is bound
to the contents of the element.

DATAFORMATAS This attribute indicates if the bound data is plain text (TEXT) or HTML
(HTML). The data bound with should be used to set the content of the element and
may include HTML markup.

DATASRC The value of this attribute is set to an identifier indicating the data source to
pull data from.

DIR See “Language Reference,” earlier in this appendix.

ID See “Core Attributes Reference,” earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

868 H T M L : T h e C o m p l e t e R e f e r e n c e

LANGUAGE In the Microsoft implementation, this attribute specifies the scripting language
to be used with an associated script bound to the element, typically through an event handler
attribute. Possible values may include JAVASCRIPT, JSCRIPT, VBS, and VBSCRIPT. Other
values that include the version of the language used, such as JavaScript1.1, may also be possible.

STYLE See “Core Attributes Reference,” earlier in this appendix.

TITLE See “Core Attributes Reference,” earlier in this appendix.

Attribute and Event Support

NETSCAPE 4 CLASS, ID, LANG, and STYLE.

INTERNET EXPLORER 4 All attributes and events except DIR.

Event Handlers
See “Events Reference,” earlier in this appendix.

Examples

Here is some very

strange text.

<SPAN ID="toggletext"

onclick="this.style.color='red'"
ondblclick="this.style.color='black'">

Click and Double Click Me

Compatibility

HTML 4
Internet Explorer 3, 4, and 5
Netscape 4 and 4.5

Notes

■ The HTML 4.0 specification reserves the DATAFLD, DATAFORMATAS, and
DATASRC attributes for future use. Internet Explorer 4 supports them.

■ Unlike <DIV>, as an inline element does not cause any line breaks.

<STRIKE> (Strikeout Text)
This element is used to indicate strikethrough text, namely text with a line drawn through it. The
<S> element provides shorthand notation for this element.

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 869

A
P

P
EN

D
IX

ES

Syntax (Transitional Only)

<STRIKE

CLASS="class name(s)"
DIR="LTR | RTL"

ID="unique alphanumeric string"
LANG="language code"
STYLE="style information"

TITLE="advisory text"

onclick="script"
ondblclick="script"

onkeydown="script"
onkeypress="script"

onkeyup="script"
onmousedown="script"
onmousemove="script"

onmouseout="script"

onmouseover="script"
onmouseup="script">

</STRIKE>

Attributes and Events Defined by Internet Explorer 4

LANGUAGE="JAVASCRIPT | JSCRIPT | VBS | VBSCRIPT"

ondragstart="script"

onhelp="script"

onselectstart="script"

Attributes

CLASS See “Core Attributes Reference,” earlier in this appendix.

DIR See “Language Reference,” earlier in this appendix.

ID See “Core Attributes Reference,” earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

LANGUAGE In the Microsoft implementation, this attribute specifies the scripting language
to be used with an associated script bound to the element, typically through an event handler
attribute. Possible values may include JAVASCRIPT, JSCRIPT, VBS, and VBSCRIPT. Other
values that include the version of the language used, such as JavaScript1.1, may also be possible.

STYLE See “Core Attributes Reference,” earlier in this appendix.

870 H T M L : T h e C o m p l e t e R e f e r e n c e

TITLE See “Core Attributes Reference,” earlier in this appendix.

Attribute and Event Support

NETSCAPE 4 CLASS, ID, LANG, and STYLE are implied.

INTERNET EXPLORER 4 All attributes and events except DIR.

Event Handlers
See “Events Reference,” earlier in this appendix.

Example

This line contains a spelling <STRIKE>misstake </STRIKE> mistake.

Compatibility

HTML 3.2 and 4 (transitional)
Internet Explorer 2, 3, 4, and 5
Netscape 3, 4, and 4.5
WebTV

Notes

■ This element should act the same as the <S> element.

■ The strict HTML 4.0 specification does not include the <STRIKE> element nor the <S>
element. It is possible to indicate strikethrough text using a style sheet.

 (Strong Emphasis)
This element indicates strongly emphasized text. It is usually rendered in a bold typeface, but is
a logical element rather than a physical one.

Syntax

<STRONG

CLASS="class name(s)"
DIR="LTR | RTL"

ID="unique alphanumeric string"
LANG="language code"
STYLE="style information"

TITLE="advisory text"

onclick="script"
ondblclick="script"

onkeydown="script"

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 871

A
P

P
EN

D
IX

ES

onkeypress="script"

onkeyup="script"
onmousedown="script"

onmousemove="script"
onmouseout="script"
onmouseover="script"

onmouseup="script">

Attributes and Events Defined by Internet Explorer 4

LANGUAGE="JAVASCRIPT | JSCRIPT | VBS | VBSCRIPT"

ondragstart="script"

onhelp="script"

onselectstart="script"

Attributes

CLASS See “Core Attributes Reference,” earlier in this appendix.

DIR See “Language Reference,” earlier in this appendix.

ID See “Core Attributes Reference,” earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

LANGUAGE In the Microsoft implementation, this attribute specifies the scripting language
to be used with an associated script bound to the element, typically through an event handler
attribute. Possible values may include JAVASCRIPT, JSCRIPT, VBS, and VBSCRIPT. Other
values that include the version of the language used, such as JavaScript1.1, may also be possible.

STYLE See “Core Attributes Reference,” earlier in this appendix.

TITLE See “Core Attributes Reference,” earlier in this appendix.

Attribute and Event Support

NETSCAPE 4 CLASS, ID, LANG, and STYLE are implied.

INTERNET EXPLORER 4 All attributes and events except DIR.

Event Handlers
See “Events Reference,” earlier in this appendix.

872 H T M L : T h e C o m p l e t e R e f e r e n c e

Examples

It is really important to pay attention.

<STRONG STYLE="font-family: impact; font-size: 28pt">

Important Info

Compatibility

HTML 2, 3.2, and 4
Internet Explorer 2, 3, 4, and 5
Netscape 1, 2, 3, 4, and 4.5
WebTV

Notes

■ This element generally renders as bold text. As a logical element, however,
is useful to bind style rules to.

■ As compared to , this element does have meaning and voice browsers may state
 enclosed text in a different voice than text that is enclosed by .

<STYLE> (Style Information)
This element is used to surround style sheet rules for a document. This element should be found
only in the <HEAD> of a document. Style rules within a document’s <BODY> element should
be set with the style attribute for a particular element.

Syntax

<STYLE

DIR="LTR | RTL"
LANG="language code"

MEDIA="ALL | PRINT | SCREEN | others"
TITLE="advisory text"
TYPE="MIME Type">

</STYLE>

Attributes Defined by Internet Explorer 4

DISABLED

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 873

A
P

P
EN

D
IX

ES

Attributes

DIR This attribute is used to set the text direction of the title for the style sheet, either left to
right (LTR) or right to left (RTL).

DISABLED This Microsoft-defined attribute is used to disable a style sheet. The presence of
the attribute is all that is required to disable the style sheet. In conjunction with scripting, this
attribute could be used to turn on and off various style sheets in a document.

LANG The value of this attribute is a language code, like all other LANG attributes; however,
this attribute defines the language of the TITLE attribute rather than the content of the element.

MEDIA This attribute specifies the destination medium for the style information. The value of
the attribute may be a single media descriptor such as SCREEN or a comma-separated list.
Possible values for this attribute include ALL, AURAL, BRAILLE, PRINT, PROJECTION, and
SCREEN. Other values may also be defined, depending on the browser. Internet Explorer
supports ALL, PRINT, and SCREEN as values for this attribute.

TITLE This attribute associates an informational title with the style sheet.

TYPE This attribute is used to define the type of style sheet. The value of the attribute should
be the MIME type of the style sheet language used. The most common current value for this
attribute is text/css, which indicates a Cascading Style Sheet format.

Attribute and Event Support

NETSCAPE 4 TYPE.

INTERNET EXPLORER 4 DISABLED, MEDIA (ALL | PRINT | SCREEN), TITLE, and
TYPE.

Event Handlers
None.

Example

<HTML>
<HEAD>

<TITLE> Style Sheet Example </TITLE>

<STYLE TYPE="text/css">
<!--

BODY {background: black; color: white; font: 12pt Helvetica}
H1 {color: red; font: 14pt Impact}

-->

874 H T M L : T h e C o m p l e t e R e f e r e n c e

</STYLE>

</HEAD>

<BODY>

<H1>A 14-point red Impact heading on a black background </H1>
Regular body text, which is 12 point white Helvetica
</BODY>

</HTML>

Compatibility

HTML 4
Internet Explorer 3, 4, and 5
Netscape 4 and 4.5

Notes

■ Style information can also be specified in external style sheets, as defined by the
<LINK> element.

■ Style information can also be associated with a particular element using the STYLE
attribute.

■ Style rules are generally commented out within the <STYLE> element to avoid
interpretation by nonconforming browsers.

<SUB> (Subscript)
This element renders its content as subscripted text.

Syntax

<SUB

CLASS="class name(s)"
DIR="LTR | RTL"

ID="unique alphanumeric string"
LANG="language code"

STYLE="style information"
TITLE="advisory text"
onclick="script"

ondblclick="script"

onkeydown="script"
onkeypress="script"

onkeyup="script"

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 875

A
P

P
EN

D
IX

ES

onmousedown="script"

onmousemove="script"
onmouseout="script"

onmouseover="script"
onmouseup="script">

</SUB>

Attributes and Events Defined by Internet Explorer 4

LANGUAGE="JAVASCRIPT | JSCRIPT | VBS | VBSCRIPT"

ondragstart="script"

onhelp="script"

onselectstart="script"

Attributes

CLASS See “Core Attributes Reference,” earlier in this appendix.

DIR See “Language Reference,” earlier in this appendix.

ID See “Core Attributes Reference,” earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

LANGUAGE In the Microsoft implementation, this attribute specifies the scripting language to
be used with an associated script bound to the element, typically through an event handler
attribute. Possible values may include JAVASCRIPT, JSCRIPT, VBS, and VBSCRIPT. Other
values that include the version of the language used, such as JavaScript1.1, may also be possible.

STYLE See “Core Attributes Reference,” earlier in this appendix.

TITLE See “Core Attributes Reference,” earlier in this appendix.

Attribute and Event Support

NETSCAPE 4 CLASS, ID, LANG, and STYLE are implied.

INTERNET EXPLORER 4 All attributes and events except DIR.

Event Handlers
See “Events Reference,” earlier in this appendix.

876 H T M L : T h e C o m p l e t e R e f e r e n c e

Example

Here is some _{subscripted} text.

Compatibility

HTML 3.2 and 4
Internet Explorer 2, 3, 4, and 5
Netscape 2, 3, 4, and 4.5
WebTV

Notes
The HTML 3.2 specification supports no attributes for the <SUB> element.

<SUP> (Superscript)
This element renders its content as superscripted text.

Syntax

<SUP

CLASS="class name(s)"
DIR="LTR | RTL"

ID="unique alphanumeric string"
LANG="language code"
STYLE="style information"

TITLE="advisory text"

onclick="script"
ondblclick="script"

onkeydown="script"
onkeypress="script"

onkeyup="script"
onmousedown="script"
onmousemove="script"

onmouseout="script"

onmouseover="script"
onmouseup="script">

</SUP>

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 877

A
P

P
EN

D
IX

ES

Attributes and Events Defined by Internet Explorer 4

LANGUAGE="JAVASCRIPT | JSCRIPT | VBS | VBSCRIPT"

ondragstart="script"

onhelp="script"

onselectstart="script"

Attributes

CLASS See “Core Attributes Reference,” earlier in this appendix.

DIR See “Language Reference,” earlier in this appendix.

ID See “Core Attributes Reference,” earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

LANGUAGE In the Microsoft implementation, this attribute specifies the scripting language
to be used with an associated script bound to the element, typically through an event handler
attribute. Possible values may include JAVASCRIPT, JSCRIPT, VBS, and VBSCRIPT. Other
values that include the version of the language used, such as JavaScript1.1, may also be possible.

STYLE See “Core Attributes Reference,” earlier in this appendix.

TITLE See “Core Attributes Reference,” earlier in this appendix.

Attribute and Event Support

NETSCAPE 4 CLASS, ID, LANG, and STYLE are implied.

INTERNET EXPLORER 4 All attributes and events except DIR.

Event Handlers
See “Events Reference,” earlier in this appendix.

Example

Here is some ^{superscripted} text.

Compatibility

HTML 3.2 and 4
Internet Explorer 2, 3, 4, and 5
Netscape 2, 3, 4, and 4.5
WebTV

878 H T M L : T h e C o m p l e t e R e f e r e n c e

Notes
The HTML 3.2 specification defines no attributes for this element.

<TABLE> (Table)
This element is used to define a table. Tables are used to organize data as well as to provide
structure for laying out pages.

Syntax

<TABLE

ALIGN="CENTER | LEFT | RIGHT" (transitional)
BGCOLOR="color name | #RRGGBB" (transitional)

BORDER="pixels"
CELLPADDING="pixels"
CELLSPACING="pixels"

CLASS="class name(s)"

DATAPAGESIZE="number of records to display"
DIR="LTR | RTL"

FRAME="ABOVE | BELOW | BORDER | BOX | HSIDES |
LHS | RHS | VOID | VSIDES"

ID="unique alphanumeric identifier"
LANG="language code"
RULES="ALL | COLS | GROUPS | NONE | ROWS"

STYLE="style information"

SUMMARY="summary information"
TITLE="advisory text"
WIDTH="percentage | pixels"

onclick="script"
ondblclick="script"

onkeydown="script"

onkeypress="script"
onkeyup="script"

onmousedown="script"
onmousemove="script"
onmouseout="script"

onmouseover="script"
onmouseup="script">

</TABLE>

Attributes and Events Defined by Internet Explorer 4

BACKGROUND="URL"

BORDERCOLOR="color name | #RRGGBB"

BORDERCOLORDARK="color name | #RRGGBB"

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 879

A
P

P
EN

D
IX

ES

BORDERCOLORLIGHT="color name | #RRGGBB"

COLS="number"
DATASRC="data source ID"

HEIGHT="percentage | pixels"
LANGUAGE="JAVASCRIPT | JSCRIPT | VBS | VBSCRIPT"
onafterupdate="script"

onbeforeupdate="script"

onblur="script"
ondragstart="script"

onfocus="script"
onhelp="script"

onresize="script"
onrowenter="script"
onrowexit="script"

onselectstart="script"

Attributes Defined by Netscape 4

BACKGROUND="URL of image" file
BORDERCOLOR="color name | #RRGGBB"
COLS="number of columns"
HEIGHT="pixels"
HSPACE="pixels"
VSPACE="pixels"

Attributes Defined by WebTV

ALIGN="BLEEDLEFT | BLEEDRIGHT | JUSTIFY"
BACKGROUND="URL of image file"
CELLBORDER="pixels"
GRADANGLE="gradient angle"
GRADCOLOR="color value"
HREF="URL"
HSPACE="pixels"
NAME="string"
NOWRAP
TRANSPARENCY="number (0-100)"
VSPACE="pixels"

Attributes

ALIGN This attribute specifies the alignment of the table with respect to surrounding text. The
HTML 4.0 specification defines CENTER, LEFT, and RIGHT. WebTV also defines BLEEDLEFT
and BLEEDRIGHT, which cause the table to bleed over the right and left margins of the page,

880 H T M L : T h e C o m p l e t e R e f e r e n c e

and JUSTIFY, which is used to justify the table within the browser window. Some browsers may
also support alignment values, such as ABSMIDDLE, that are common to block objects.

BACKGROUND This nonstandard attribute, which is supported by Internet Explorer,
Netscape, and WebTV, specifies the URL of a background image for the table. The image is tiled
if it is smaller than the table dimensions. Netscape displays the background image in each table
cell, rather than behind the complete table as Internet Explorer does.

BGCOLOR This attribute specifies a background color for a table. Its value can be either
a named color, such as red, or a color specified in the hexadecimal #RRGGBB format, such
as #FF0000.

BORDER This attribute specifies in pixels the width of a table’s borders. A value of 0 makes a
borderless table, which is useful for graphic layout.

BORDERCOLOR This attribute, supported by Internet Explorer 4 and Netscape 4, is used to
set the border color for a table. The attribute should only be used with a positive value for the
BORDER attribute. The value of the attribute can be either a named color, such as green, or a
color specified in the hexadecimal #RRGGBB format, such as #00FF00. Internet Explorer colors
the entire table border, including cell borders; Netscape only colors the outer border of the table.

BORDERCOLORDARK This Internet Explorer–specific attribute specifies the darker of two
border colors used to create a three-dimensional effect for cell borders. It must be used with the
BORDER attribute set to a positive value. The attribute value can be either a named color, such
as blue, or a color specified in the hexadecimal #RRGGBB format, such as #00FF00.

BORDERCOLORLIGHT This Internet Explorer–specific attribute specifies the lighter of two
border colors used to create a three-dimensional effect for cell borders. It must be used with the
BORDER attribute set to a positive value. The attribute value can be either a named color, such
as red, or a color specified in the hexadecimal #RRGGBB format, such as #FF0000.

CELLBORDER In the WebTV implementation, this attribute sets the width in pixels of the
border between table cells. If this value is not present, the default border as specified by the
BORDER attribute is used.

CELLPADDING This attribute sets the width in pixels between the edge of a cell and
its content.

CELLSPACING This attribute sets the width in pixels between individual cells.

CLASS See “Core Attributes Reference,” earlier in this appendix.

COLS This attribute specifies the number of columns in the table and is used to help quickly
calculate the size of the table. This attribute was part of the preliminary specification of HTML 4,
but was later dropped. A few browsers, notably Netscape 4, already support it.

DATAPAGESIZE The value of this Microsoft-specific attribute is the number of records that
can be displayed in the table when data binding is used.

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 881

A
P

P
EN

D
IX

ES

DATASRC The value of this Microsoft-specific attribute is an identifier indicating the data
source to pull data from.

DIR See “Language Reference,” earlier in this appendix.

FRAME This attribute specifies which edges of a table are to display a border frame. A value
of ABOVE indicates only the top edge; BELOW indicates only the bottom edge; and BORDER
and BOX indicate all edges, which is the default when the BORDER attribute is a positive
integer. A value of HSIDES indicates only the top and bottom edges should be displayed; LHS
indicates the left-hand edge should be displayed; RHS indicates the right-hand edge should be
displayed; VSIDES indicates the left and right edges should both be displayed; and VOID
indicates no border should be displayed.

GRADANGLE This WebTV-specific attribute defines the gradient angle for a table, ranging from
90 to −90 degrees. GRADANGLE="0" yields a left-to-right gradient, while GRADANGLE="90"
yields a top-to-bottom gradient. The beginning color of the gradient is defined by the BGCOLOR
attribute, and the ending color is defined by the GRADCOLOR attribute.

GRADCOLOR This WebTV-specific attribute defines the end color of a table’s background
gradient, in conjunction with the gradient angle defined by the GRADANGLE attribute and the
starting color defined by the BGCOLOR attribute.

HEIGHT For Netscape 4, this attribute allows the author to specify the height of the table in
pixels. Internet Explorer 4 allows both pixels and percentages.

HREF This WebTV-specific attribute is used to make the entire table function as a hyperlink
anchor to the specified URL.

HSPACE This Netscape-specified attribute indicates the horizontal space in pixels between
the table and surrounding content. This attribute is also supported by WebTV but, oddly, not by
Internet Explorer.

ID See “Core Attributes Reference,” earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

LANGUAGE In the Microsoft implementation, this attribute specifies the scripting language
to be used with an associated script bound to the element, typically through an event handler
attribute. Possible values may include JAVASCRIPT, JSCRIPT, VBS, and VBSCRIPT. Other
values that include the version of the language used, such as JavaScript1.1, may also be possible.

NAME This WebTV attribute is used to assign the table a unique name. It is synonymous with
the ID attribute.

NOWRAP This WebTV-specific attribute keeps table rows from wrapping if they extend
beyond the right margin. The attribute requires no value.

RULES This attribute controls the display of dividing rules within a table. A value of ALL
specifies dividing rules for rows and columns. A value of COLS specifies dividing rules for

882 H T M L : T h e C o m p l e t e R e f e r e n c e

columns only. A value of GROUPS specifies horizontal dividing rules between groups of table
cells defined by the <THEAD>, <TBODY>, <TFOOT>, or <COLGROUP> elements. A value of
ROWS specifies dividing rules for rows only. A value of NONE indicates no dividing rules and
is the default.

STYLE See “Core Attributes Reference,” earlier in this appendix.

SUMMARY This attribute is used to provide a text summary of the table’s purpose and
structure. This element is used for accessibility, and its presence is important for nonvisual
user agents.

TITLE See “Core Attributes Reference,” earlier in this appendix.

TRANSPARENCY This WebTV-specific attribute specifies the degree of transparency of the
table. Values range from 0 (totally opaque) to 100 (totally transparent). A value of 50 is optimized
for fast rendering.

VSPACE This Netscape attribute indicates the vertical space in pixels between the table
and surrounding content. This attribute is also supported by WebTV but, oddly, not by
Internet Explorer.

WIDTH This attribute specifies the width of the table either in pixels or as a percentage value
of the enclosing window.

Attribute and Event Support

NETSCAPE 4 ALIGN (LEFT | RIGHT), BGCOLOR, BORDER, CELLPADDING,
CELLSPACING, COLS, HEIGHT, HSPACE, VSPACE, and WIDTH. (CLASS, ID, LANG,
and STYLE are implied.)

INTERNET EXPLORER 4 All W3C-defined attributes and events except DIR and
SUMMARY, and all attributes and events defined by Internet Explorer 4.

WEBTV ALIGN (BLEEDLEFT | BLEEDRIGHT | CENTER | LEFT | RIGHT),
BACKGROUND, BGCOLOR, BORDER, CELLPADDING, CELLSPACING,
GRADANGLE, GRADCOLOR, HSPACE, ID, NOWRAP, TRANSPARENCY,
and WIDTH.

Event Handlers
See “Events Reference,” earlier in this appendix.

Examples

<TABLE BGCOLOR="WHITE" BORDER="2">

<TR>
<TD>Cell 1 </TD>

<TD>Cell 2 </TD>
<TD>Cell 3 </TD>

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 883

A
P

P
EN

D
IX

ES

<TD>Cell 4 </TD>

</TR>

<TR>

<TD>Cell 5 </TD>
<TD>Cell 6 </TD>

</TR>

</TABLE>

<TABLE RULES="ALL" BGCOLOR="YELLOW">
<CAPTION>Widgets by Area </CAPTION>

<THEAD ALIGN="CENTER" BGCOLOR="GREEN" VALIGN="CENTER">
<TD>This is a Header </TD>

</THEAD>

<TFOOT ALIGN="RIGHT" BGCOLOR="RED" VALIGN="BOTTOM">
<TD>This is part of the footer. </TD>

<TD>This is also part of the footer. </TD>

</TFOOT>

<TBODY>
<TR>

<TD> </TD>
<TH>Regular Widget </TH>

<TH>Super Widget </TH>

</TR>

<TR>

<TH>West Coast </TH>
<TD>10</TD>
<TD>12</TD>

</TR>

<TR>

<TH>East Coast </TH>

<TD>1</TD>
<TD>20</TD>

</TR>
</TBODY>

</TABLE>

Compatibility

HTML 3.2 and 4
Internet Explorer 2, 3, 4, and 5

884 H T M L : T h e C o m p l e t e R e f e r e n c e

Netscape 1.1, 2, 3, 4, and 4.5
WebTV

Notes

■ In addition to displaying tabular data, tables are used to support graphic layout and
design.

■ The HTML 4.0 specification reserves the future use of the DATAFLD,
DATAFORMATAS, and DATASRC attributes for the <TABLE> element.

■ The HTML 3.2 specification defines only the ALIGN, BORDER, CELLPADDING,
CELLSPACING, and WIDTH attributes for the <TABLE> element.

■ The COLS attribute may provide an undesirable result under Netscape, which
assumes the size of each column in the table is exactly the same.

<TBODY> (Table Body)
This element is used to group the rows within the body of a table so that common alignment and
style defaults can be set easily for numerous cells.

Syntax

<TBODY ALIGN="CENTER | CHAR | JUSTIFY | LEFT | RIGHT"

CHAR="character"
CHAROFF="offset"

CLASS="class name(s)"
DIR="LTR | RTL"
ID="unique alphanumeric identifier"

LANG="language code"

STYLE="style information"
TITLE="advisory text"

VALIGN="BASELINE | BOTTOM | MIDDLE | TOP"
onclick="script"

ondblclick="script"
onkeydown="script"
onkeypress="script"

onkeyup="script"

onmousedown="script"
onmousemove="script"
onmouseout="script"

onmouseover="script"
onmouseup="script">

</TBODY>

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 885

A
P

P
EN

D
IX

ES

Attributes and Events Defined by Internet Explorer 4

BGCOLOR="color name | #RRGGBB"

LANGUAGE="JAVASCRIPT | JSCRIPT | VBS | VBSCRIPT"
VALIGN="CENTER"

ondragstart="script"
onhelp="script"

onselectstart="script"

Attributes

ALIGN This attribute is used to align the contents of the cells within the <TBODY> element.
Common values are CENTER, JUSTIFY, LEFT, and RIGHT. The HTML 4.0 specification also
defines a value of CHAR. When ALIGN is set to CHAR, the attribute CHAR must be present
and set to the character to which cells should be aligned. A common use of this approach would
be to set cells to align on a decimal point.

BGCOLOR This attribute specifies a background color for the cells within the <TBODY>
element. Its value can be either a named color, such as red, or a color specified in the
hexadecimal #RRGGBB format, such as #FF0000.

CHAR This attribute is used to define the character to which element contents are aligned
when the ALIGN attribute is set to the CHAR value.

CHAROFF This attribute contains an offset as a positive or negative integer to align characters
as related to the CHAR value. A value of 2, for example, would align characters in a cell two
characters to the right of the character defined by the CHAR attribute.

CLASS See “Core Attributes Reference,” earlier in this appendix.

DIR See “Language Reference,” earlier in this appendix.

ID See “Core Attributes Reference,” earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

LANGUAGE In the Microsoft implementation, this attribute specifies the scripting language
to be used with an associated script bound to the element, typically through an event handler
attribute. Possible values may include JAVASCRIPT, JSCRIPT, VBS, and VBSCRIPT. Other
values that include the version of the language used, such as JavaScript1.1, may also be possible.

STYLE See “Core Attributes Reference,” earlier in this appendix.

TITLE See “Core Attributes Reference,” earlier in this appendix.

886 H T M L : T h e C o m p l e t e R e f e r e n c e

VALIGN This attribute is used to set the vertical alignment for the table cells with the
<TBODY> element. HTML 4 defines BASELINE, BOTTOM, MIDDLE, and TOP. Internet
Explorer replaces MIDDLE with CENTER; the effect should be the same.

Attribute and Event Support

INTERNET EXPLORER 4 All W3C-defined attributes and events except CHAR, CHAROFF,
and DIR. (Note: Internet Explorer 4 does not support the CHAR and JUSTIFY values for
ALIGN, nor the MIDDLE value for VALIGN.)

Event Handlers
See “Events Reference,” earlier in this appendix.

Example

<TABLE RULE="ALL" BGCOLOR="YELLOW">

<TBODY ALIGN="CENTER" BGCOLOR="RED" VALIGN="BASELINE">
<TR>

<TD> </TD>
<TH>Regular Widget </TH>
<TH>Super Widget </TH>

</TR>

<TR>
<TH>West Coast </TH>

<TD>10</TD>
<TD>12</TD>

</TR>

<TR>
<TH>East Coast </TH>

<TD>1</TD>

<TD>20</TD>
</TR>

</TBODY>

</TABLE>

Compatibility

HTML 4
Internet Explorer 4 and 5

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 887

A
P

P
EN

D
IX

ES

Notes
This element is contained by the <TABLE> element and contains one or more table rows as
indicated by the <TR> element.

<TD> (Table Data)
This element specifies a data cell in a table. The element should occur within a table row, as
defined by the <TR> element.

Syntax

<TD

ABBR="abbreviation"
ALIGN="CENTER | JUSTIFY | LEFT | RIGHT"

AXIS="group name"
BGCOLOR="color name | #RRGGBB" (transitional)
CHAR="character"

CHAROFF="offset"

CLASS="CLASS name"
COLSPAN="number"

DIR="LTR | RTL"
HEADERS="space-separated list of associated header

cells' ID values"
HEIGHT="pixels" (transitional)
ID="unique alphanumeric identifier"

LANG="language code"

NOWRAP (transitional)
ROWSPAN="number"
SCOPE="COL | COLGROUP | ROW | ROWGROUP"

STYLE="style information"
TITLE="advisory text"

VALIGN="BASELINE | BOTTOM | MIDDLE | TOP"

WIDTH="pixels" (transitional)
onclick="script"

ondblclick="script"
onkeydown="script"
onkeypress="script"

onkeyup="script"
onmousedown="script"

onmousemove="script"

onmouseout="script"
onmouseover="script"

onmouseup="script">

</TD>

888 H T M L : T h e C o m p l e t e R e f e r e n c e

Attributes and Events Defined by Internet Explorer 4

BACKGROUND="URL of image file"

BORDERCOLOR="color name | #RRGGBB"
BORDERCOLORDARK="color name | #RRGGBB"

BORDERCOLORLIGHT="color name | #RRGGBB"
LANGUAGE="JAVASCRIPT | JSCRIPT | VBS | VBSCRIPT"
VALIGN="CENTER"

onafterupdate="script"

onbeforeupdate="script"
onblur="script"

ondragstart="script"
onfocus="script"

onhelp="script"
onresize="script"
onrowenter="script"

onrowexit="script"

onscroll="script"
onselectstart="script"

Attributes Defined by Netscape 4

BACKGROUND="URL of image file"
BORDERCOLOR="color name | #RRGGBB"

Attributes Defined by WebTV

ABSHEIGHT="pixels"
ABSWIDTH="pixels"
BACKGROUND="URL of image file"
GRADANGLE="gradient angle"
GRADCOLOR="color"
MAXLINES="number"
TRANSPARENCY="number (0-100)"

Attributes

ABBR The value of this attribute is an abbreviated name for a header cell. This may be useful
when attempting to display large tables on small screens.

ABSHEIGHT This WebTV-specific attribute sets the absolute height of a cell in pixels. Content
that does not fit within this height is clipped.

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 889

A
P

P
EN

D
IX

ES

ABSWIDTH This WebTV-specific attribute sets the absolute width of a cell in pixels. Content
that does not fit within this width is clipped.

ALIGN This attribute is used to align the contents of the cells within the <TBODY> element.
Common values are CENTER, JUSTIFY, LEFT, and RIGHT.

AXIS This attribute is used to provide a name for a group of related headers.

BACKGROUND This nonstandard attribute, which is supported by Internet Explorer,
Netscape and WebTV, specifies the URL of a background image for the table cell. The image is
tiled if it is smaller than the cell’s dimensions.

BGCOLOR This attribute specifies a background color for a table cell. Its value can be either
a named color, such as red, or a color specified in the hexadecimal #RRGGBB format, such as
#FF0000. (Netscape Navigator often fails to render a cell with a colored background unless a
nonbreaking space, at least, is inserted in the cell.)

BORDERCOLOR This attribute, supported by Internet Explorer and Netscape, is used to set
the border color for a table cell. The attribute should only be used with a positive value for the
BORDER attribute. The value of the attribute can be either a named color, such as green, or a
color specified in the hexadecimal #RRGGBB format, such as #00FF00.

BORDERCOLORDARK This Internet Explorer–specific attribute specifies the darker of two
border colors used to create a three-dimensional effect for a cell’s borders. It must be used with
the BORDER attribute set to a positive value. The attribute value can be either a named color,
such as blue, or a color specified in the hexadecimal #RRGGBB format, such as #00FF00.

BORDERCOLORLIGHT This Internet Explorer–specific attribute specifies the lighter of two
border colors used to create a three-dimensional effect for a cell’s borders. It must be used with
the BORDER attribute set to a positive value. The attribute value can be either a named color,
such as red, or a color specified in the hexadecimal #RRGGBB format, such as #FF0000.

CHAR This attribute is used to define the character to which element contents are aligned
when the ALIGN attribute is set to the CHAR value.

CHAROFF This attribute contains an offset as a positive or negative integer to align characters
as related to the CHAR value. A value of 2, for example, would align characters in a cell two
characters to the right of the character defined by the CHAR attribute.

CLASS See “Core Attributes Reference,” earlier in this appendix.

COLSPAN This attribute takes a numeric value that indicates how many columns wide a cell
should be. This is useful to create tables with cells of different widths.

DIR See “Language Reference,” earlier in this appendix.

GRADANGLE This WebTV-specific attribute defines the gradient angle for a table cell,
ranging from 90 to −90 degrees. GRADANGLE="0" yields a left-to-right gradient,
while GRADANGLE="90" yields a top-to-bottom gradient. The beginning color of the

890 H T M L : T h e C o m p l e t e R e f e r e n c e

gradient is defined by the BGCOLOR attribute, and the ending color is defined by the
GRADCOLOR attribute.

GRADCOLOR This WebTV-specific attribute defines the end color of a table cell’s background
gradient, in conjunction with the gradient angle defined by the GRADANGLE attribute and the
starting color defined by the BGCOLOR attribute.

HEADERS This attribute takes a space-separated list of ID values that correspond to the
header cells related to this cell.

HEIGHT This attribute indicates the height in pixels of the cell.

ID See “Core Attributes Reference,” earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

LANGUAGE In the Microsoft implementation, this attribute specifies the scripting language to
be used with an associated script bound to the element, typically through an event handler
attribute. Possible values may include JAVASCRIPT, JSCRIPT, VBS, and VBSCRIPT. Other
values that include the version of the language used, such as JavaScript1.1, may also be possible.

MAXLINES This WebTV-specific attribute takes a numeric argument indicating the maximum
number of content lines to display. Content beyond these lines is clipped.

NOWRAP This attribute keeps the content within a table cell from automatically wrapping.

ROWSPAN This attribute takes a numeric value that indicates how many rows high a table
cell should span. This attribute is useful in defining tables with cells of different heights.

SCOPE This attribute specifies the table cells that the current cell provides header information
for. A value of COL indicates that the cell is a header for the the rest of the column below it. A
value of COLGROUP indicates that the cell is a header for its current column group. A value of
ROW indicates that that the cell contains header information for the rest of the row it is in. A
value of ROWGROUP indicates that the cell is a header for its row group. This attribute may be
used in place of the HEADER attribute and is useful for rendering assistance by nonvisual
browsers. This attribute was added very late to the HTML 4.0 specification so support for this
attribute is minimal.

STYLE See “Core Attributes Reference,” earlier in this appendix.

TITLE See “Core Attributes Reference,” earlier in this appendix.

TRANSPARENCY This WebTV-specific attribute specifies the degree of transparency of the
table cell. Values range from 0 (totally opaque) to 100 (totally transparent). A value of 50 is
optimized for fast rendering.

VALIGN This attribute is used to set the vertical alignment for the table cell. HTML 4
defines BASELINE, BOTTOM, MIDDLE, and TOP. Internet Explorer replaces MIDDLE
with CENTER; the effect should be the same.

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 891

A
P

P
EN

D
IX

ES

WIDTH This attribute specifies the width of a cell in pixels.

Attribute and Event Support

NETSCAPE 4 ALIGN, BACKGROUND, BGCOLOR, BORDERCOLOR, COLSPAN,
HEIGHT, NOWRAP, ROWSPAN, VALIGN, and WIDTH. (CLASS, ID, LANG, and STYLE
are implied.)

INTERNET EXPLORER 4 All W3C-defined attributes and events except ABBR, AXIS,
CHAR, CHAROFF, DIR, HEADERS and HEIGHT, and all attributes and events defined by
Internet Explorer 4. (Note: Internet Explorer 4 does not support the JUSTIFY value for ALIGN,
nor the MIDDLE value for VALIGN.)

WEBTV ALIGN (CENTER | LEFT | RIGHT), BACKGROUND, BGCOLOR, COLSPAN,
GRADANGLE, GRADCOLOR, HEIGHT, ROWSPAN, TRANSPARENCY, VALIGN
(BASELINE | BOTTOM | MIDDLE | TOP), and WIDTH.

Event Handlers
See “Events Reference,” earlier in this appendix.

Examples

<TABLE>

<TR>
<TD ALIGN="LEFT" VALIGN="TOP">

Put me in the top left corner.
</TD>

<TD ALIGN="BOTTOM" BGCOLOR="RED" VALIGN="RIGHT">

Put me in the bottom right corner.

</TD>
</TR>

</TABLE>

<TABLE BORDER="1" WIDTH="80%">

<TR>
<TD COLSPAN="3">
A pretty wide cell

</TD>

</TR>

<TR>
<TD>Item 2 </TD>

<TD>Item 3 </TD>
<TD>Item 4 </TD>

</TR>

</TABLE>

892 H T M L : T h e C o m p l e t e R e f e r e n c e

Compatibility

HTML 3.2 and 4
Internet Explorer 2, 3, 4, and 5
Netscape 1.1, 2, 3, 4, and 4.5
WebTV

Notes

■ The HTML 3.2 specification defines only ALIGN, COLSPAN, HEIGHT, NOWRAP,
ROWSPAN, VALIGN, and WIDTH attributes.

■ This element should always be within the <TR> element.

<TEXTAREA> (Multiline Text Input)
This element specifies a multiline text input field contained within a form.

Syntax
<TEXTAREA

ACCESSKEY="character"
CLASS="class name"

COLS="number"
DIR="LTR | RTL"
DISABLED

ID="unique alphanumeric identifier"

LANG="language code"
NAME="unique alphanumeric identifier"

READONLY
ROWS="number"

STYLE="style information"
TABINDEX="number"
TITLE="advisory text"

onblur="script"

onchange="script"
onclick="script"
ondblclick="script"

onfocus="script"
onkeydown="script"

onkeypress="script"

onkeyup="script"
onmousedown="script"

onmousemove="script"
onmouseout="script"
onmouseover="script"

onmouseup="script"
onselect="script">

</TEXTAREA>

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 893

A
P

P
EN

D
IX

ES

Attributes and Events Defined by Internet Explorer 4

ALIGN="ABSBOTTOM | ABSMIDDLE | BASELINE | BOTTOM |

LEFT | MIDDLE | RIGHT | TEXTTOP | TOP"
DATAFLD="column name"

DATASRC="data source ID"
LANGUAGE="JAVASCRIPT | JSCRIPT | VBS | VBSCRIPT"
WRAP="OFF | PHYSICAL | VIRTUAL"

onafterupdate="script"

onbeforeupdate="script"
ondragstart="script"

onhelp="script"
onresize="script"

onrowenter="script"
onrowexit="script"
onscroll="script"

onselectstart="script"

onstart="script"

Attributes Defined by Netscape 4

WRAP="HARD | OFF | SOFT"

Attributes Defined by WebTV

ALLCAPS
AUTOACTIVATE
AUTOCAPS
BGCOLOR="color name | #RRGGBB"
CURSOR="color name | #RRGGBB"
GROWABLE
NOHARDBREAKS
NOSOFTBREAKS
NUMBERS
SHOWKEYBOARD
USESTYLE

Attributes

ACCESSKEY This Microsoft-specific attribute specifies a keyboard navigation accelerator for
the element. Pressing ALT or a similar key in association with the specified character selects the
form control correlated with that key sequence. Page designers are forewarned to avoid key
sequences already bound to browsers.

894 H T M L : T h e C o m p l e t e R e f e r e n c e

ALIGN Microsoft defines alignment values for this element. The values for this attribute
should behave similarly to any included object or image.

ALLCAPS This WebTV-specific attribute renders all viewer-entered text in capital letters. This
attribute requires no value.

AUTOACTIVATE This WebTV-specific attribute causes the text input control to immediately
activate. This attribute requires no value.

AUTOCAPS This WebTV-specific attribute renders the first letter of all viewer-entered words
in a capital letter. This attribute requires no value.

BGCOLOR This WebTV-specific attribute specifies the background color for the text input
area. Its value can be either a named color, such as red, or a color specified in the hexadecimal
#RRGGBB format, such as #FF0000. The default color for the <TEXTAREA> element under
WebTV is #EAEAEA.

CLASS See “Core Attributes Reference,” earlier in this appendix.

COLS This attribute sets the width in characters of the text area. The typical default values for
the size of a <TEXTAREA> element when this attribute is not set is 20 characters.

CURSOR This WebTV-specific attribute is used to indicate the cursor color for the text input
area. Its value can be either a named color, such as red, or a color specified in the hexadecimal
#RRGGBB format, such as #FF0000. The default value for the cursor color in the WebTV browser
is darkblue (#3333AA).

DATAFLD This attribute is used to indicate the column name in the data source that is bound
to the content enclosed by the <TEXTAREA> element.

DATASRC The value of this attribute is an identifier indicating the data source to pull data
from.

DIR See “Language Reference,” earlier in this appendix.

DISABLED This attribute is used to turn off a form control. Elements will not be submitted
nor may they receive any focus from the keyboard or mouse. Disabled form controls will not be
part of the tabbing order. The browser may also gray out the form that is disabled, in order to
indicate to the user that the form control is inactive. This attribute requires no value.

GROWABLE This WebTV-specific attribute allows the text input area to expand vertically to
accommodate extra text entered by the user. This attribute requires no value.

ID See “Core Attributes Reference,” earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 895

A
P

P
EN

D
IX

ES

LANGUAGE In the Microsoft implementation, this attribute specifies the scripting language
to be used with an associated script bound to the element, typically through an event handler
attribute. Possible values may include JAVASCRIPT, JSCRIPT, VBS, and VBSCRIPT. Other
values that include the version of the language used, such as JavaScript1.1, may also be possible.

NAME This attribute allows a form control to be assigned a name so that it can be referenced
by a scripting language. NAME is supported by older browsers, such as Netscape 2–generation
browsers, but the W3C encourages the use of the ID attribute. For compatibility purposes, both
attributes may have to be used.

NOHARDBREAKS This WebTV-specific attribute causes a press of the ENTER key to select
the next form element rather than causing a line break in the text input area. The attribute
requires no value.

NOSOFTBREAKS This attribute removes breaks automatically inserted into the text by line
wrapping when the form is submitted. The attribute requires no value.

NUMBERS This WebTV-specific attribute causes the number “1” to be selected in the
onscreen keyboard in anticipation of the viewer entering a numeric value.

READONLY This attribute prevents the form control’s value from being changed. Form
controls with this attribute set may receive focus from the user but may not be modified. Since
they receive focus, a READONLY form control will be part of the form’s tabbing order. Finally,
the control’s value will be sent on form submission. The attribute can only be used with
<INPUT> when TYPE is set to TEXT or PASSWORD. The attribute is also used with the
<TEXTAREA> element.

ROWS This attribute sets the number of rows in the text area. The value of the attribute
should be a positive integer.

SHOWKEYBOARD In the WebTV implementation, this attribute causes the onscreen
keyboard to be displayed when the <TEXTAREA> element is selected.

STYLE See “Core Attributes Reference,” earlier in this appendix.

TABINDEX This attribute takes a numeric value indicating the position of the form control in
the tabbing index for the form. Tabbing proceeds from the lowest positive TABINDEX value to
the highest. Negative values for TABINDEX will leave the form control out of the tabbing order.
When tabbing is not explicitly set, the browser may tab through items in the order they are
encountered. Form controls that are disabled due to the presence of the DISABLED attribute
will not be part of the tabbing index, though read-only controls will be.

TITLE See “Core Attributes Reference,” earlier in this appendix.

USESTYLE This WebTV-specific attribute causes text to be rendered in the style in effect for
the page. The attribute requires no value.

WRAP In Netscape and Microsoft browsers, this attribute controls word wrap behavior. A
value of OFF for the attribute forces the <TEXTAREA> not to wrap text, so the viewer must

896 H T M L : T h e C o m p l e t e R e f e r e n c e

manually enter line breaks. A value of HARD causes word wrap and includes line breaks in text
submitted to the server. A value of SOFT causes word wrap but removes line breaks from text
submitted to the server. Internet Explorer supports a value of PHYSICAL, which is equivalent to
Netcape’s HARD value, and a value of VIRTUAL, which is equivalent to Netscape’s SOFT
value. If the WRAP attribute is not included, text will still wrap under Internet Explorer, but
under Netscape it will scroll horizontally in the text box. It is always a good idea to include the
WRAP attribute.

Attribute and Event Support

NETSCAPE 4 COLS, NAME, ROWS, WRAP (HARD | OFF | SOFT), onblur, onchange,
onfocus, and onselect. (CLASS, ID, LANG, and STYLE are implied.)

INTERNET EXPLORER 4 All W3C-defined events and attributes except DIR, and all
attributes and events defined by Internet Explorer 4.

WEBTV BGCOLOR, COLS, CURSOR, NAME, ROWS, USESTYLE, onblur, onchange,
and onfocus.

Event Handlers
See “Events Reference,” earlier in this appendix.

Examples

<TEXTAREA NAME="CommentBox" COLS="40" ROWS="8">

Default text in field
</TEXTAREA>

<TEXTAREA NAME="comment" ROWS="10" COLS="40" WRAP="virtual"
ALIGN="center">

</TEXTAREA>

Compatibility

HTML 2, 3.2, and 4
Internet Explorer 2, 3, 4, and 5
Netscape 1, 2, 3, 4, and 4.5
WebTV

Notes

■ Any text between the <TEXTAREA> and </TEXTAREA> tags is rendered as the default
entry for the form control.

■ The HTML 2.0 and 3.2 specifications define only the COLS, NAME, and ROWS
attribute for this element.

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 897

A
P

P
EN

D
IX

ES

■ The HTML 4.0 specification reserves the DATAFLD and DATASRC attributes for
future use with the <TEXTAREA> element.

<TFOOT> (Table Footer)
This element is used to group the rows within the footer of a table so that common alignment
and style defaults can be set easily for numerous cells. This element may be particularly useful
when setting a common footer for tables that are dynamically generated.

Syntax

<TFOOT

ALIGN="CENTER | CHAR | JUSTIFY | LEFT | RIGHT"
BGCOLOR="color name | #RRGGBB" (transitional)

CHAR="character"
CHAROFF="offset"
CLASS="class name(s)"

DIR="LTR | RTL"

ID="unique alphanumeric identifier"
LANG="language code"

STYLE="style information"
TITLE="advisory text"

VALIGN="BASELINE | BOTTOM | MIDDLE | TOP"
onclick="script"
ondblclick="script"

onkeydown="script"

onkeypress="script"
onkeyup="script"
onmousedown="script"

onmousemove="script"
onmouseout="script"

onmouseover="script"

onmouseup="script">

</TFOOT>

Attributes and Events Defined by Internet Explorer 4

LANGUAGE="JAVASCRIPT | JSCRIPT | VBS | VBSCRIPT"

VALIGN="CENTER"
ondragstart="script"
onhelp="script"

onselectstart="script"

898 H T M L : T h e C o m p l e t e R e f e r e n c e

Attributes

ALIGN This attribute is used to align the contents of the cells within the <TFOOT> element.
Common values are CENTER, JUSTIFY, LEFT, and RIGHT. The HTML 4.0 specification also
defines a value of CHAR. When ALIGN is set to CHAR, the attribute CHAR must be present
and set to the character to which cells should be aligned. A common use of this approach would
be to set cells to align on a decimal point.

BGCOLOR This attribute specifies a background color for the cells within the <TFOOT>
element. Its value can be either a named color, such as red, or a color specified in the
hexadecimal #RRGGBB format, such as #FF0000.

CHAR This attribute is used to define the character to which element contents are aligned
when the ALIGN attribute is set to the CHAR value.

CHAROFF This attribute contains an offset as a positive or negative integer to align characters
as related to the CHAR value. A value of 2, for example, would align characters in a cell two
characters to the right of the character defined by the CHAR attribute.

CLASS See “Core Attributes Reference,” earlier in this appendix.

DIR See “Language Reference,” earlier in this appendix.

ID See “Core Attributes Reference,” earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

LANGUAGE In the Microsoft implementation, this attribute specifies the scripting language
to be used with an associated script bound to the element, typically through an event handler
attribute. Possible values may include JAVASCRIPT, JSCRIPT, VBS, and VBSCRIPT. Other
values that include the version of the language used, such as JavaScript1.1, may also be possible.

STYLE See “Core Attributes Reference,” earlier in this appendix.

TITLE See “Core Attributes Reference,” earlier in this appendix.

VALIGN This attribute is used to set the vertical alignment for the table cells with the
<TFOOT> element. HTML 4 defines BASELINE, BOTTOM, MIDDLE, and TOP. Internet
Explorer replaces MIDDLE with CENTER; the effect should be the same.

Attribute and Event Support

INTERNET EXPLORER 4 All events and attributes except CHAR, CHAROFF, and DIR.
(Note: Internet Explorer 4 does not support the JUSTIFY value for the ALIGN attribute.)

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 899

A
P

P
EN

D
IX

ES

Event Handlers
None.

Example

<TABLE BORDER="1" BGCOLOR="YELLOW" WIDTH="80%">

<TBODY CLASS="tablebody">
<TR>

<TD>The contents of the table! </TD>
</TR>

</TBODY>

<TFOOT ALIGN="CENTER" BGCOLOR="RED" CLASS="footer"

VALIGN="BOTTOM">
<TD>This is part of the footer. </TD>

<TD>This is also part of the footer. </TD>
</TFOOT>

</TABLE>

Compatibility

HTML 4
Internet Explorer 4 and 5

Notes
This element is only contained by the <TABLE> element and contains table rows as delimited by
<TR> elements.

<TH> (Table Header)
This element specifies a header cell in a table. The element should occur within a table row,
as defined by a <TR> element. The main difference between this element and <TD> is that
browsers may render table headers slightly differently.

Syntax

<TH

ABBR="abbreviation"
ALIGN="CENTER | JUSTIFY | LEFT | RIGHT"
AXIS="group name"

BGCOLOR="color name | #RRGGBB" (transitional)

CHAR="character"
CHAROFF="offset"

CLASS="CLASS name"

900 H T M L : T h e C o m p l e t e R e f e r e n c e

COLSPAN="number"

DIR="LTR | RTL"
HEADERS="space-separated list of associated header

cells' ID values"
HEIGHT="pixels" (transitional)
ID="unique alphanumeric identifier"

LANG="language code"

NOWRAP (transitional)
ROWSPAN="number"

SCOPE="COL | COLGROUP | ROW | ROWGROUP"
STYLE="style information"

TITLE="advisory text"
VALIGN="BASELINE | BOTTOM | MIDDLE | TOP"
WIDTH="pixels" (transitional)

onclick="script"

ondblclick="script"
onkeydown="script"
onkeypress="script"

onkeyup="script"
onmousedown="script"

onmousemove="script"

onmouseout="script"
onmouseover="script"

onmouseup="script">

</TH>

Attributes and Events Defined by Internet Explorer 4

BACKGROUND="URL of image" file
BORDERCOLOR="color name | #RRGGBB"

BORDERCOLORDARK="color name | #RRGGBB"
BORDERCOLORLIGHT="color name | #RRGGBB"

LANGUAGE="JAVASCRIPT | JSCRIPT | VBS | VBSCRIPT"

VALIGN="CENTER"
ondragstart="script"

onhelp="script"
onscroll="script"

onselectstart="script"

Attributes Defined by Netscape 4

BACKGROUND="URL of image file"

BORDERCOLOR="color name | #RRGGBB"

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 901

A
P

P
EN

D
IX

ES

Attributes Defined by WebTV

ABSHEIGHT="pixels"

ABSWIDTH="pixels"
BACKGROUND="URL of image" file

GRADANGLE
GRADCOLOR
MAXLINES="number"

TRANSPARENCY="number (0-100)"

Attributes

ABBR The value of this attribute is an abbreviated name for a header cell. This may be useful
when attempting to display large tables on small screens.

ABSHEIGHT This WebTV-specific attribute sets the absolute height of a cell in pixels. Content
that does not fit within this height is clipped.

ABSWIDTH This WebTV-specific attribute sets the absolute width of a cell in pixels. Content
that does not fit within this width is clipped.

ALIGN This attribute is used to align the contents of the cells within the <TBODY> element.
Common values are CENTER, JUSTIFY, LEFT, and RIGHT.

AXIS This attribute is used to provide a name for a group of related headers.

BACKGROUND This nonstandard attribute, which is supported by Internet Explorer,
Netscape and WebTV, specifies the URL of a background image for the table cell. The image
is tiled if it is smaller than the cell’s dimensions.

BGCOLOR This attribute specifies a background color for a table cell. Its value can be
either a named color, such as red, or a color specified in the hexadecimal #RRGGBB format,
such as #FF0000.

BORDERCOLOR This attribute, supported by Internet Explorer and Netscape, is used to set
the border color for a table cell. The attribute should only be used with a positive value for the
BORDER attribute. The value of the attribute can be either a named color, such as green, or a
color specified in the hexadecimal #RRGGBB format, such as #00FF00.

BORDERCOLORDARK This Internet Explorer–specific attribute specifies the darker of two
border colors used to create a three-dimensional effect for a cell’s borders. It must be used with
the BORDER attribute set to a positive value. The attribute value can be either a named color,
such as blue, or a color specified in the hexadecimal #RRGGBB format, such as #00FF00).

BORDERCOLORLIGHT This Internet Explorer–specific attribute specifies the lighter of two
border colors used to create a three-dimensional effect for a cell’s borders. It must be used with
the BORDER attribute set to a positive value. The attribute value can be either a named color,
such as red, or a color specified in the hexadecimal #RRGGBB format, such as #FF0000.

902 H T M L : T h e C o m p l e t e R e f e r e n c e

CHAR This attribute is used to define the character to which element contents are aligned
when the ALIGN attribute is set to the CHAR value.

CHAROFF This attribute contains an offset as a positive or negative integer to align characters
as related to the CHAR value. A value of 2, for example, would align characters in a cell two
characters to the right of the character defined by the CHAR attribute.

CLASS See “Core Attributes Reference,” earlier in this appendix.

COLSPAN This attribute takes a numeric value that indicates how many columns wide a cell
should be. This is useful to create tables with cells of different widths.

DIR See “Language Reference,” earlier in this appendix.

GRADANGLE This WebTV-specific attribute defines the gradient angle for a table
header, ranging from 90 to −90 degrees. GRADANGLE="0" yields a left-to-right gradient,
while GRADANGLE="90" yields a top-to-bottom gradient. The beginning color of the
gradient is defined by the BGCOLOR attribute, and the ending color is defined by the
GRADCOLOR attribute.

GRADCOLOR This WebTV-specific attribute defines the end color of a table header’s
background gradient, in conjunction with the gradient angle defined by the GRADANGLE
attribute and the starting color defined by the BGCOLOR attribute.

HEADERS This attribute takes a space-separated list of ID values that correspond to the
header cells related to this cell.

HEIGHT This attribute indicates the height in pixels of the header cell.

ID See “Core Attributes Reference,” earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

LANGUAGE In the Microsoft implementation, this attribute specifies the scripting language
to be used with an associated script bound to the element, typically through an event handler
attribute. Possible values may include JAVASCRIPT, JSCRIPT, VBS, and VBSCRIPT. Other
values that include the version of the language used, such as JavaScript1.1, may also be possible.

MAXLINES This WebTV-specific attribute takes a numeric argument indicating the maximum
number of content lines to display. Content beyond these lines is clipped.

NOWRAP This attribute keeps the content within a table header cell from automatically
wrapping.

ROWSPAN This attribute takes a numeric value that indicates how many rows high a table
cell should span. This attribute is useful in defining tables with cells of different heights.

SCOPE This attribute specifies the table cells that the current cell provides header information
for. A value of COL indicates that the cell is a header for the the rest of the column below it. A

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 903

A
P

P
EN

D
IX

ES

value of COLGROUP indicates that the cell is a header for its current column group. A value of
ROW indicates that that the cell contains header information for the rest of the row it is in. A
value of ROWGROUP indicates that the cell is a header for its row group. This attribute may be
used in place of the HEADER attribute and is useful for rendering assistance by nonvisual
browsers. This attribute was added very late to the HTML 4.0 specification so support for this
attribute is minimal.

STYLE See “Core Attributes Reference,” earlier in this appendix.

TITLE See “Core Attributes Reference,” earlier in this appendix.

TRANSPARENCY This WebTV-specific attribute specifies the degree of transparency of the
table header. Values range from 0 (totally opaque) to 100 (totally transparent). A value of 50 is
optimized for fast rendering.

VALIGN This attribute is used to set the vertical alignment for the table cell. HTML 4 defines
BASELINE, BOTTOM, MIDDLE, and TOP. Internet Explorer further defines CENTER, which
should act just like MIDDLE.

WIDTH This attribute specifies the width of a header cell in pixels.

Attribute and Event Support

NETSCAPE 4 ALIGN, BACKGROUND, BGCOLOR, BORDERCOLOR, COLSPAN,
HEIGHT, NOWRAP, ROWSPAN, VALIGN, and WIDTH. (CLASS, ID, LANG, and STYLE
are implied.)

INTERNET EXPLORER 4 ALIGN (CENTER | LEFT | RIGHT), BGCOLOR, CLASS,
COLSPAN, ID, LANG, NOWRAP, ROWSPAN, STYLE, TITLE, and VALIGN (BASELINE |
BOTTOM | TOP), all W3C-defined events, and all attributes and events defined by Internet
Explorer 4.

WEBTV ALIGN (CENTER | LEFT | RIGHT), BGCOLOR, COLSPAN, GRADANGLE,
GRADCOLOR, NOWRAP, ROWSPAN, TRANSPARENCY, VALIGN (BASELINE |
BOTTOM | MIDDLE | TOP), and WIDTH.

Event Handlers
See “Events Reference,” earlier in this appendix.

Examples

<TABLE BORDER="1">
<TR>

<TH>Names</TH>

<TH>Apples </TH>
<TH>Oranges </TH>

</TR>

904 H T M L : T h e C o m p l e t e R e f e r e n c e

<TR>

<TD>Bobby </TD>
<TD>10</TD>

<TD>5</TD>
</TR>

<TR>

<TD>Ruby Sue </TD>

<TD>20</TD>
<TD>3</TD>

</TR>
</TABLE>

Compatibility

HTML 3.2 and 4
Internet Explorer 2, 3, 4, and 5
Netscape 1.1, 2, 3, 4, and 4.5
WebTV

Notes

■ The HTML 3.2 specification defines only ALIGN, COLSPAN, HEIGHT, NOWRAP,
ROWSPAN, VALIGN, and WIDTH attributes.

■ This element should always be within the <TR> element.

<THEAD> (Table Header)
This element is used to group the rows within the header of a table so that common alignment
and style defaults can be set easily for numerous cells. This element may be particularly useful
when setting a common head for tables that are dynamically generated.

Syntax

<THEAD

ALIGN="CENTER | CHAR | JUSTIFY | LEFT | RIGHT"
CHAR="character"
CHAROFF="offset"

CLASS="class name(s)"

DIR="LTR | RTL"
ID="unique alphanumeric identifier"
LANG="language code"

STYLE="style information"

TITLE="advisory text"

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 905

A
P

P
EN

D
IX

ES

VALIGN="BASELINE | BOTTOM | MIDDLE | TOP"

onclick="script"
ondblclick="script"

onkeydown="script"
onkeypress="script"
onkeyup="script"

onmousedown="script"

onmousemove="script"
onmouseout="script"

onmouseover="script"
onmouseup="script">

</THEAD>

Attributes and Events Defined by Internet Explorer 4

BGCOLOR="color name | #RRGGBB"

LANGUAGE="JAVASCRIPT | JSCRIPT | VBS | VBSCRIPT"
VALIGN="CENTER"
ondragstart="script"

onhelp="script"

onselectstart="script"

Attributes

ALIGN This attribute is used to align the contents of the cells within the <THEAD> element.
Common values are CENTER, JUSTIFY, LEFT, and RIGHT. The HTML 4.0 specification also
defines a value of CHAR. When ALIGN is set to CHAR, the attribute CHAR must be present
and set to the character to which cells should be aligned. A common use of this approach would
be to set cells to align on a decimal point.

BGCOLOR This attribute specifies a background color for the cells within the <THEAD>
element. Its value can be either a named color, such as red, or a color specified in the
hexadecimal #RRGGBB format, such as #FF0000.

CHAR This attribute is used to define the character to which element contents are aligned
when the ALIGN attribute is set to the CHAR value.

CHAROFF This attribute contains an offset as a positive or negative integer to align characters
as related to the CHAR value. A value of 2, for example, would align characters in a cell two
characters to the right of the character defined by the CHAR attribute.

CLASS See “Core Attributes Reference,” earlier in this appendix.

DIR See “Language Reference,” earlier in this appendix.

906 H T M L : T h e C o m p l e t e R e f e r e n c e

ID See “Core Attributes Reference,” earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

LANGUAGE In the Microsoft implementation, this attribute specifies the scripting language
to be used with an associated script bound to the element, typically through an event handler
attribute. Possible values may include JAVASCRIPT, JSCRIPT, VBS, and VBSCRIPT. Other
values that include the version of the language used, such as JavaScript1.1, may also be possible.

STYLE See “Core Attributes Reference,” earlier in this appendix.

TITLE See “Core Attributes Reference,” earlier in this appendix.

VALIGN This attribute is used to set the vertical alignment for the table cells with the
<THEAD> element. HTML 4 defines BASELINE, BOTTOM, MIDDLE, and TOP. Internet
Explorer replaces MIDDLE with CENTER; the effect should be the same.

Attribute and Event Support

INTERNET EXPLORER 4 All attributes and events except CHAR, CHAROFF, and DIR.
(Note: Internet Explorer 4 does not support the JUSTIFY value for the ALIGN attribute.)

Event Handlers
See “Events Reference,” earlier in this appendix.

Example

<TABLE BORDER="1" BGCOLOR="YELLOW" WIDTH="80%">

<THEAD ALIGN="CENTER" BGCOLOR="RED" CLASS="footer"
VALIGN="BOTTOM">

<TD>This is the Important Table Headline </TD>
</THEAD>

<TBODY CLASS="tablebody">

<TR>

<TD>The contents of the table! </TD>
</TR>

</TBODY>
</TABLE>

Compatibility

HTML 4
Internet Explorer 3, 4, and 5

Notes
This element is only contained by the <TABLE> element and contains table rows as delimited by
<TR> elements.

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 907

A
P

P
EN

D
IX

ES

<TITLE> (Document Title)
This element encloses the title of an HTML document. It must occur within a document’s
<HEAD> element and must be present in all valid documents. Meaningful titles are very
important since they are used for bookmarking a page and may be used by search engines
attempting to index the document.

Syntax

<TITLE

DIR="LTR | RTL"

LANG="language code">

</TITLE>

Attributes Defined by Internet Explorer 4

ID="unique alphanumeric identifier"

TITLE="advisory text"

Attributes

DIR See “Language Reference,” earlier in this appendix.

ID See “Core Attributes Reference,” earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

TITLE See “Core Attributes Reference,” earlier in this appendix.

Attribute and Event Support

INTERNET EXPLORER 4 ID and TITLE.

Event Handlers
None.

Example

<HEAD><TITLE>Big Company: Products: Super Widget </TITLE></HEAD>

Compatibility

HTML 2, 3.2, and 4
Internet Explorer 2, 3, 4, and 5

908 H T M L : T h e C o m p l e t e R e f e r e n c e

Netscape 1, 2, 3, 4, and 4.5
WebTV

Notes

■ Meaningful names should provide information about the document. A poor title would be
something like “My Home Page,” while a better title would be “Joe Smith’s Home Page.”

■ Older versions of Netscape allowed for multiple occurrences of the <TITLE> element.
When multiple <TITLE> elements were encountered, they could be used to simulate an
animated title bar. This was a bug with the Netscape browser, however, and the effect of
multiple <TITLE> elements no longer works.

■ Browsers may be extremely sensitive with the <TITLE> element. If the title element is
malformed or not closed, the page may not even render in the browser.

■ The HTML 2.0 and 3.2 specifications define no attributes for the <TITLE> element.

<TR> (Table Row)
This element specifies a row in a table. The individual cells of the row are defined by the <TH>
and <TD> elements.

Syntax

<TR

ALIGN="CENTER | JUSTIFY | LEFT | RIGHT"
BGCOLOR="color name | #RRGGBB" (transitional)

CHAR="character"
CHAROFF="offset"
CLASS="class name(s)"

DIR="LTR | RTL"

ID="unique alphanumeric identifier"
LANG="language code"

STYLE="style information"
TITLE="advisory text"

VALIGN="BASELINE | BOTTOM | MIDDLE | TOP"
onclick="script"
ondblclick="script"

onkeydown="script"

onkeypress="script"
onkeyup="script"
onmousedown="script"

onmousemove="script"
onmouseout="script"

onmouseover="script"

onmouseup="script">

</TR>

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 909

A
P

P
EN

D
IX

ES

Attributes and Events Defined by Internet Explorer 4

BORDERCOLOR="color name | #RRGGBB"

BORDERCOLORDARK="color name | #RRGGBB"
BORDERCOLORLIGHT="color name | #RRGGBB"

LANGUAGE="JAVASCRIPT | JSCRIPT | VBS | VBSCRIPT"
VALIGN="CENTER"
onafterupdate="script"

onbeforeupdate="script"

onblur="script"
ondragstart="script"

onfocus="script"
onhelp="script"

onresize="script"
onrowenter="script"
onrowexit="script"

onselectstart="script

Attributes Defined by WebTV

NOWRAP

TRANSPARENCY="number (0-100)"

Attributes

ALIGN This attribute is used to align the contents of the cells within the <THEAD> element.
Common values are CENTER, JUSTIFY, LEFT, and RIGHT.

BGCOLOR This attribute specifies a background color for all the cells in a row. Its value can
be either a named color, such as red, or a color specified in the hexadecimal #RRGGBB format,
such as #FF0000.

BORDERCOLOR This attribute, supported by Internet Explorer and Netscape, is used to set
the border color for table cells in the row. The attribute should only be used with a positive value
for the BORDER attribute. The value of the attribute can be either a named color, such as green,
or a color specified in the hexadecimal #RRGGBB format, such as #00FF00.

BORDERCOLORDARK This Internet Explorer–specific attribute specifies the darker of two
border colors used to create a three-dimensional effect for the cell’s borders. It must be used with
the BORDER attribute set to a positive value. The attribute value can be either a named color,
such as blue, or a color specified in the hexadecimal #RRGGBB format, such as #00FF00.

BORDERCOLORLIGHT This Internet Explorer–specific attribute specifies the lighter of two
border colors used to create a three-dimensional effect for a cell’s borders. It must be used with
the BORDER attribute set to a positive value. The attribute value can be either a named color,
such as red, or a color specified in the hexadecimal #RRGGBB format, such as #FF0000.

910 H T M L : T h e C o m p l e t e R e f e r e n c e

CHAR This attribute is used to define the character to which element contents are aligned
when the ALIGN attribute is set to the CHAR value.

CHAROFF This attribute contains an offset as a positive or negative integer to align characters
as related to the CHAR value. A value of 2, for example, would align characters in a cell two
characters to the right of the character defined by the CHAR attribute.

CLASS See “Core Attributes Reference,” earlier in this appendix.

DIR See “Language Reference,” earlier in this appendix.

ID See “Core Attributes Reference,” earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

LANGUAGE In the Microsoft implementation, this attribute specifies the scripting language
to be used with an associated script bound to the element, typically through an event handler
attribute. Possible values may include JAVASCRIPT, JSCRIPT, VBS, and VBSCRIPT. Other
values that include the version of the language used, such as JavaScript1.1, may also be possible.

NOWRAP This WebTV-specific attribute keeps table rows from wrapping if they extend
beyond the right margin.

STYLE See “Core Attributes Reference,” earlier in this appendix.

TITLE See “Core Attributes Reference,” earlier in this appendix.

TRANSPARENCY This WebTV-specific attribute specifies the degree of transparency of the
table. Values range from 0 (totally opaque) to 100 (totally transparent). A value of 50 is optimized
for fast rendering.

VALIGN This attribute is used to set the vertical alignment for the table cells with the <TR>
element. HTML 4 defines BASELINE, BOTTOM, MIDDLE, and TOP. Internet Explorer
replaces MIDDLE with CENTER; the effect should be the same.

Attribute and Event Support

NETSCAPE 4 ALIGN, BGCOLOR, and VALIGN. (CLASS, ID, LANG, and STYLE are implied.)

INTERNET EXPLORER 4 ALIGN (CENTER | LEFT | RIGHT), BGCOLOR, ID, LANG,
STYLE, TITLE, and VALIGN (BASELINE | BOTTOM | TOP), all W3C-defined events, and all
attributes and events defined by Internet Explorer 4.

WEBTV ALIGN (CENTER | LEFT | RIGHT), BGCOLOR, NOWRAP, TRANSPARENCY,
and VALIGN (BASELINE | BOTTOM | MIDDLE | TOP).

Event Handlers
See “Events Reference,” earlier in this appendix.

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 911

A
P

P
EN

D
IX

ES

Example

<TABLE WIDTH="300" BORDER="1">

<TR BGCOLOR="RED" ALIGN="CENTER" VALIGN="CENTER">
<TD>3</TD>

<TD>5.6 </TD>
<TD>7.9 </TD>

</TR>

</TABLE>

Compatibility

HTML 3.2 and 4
Internet Explorer 2, 3, 4, and 5
Netscape 1.1, 2, 3, 4, and 4.5
WebTV

Notes

■ This element is contained by the <TABLE>, <THEAD>, <TBODY>, and <TFOOT>
elements. It contains the <TH> and <TD> elements.

■ The HTML 3.2 specification defines only the ALIGN and VALIGN attributes for
this element.

<TT> (Teletype Text)
This element is used to indicate that text should be rendered in a monospaced font similar
to teletype text.

Syntax

<TT

CLASS="class name(s)"
DIR="LTR | RTL"

ID="unique alphanumeric identifier"
LANG="language code"

STYLE="style information"
TITLE="advisory text"
onclick="script"

ondblclick="script"

onkeydown="script"
onkeypress="script"
onkeyup="script"

onmousedown="script"

onmousemove="script"

912 H T M L : T h e C o m p l e t e R e f e r e n c e

onmouseout="script"

onmouseover="script"

onmouseup="script">

</TT>

Attributes and Events Defined by Internet Explorer 4

LANGUAGE="JAVASCRIPT | JSCRIPT | VBS | VBSCRIPT"

ondragstart="script"

onhelp="script"

onselectstart="script"

Attributes

CLASS See “Core Attributes Reference,” earlier in this appendix.

DIR See “Language Reference,” earlier in this appendix.

ID See “Core Attributes Reference,” earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

LANGUAGE In the Microsoft implementation, this attribute specifies the scripting language
to be used with an associated script bound to the element, typically through an event handler
attribute. Possible values may include JAVASCRIPT, JSCRIPT, VBS, and VBSCRIPT. Other
values that include the version of the language used, such as JavaScript1.1, may also be possible.

STYLE See “Core Attributes Reference,” earlier in this appendix.

TITLE See “Core Attributes Reference,” earlier in this appendix.

Attribute and Event Support

NETSCAPE 4 CLASS, ID, LANG, and STYLE are implied.

INTERNET EXPLORER 4 All attributes and events except DIR.

Event Handlers
See “Events Reference,” earlier in this appendix.

Example

Here is some <TT>monospaced text </TT> .

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 913

A
P

P
EN

D
IX

ES

Compatibility

HTML 2, 3.2, and 4
Internet Explorer 2, 3, 4, and 5
Netscape 1, 2, 3, 4, and 4.5
WebTV

<U> (Underline)
This element is used to indicate that the enclosed text should be displayed underlined.

Syntax (Transitional Only)

<U

CLASS="class name(s)"
DIR="LTR | RTL"

ID="unique alphanumeric string"
LANG="language code"
STYLE="style information"

TITLE="advisory text"

onclick="script"
ondblclick="script"

onkeydown="script"
onkeypress="script"

onkeyup="script"
onmousedown="script"
onmousemove="script"

onmouseout="script"

onmouseover="script"
onmouseup="script">

</U>

Attributes and Events Defined by Internet Explorer 4

LANGUAGE="JAVASCRIPT | JSCRIPT | VBS | VBSCRIPT"

ondragstart="script"

onhelp="script"

onselectstart="script"

Attributes

CLASS See “Core Attributes Reference,” earlier in this appendix.

DIR See “Language Reference,” earlier in this appendix.

ID See “Core Attributes Reference,” earlier in this appendix.

914 H T M L : T h e C o m p l e t e R e f e r e n c e

LANG See “Language Reference,” earlier in this appendix.

LANGUAGE In the Microsoft implementation, this attribute specifies the scripting language
to be used with an associated script bound to the element, typically through an event handler
attribute. Possible values may include JAVASCRIPT, JSCRIPT, VBS, and VBSCRIPT. Other
values that include the version of the language used, such as JavaScript1.1, may also be possible.

STYLE See “Core Attributes Reference,” earlier in this appendix.

TITLE See “Core Attributes Reference,” earlier in this appendix.

Attribute and Event Support

NETSCAPE 4 CLASS, ID, LANG, and STYLE are implied.

INTERNET EXPLORER 4 All attributes and events except DIR.

Event Handlers
See “Events Reference,” earlier in this appendix.

Examples

Here is some <U>underlined text </U> .

Be careful with <U>underlined </U> text; it looks

like links .

Compatibility

HTML 3.2 and 4 (transitional)
Internet Explorer 2, 3, 4, and 5
Netscape 3, 4, and 4.5
WebTV

Notes

■ Under the strict HTML 4.0 specification, the <U> element is not defined. The capabilities
of this element are possible using style sheets.

■ Underlining text can be problematic because it looks similar to a link, especially in a
black-and-white environment.

 (Unordered List)
This element is used to indicate an unordered list, namely a collection of items that do not have a
numerical ordering. The individual items in the list are defined by the element, which is the
only allowed element within .

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 915

A
P

P
EN

D
IX

ES

Syntax

<UL

CLASS="class name(s)"
COMPACT (transitional)

DIR="LTR | RTL"
ID="unique alphanumeric identifier"
LANG="language code"

STYLE="style information"

TITLE="advisory text"
TYPE="CIRCLE | DISC | SQUARE" (transitional)

onclick="script"
ondblclick="script"

onkeydown="script"
onkeypress="script"
onkeyup="script"

onmousedown="script"

onmousemove="script"
onmouseout="script"
onmouseover="script"

onmouseup="script">

List items specified by elements

Attributes and Events Defined by Internet Explorer 4

LANGUAGE="JAVASCRIPT | JSCRIPT | VBS | VBSCRIPT"

ondragstart="script"

onhelp="script"

onselectstart="script"

Attributes

CLASS See “Core Attributes Reference,” earlier in this appendix.

COMPACT This attribute indicates that the list should be rendered in a compact style. Few
browsers actually change the rendering of the list regardless of the presence of this attribute. The
COMPACT attribute requires no value.

DIR See “Language Reference,” earlier in this appendix.

ID See “Core Attributes Reference,” earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

916 H T M L : T h e C o m p l e t e R e f e r e n c e

LANGUAGE In the Microsoft implementation, this attribute specifies the scripting language
to be used with an associated script bound to the element, typically through an event handler
attribute. Possible values may include JAVASCRIPT, JSCRIPT, VBS, and VBSCRIPT. Other
values that include the version of the language used, such as JavaScript1.1, may also be possible.

STYLE See “Core Attributes Reference,” earlier in this appendix.

TITLE See “Core Attributes Reference,” earlier in this appendix.

TYPE The TYPE attribute is used to set the bullet style for the list. The values defined under
HTML 3.2 and the transitional version of HTML 4 are CIRCLE, DISC, and SQUARE. A user
agent may decide to use a different bullet depending on the nesting level of the list unless the
TYPE attribute is used. The WebTV interface also supports a TRIANGLE bullet. The TYPE
attribute is dropped under the strict version of HTML 4, since style sheets can provide richer
bullet control.

Attribute and Event Support

NETSCAPE 4 CLASS, ID, LANG, STYLE, and TYPE.

INTERNET EXPLORER 4 All attributes and events except COMPACT and DIR.

WEBTV TYPE.

Event Handlers
See “Events Reference,” earlier in this appendix.

Examples

<UL COMPACT TITLE="Sushi Short List" TYPE="CIRCLE">
 Maguro

 Ebi

 Hamachi

<!-- Common but bad example -->
Indenting using lists should not be used, though it is common.

Many Web editors generate code laden with nonbreaking spaces and
unordered lists.

Compatibility

HTML 2, 3.2, and 4
Internet Explorer 2, 3, 4, and 5
Netscape 1, 2, 3, 4, and 4.5
WebTV

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 917

A
P

P
EN

D
IX

ES

Notes

■ HTML 2 supports only the COMPACT attribute.

■ The HTML 3.2 specification supports COMPACT and TYPE.

■ Under the strict HTML 4.0 specification, the element does not support the
COMPACT attribute or the TYPE attribute. Both of these attributes can be safely
replaced with style rules.

■ Many Web page designers and page development tools use the element to indent
text. Be aware that the only element that should occur within a element is ,
according to HTML standards, so such HTML markup does not conform to standards.
However, this common practice is likely to continue.

<VAR> (Variable)
This element is used to indicate a variable. Variables are identifiers that occur in a programming
language or a mathematical expression. The element is logical, though enclosed text is often
rendered in italics.

Syntax

<VAR

CLASS="class name(s)"
DIR="LTR | RTL"

ID="unique alphanumeric value"
LANG="language code"
STYLE="style information"

TITLE="advisory text"

onclick="script"
ondblclick="script"

onkeydown="script"
onkeypress="script"

onkeyup="script"
onmousedown="script"
onmousemove="script"

onmouseout="script"

onmouseover="script"
onmouseup="script">

</VAR>

Attributes and Events Defined by Internet Explorer 4

LANGUAGE="JAVASCRIPT | JSCRIPT | VBS | VBSCRIPT"

ondragstart="script"

onhelp="script"

onselectstart="script"

918 H T M L : T h e C o m p l e t e R e f e r e n c e

Attributes

CLASS See “Core Attributes Reference,” earlier in this appendix.

DIR See “Language Reference,” earlier in this appendix.

ID See “Core Attributes Reference,” earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

LANGUAGE In the Microsoft implementation, this attribute specifies the scripting language
to be used with an associated script bound to the element, typically through an event handler
attribute. Possible values may include JAVASCRIPT, JSCRIPT, VBS, and VBSCRIPT. Other
values that include the version of the language used, such as JavaScript1.1, may also be possible.

STYLE See “Core Attributes Reference,” earlier in this appendix.

TITLE See “Core Attributes Reference,” earlier in this appendix.

Attribute and Event Support

NETSCAPE 4 CLASS, ID, LANG, and STYLE are implied.

INTERNET EXPLORER 4 All attributes and events except DIR.

Event Handlers
See “Events Reference,” earlier in this appendix.

Example
Assign the value 5 to the variable <VAR>x</VAR> .

Compatibility

HTML 2, 3.2, and 4
Internet Explorer 2, 3, 4, and 5
Netscape 1, 2, 3, 4, and 4.5
WebTV

Notes

■ As a logical element, <VAR> is a perfect candidate for style sheet binding.

■ The HTML 2.0 and 3.2 specifications support no attributes for this element.

<WBR> (Word Break)
This nonstandard element is used to indicate a place where a line break can occur if necessary.
This element is used in conjunction with the <NOBR> element, which is used to keep text from

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 919

A
P

P
EN

D
IX

ES

wrapping. When used this way, <WBR> can be thought of as a soft line break in comparison to
the
 element. This element is common to both Netscape and Microsoft implementations,
though it is not part of any HTML standard.

Syntax

<WBR

CLASS="class name(s)"
ID="unique alphanumeric value"

LANGUAGE="JAVASCRIPT | JSCRIPT | VBS | VBSCRIPT"
STYLE="style information"

TITLE="advisory text">

Attributes

CLASS See “Core Attributes Reference,” earlier in this appendix.

ID See “Core Attributes Reference,” earlier in this appendix.

LANGUAGE In the Microsoft implementation, this attribute specifies the scripting language
to be used with an associated script bound to the element, typically through an event handler
attribute. Possible values may include JAVASCRIPT, JSCRIPT, VBS, and VBSCRIPT. Other
values that include the version of the language used, such as JavaScript1.1, may also be possible.

STYLE See “Core Attributes Reference,” earlier in this appendix.

TITLE See “Core Attributes Reference,” earlier in this appendix.

Attribute and Event Support

NETSCAPE 4 CLASS, ID, STYLE, and TITLE are implied.

INTERNET EXPLORER 4 All attributes.

Event Handlers
See “Events Reference,” earlier in this appendix.

Example

<NOBR>A line break can occur here <WBR>but not elsewhere, even if the

line is really long. </NOBR>

Compatibility

Internet Explorer 2, 3, 4, and 5
Netscape 1.1, 2, 3, 4, and 4.5

920 H T M L : T h e C o m p l e t e R e f e r e n c e

Notes

■ This element was introduced in Netscape 1.1.

■ This is an empty element, so no closing tag is required.

<XML> (XML Data Island)
This proprietary element introduced by Microsoft can be used to embed islands of XML
(Extensible Markup Language) data into HTML documents; this only works under Internet
Explorer 5. The <XML> element can be used to reference outside data sources using the SRC
attribute, or to surround XML data in the HTML document itself.

Syntax (defined by Internet Explorer 5)
<XML

ID="unique alphanumeric value"
NS="URL of XML namespace"

PREFIX="XML prefix"
SRC="URL of XML data file"
ondataavailable="script"

ondatasetchanged="script"

ondatasetcomplete="script"
onreadystatechange="script"

onrowenter="script"
onrowexit="script">

Embedded XML code

</XML>

Attributes

ID See “Core Attributes Reference,” earlier in this appendix.

NS This attribute, still largely theoretical at the time of this writing, references the URL of an
XML namespace.

PREFIX This attribute references the URL of an XML namespace prefix in conjunction with
the NS attribute.

SRC This attribute references an external XML data file.

Event Handlers
See “Extended Events,” earlier in this appendix.

Attribute and Event Support

INTERNET EXPLORER 5 ID, SRC, ondataavailable, ondatasetchanged, ondatasetcomplete,
onreadystatechange, onrowenter, and onrowexit.

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 921

A
P

P
EN

D
IX

ES

Examples
<!-- This code embeds XML data directly into a document.

All code between the XML tags is not HTML, but a
hypothetical example of XML. -->

<XML ID="tasty">
<COMBOMEAL>

<BURGER>

<NAME>Tasty Burger </NAME>

<BUN BREAD="WHITE">
<MEAT />

<CHEESE />
<MEAT />

</BUN>
</BURGER>
<FRIES SIZE="LARGE" />

<DRINK SIZE="LARGE" FLAVOR="Cola" />

</COMBOMEAL>
</XML>

<!-- This code fragment uses the SRC attribute to

reference an external file containing XML data. -->

<XML SRC="combomeal.xml"></XML>

Compatibility

Internet Explorer 5

Notes

■ Support of the <XML> element is currently exclusive to Internet Explorer 5.

■ For a more detailed discussion of this element, refer to the section “Embedding XML
into HTML Documents” in Chapter 17.

<XMP> (Example)
This deprecated element indicates that the enclosed text is an example. Example text is generally
rendered in a monospaced font, and the spaces, tabs, and returns are preserved, as with the
<PRE> element. As the <XMP> element is no longer standard, the <PRE> or <SAMP> elements
should be used instead.

Syntax (Defined by HTML 2; Deprecated Under HTML 4)

<XMP>

</XMP>

922 H T M L : T h e C o m p l e t e R e f e r e n c e

Attributes and Events Defined by Internet Explorer 4

CLASS="class name(s)"

ID="unique alphanumeric value"
LANG="language code"

LANGUAGE="JAVASCRIPT | JSCRIPT | VBS | VBSCRIPT"
STYLE="style information"
TITLE="advisory text"

onclick="script"

ondblclick="script"
ondragstart="script"

onhelp="script"
onkeydown="script"

onkeypress="script"
onkeyup="script"
onmousedown="script"

onmousemove="script"

onmouseout="script"
onmouseover="script"
onmouseup="script"

onselectstart="script"

Attributes

CLASS See “Core Attributes Reference,” earlier in this appendix.

ID See “Core Attributes Reference,” earlier in this appendix.

LANG See “Language Reference,” earlier in this appendix.

LANGUAGE In the Microsoft implementation, this attribute specifies the scripting language
to be used with an associated script bound to the element, typically through an event handler
attribute. Possible values may include JAVASCRIPT, JSCRIPT, VBS, and VBSCRIPT. Other
values that include the version of the language used, such as JavaScript1.1, may also be possible.

STYLE See “Core Attributes Reference,” earlier in this appendix.

TITLE See “Core Attributes Reference,” earlier in this appendix.

Attribute and Event Support

NETSCAPE 4 CLASS, ID, STYLE, and TITLE.

INTERNET EXPLORER 4 All attributes.

Event Handlers
See “Events Reference,” earlier in this appendix.

A p p e n d i x A : H T M L E l e m e n t R e f e r e n c e 923

A
P

P
EN

D
IX

ES

Example

<XMP>This is a large block of text used as an example. Note that returns

as well as S P A C E S are preserved. </XMP>

Compatibility

HTML 2
Internet Explorer 2, 3, 4, and 5
Netscape 1, 2, 3, 4, and 4.5
WebTV

Notes
This element is very old, though it continues to be documented. It was first deprecated under
HTML 3.2 and continues to be unsupported under HTML 4. Page designers should not use this
element. Internet Explorer documentation supports this element but recommends use of <PRE>
or <SAMP> instead.

924 H T M L : T h e C o m p l e t e R e f e r e n c e

Appendix B
Style Sheet Reference

925

Copyright 1999 The McGraw-Hill Companies. Click Here for Terms of Use.

926 H T M L : T h e C o m p l e t e R e f e r e n c e

Cascading style sheets, covered in Chapter 10, offer a powerful new tool for Web
page layout. When used properly, style sheets also separate style from
document structure, as was originally intended for HTML. Many of the style

properties defined by the Cascading Style Sheets 1 (CSS1) specification are supported
by major browsers, including Internet Explorer 3, 4, and 5, and Netscape Navigator 4
and 4.5. This appendix provides a concise look at style sheet rules, a listing of
commonly supported CSS1 style properties and their values, and their current
compatibility with the major browsers. Testing on a prerelease version of Netscape’s
new browser engine suggests that future Netscape browsers will support a wider
range of style sheet properties. Cascading Style Sheets 2 (CSS2) positioning properties,
also supported by the most recent browser versions, are included in this appendix. For
a more detailed discussion of the CSS2 specification, see Chapter 10.

Style Sheet Terms
This section defines some basic terms used when working with style sheets.

Embedded Styles
Document-wide styles can be embedded in a document’s <HEAD> element using the
<STYLE> element. Note that styles should be commented out to avoid interpretation
by non-style-aware browsers.

EXAMPLE

<HEAD>

<STYLE>
<!--
P {font-size: 14pt; font-face: Times; color: blue;

backgroundcolor: yellow}

EM {font-size: 16pt; color: green}
-->
</STYLE>

<TITLE> ... </TITLE></HEAD>

BROWSER SUPPORT

Internet Explorer 3, 4, and 5
Netscape 4 and 4.5

A p p e n d i x B : S t y l e S h e e t R e f e r e n c e 927

A
P

P
EN

D
IX

ES
Inline Styles

Styles can be applied directly to elements in the body of a document. Rather than set
document-wide values for the <H1> element, it is possible to set the style for an
individual header, as shown here:

EXAMPLE

<H1 STYLE="font-size: 48pt; font-family: Arial;

color: green"> CSS1 Test </H1>

An <H1> header elsewhere in the document could be assigned a completely different
style.

BROWSER SUPPORT

Internet Explorer 3, 4, and 5
Netscape 4 and 4.5

Linked Styles
Style can be contained in an external style sheet linked to a document or a set of
documents (see Chapter 10), as shown in the following example. Linked information
should be placed inside the <HEAD> element.

EXAMPLE

<LINK REL="stylesheet" TYPE="text/css" HREF="newstyle.css">

BROWSER SUPPORT

Internet Explorer 3, 4, and 5
Netscape 4 and 4.5

Imported Styles
Styles can be imported from an external file and expanded in place, similar to a macro.
Importing can be used to include multiple style sheets. An imported style is defined
with the <STYLE> element and the TYPE attribute, followed by the URL for the style
sheet, as shown here:

928 H T M L : T h e C o m p l e t e R e f e r e n c e

EXAMPLE

<HEAD>

<STYLE TYPE="text/css">

@import url(newstyle.css)

<TITLE> … </TITLE></HEAD>

BROWSER SUPPORT

Internet Explorer 5
Future versions of Netscape

Selectors
A selector is an HTML element, identifier, or class name associated with a style rule. In
the following examples, P and DIV are the selectors.

EXAMPLES

P {font-size: 12pt}

DIV {font-family: Courier}

BROWSER SUPPORT

Internet Explorer 3, 4, and 5
Netscape 4 and 4.5

Class Selectors
Multiple classes can be defined for individual elements (selectors). To create a class
selector, attach a class name to a selector; separate the selector from the class name with
a period. Repeat this with the same selector, but give it a different name.

EXAMPLE

P.one {font-face: Arial; font-size: 12pt}

P.two {font-face: Verdana; font-size: 14pt}

There are now two different paragraph styles to choose from. Use the CLASS
attribute with the <P> element to distinguish between them in the body of the
document.

EXAMPLE

<P CLASS="one"> This is paragraph style one. </P>

<P CLASS="two"> This is paragraph style two. </P>

It is also possible to create stand-alone class selectors by omitting element names.

EXAMPLE

.one {font-face: Arial; font-size: 12pt}

.two {font-face: Verdana; font-size: 14pt}

<P CLASS="one"> This is paragraph style one. </P>

<P CLASS="two"> This is paragraph style two. </P>
<H1 CLASS="two"> This header will also be style two. </P>

BROWSER SUPPORT

Internet Explorer 3, 4, and 5
Netscape 4 and 4.5

Contextual Selectors
Contextual selectors define the display of elements within other specific elements. In
the following example, text within a <DIV> element displays as green;
however, text outside the context of the <DIV> element is not affected by
this style. Note that the contextual selectors DIV and STRONG are separated by white
space, not by commas. Another way to say this is that a element with a
<DIV> ancestor will match this style.

EXAMPLE

DIV STRONG {color: green}

BROWSER SUPPORT

Internet Explorer 3, 4, and 5
Netscape 4 and 4.5

ID Selectors
Styles can be assigned independent of elements by creating ID selectors. Create an ID
selector by creating a name preceded by the character # and following it with the style
to be associated with that ID.

A p p e n d i x B : S t y l e S h e e t R e f e r e n c e 929

A
P

P
EN

D
IX

ES

EXAMPLE

#style43 {font-size: 6pt; font-face: Verdana; font-variant:

small-caps}

In the body of the document, use the ID attribute to assign the style to an element
or elements.

EXAMPLE

<P ID="style43"> This text is hard to read. </P>

<H1 ID="style43"> So is the text in this header. </H1>

ID must be unique. Each value must appear only once in a given document.

BROWSER SUPPORT

Internet Explorer 3, 4, and 5
Netscape 4 and 4.5

Rules
Style rules determine the styles to be associated with a selector. Style rules are enclosed
within braces. A rule must include a property (font-face, in the following example) and
a value (the font name Impact, in the following example).

EXAMPLE

P {font-face: Impact}

Multiple rules can be included within a single style specification, but they must be
separated by semicolons.

EXAMPLE

P {font-face: Impact; font-size: 12pt; line-height: 16pt}

BROWSER SUPPORT

Internet Explorer 3, 4, and 5
Netscape 4 and 4.5

930 H T M L : T h e C o m p l e t e R e f e r e n c e

A p p e n d i x B : S t y l e S h e e t R e f e r e n c e 931

A
P

P
EN

D
IX

ES
Grouping

Selectors and declarations can be grouped together so that all the selectors are
associated with a particular rule. Note that the listed selectors are separated by
commas.

EXAMPLE

P, DIV, SPAN {background-color: yellow; font-face: Arial;

color: black; font-size: 14pt}

BROWSER SUPPORT

Internet Explorer 3, 4, and 5
Netscape 4 and 4.5

Inheritance
In most cases, elements contained within another element inherit the property values
specified for the parent element, unless those properties are defined differently for the
nested elements. In the following example, the <P> element retains the background
color and font color defined for the <BODY> element; only the font face changes.

EXAMPLE

BODY {background-color: blue; font-face: Courier; color: white}

P {font-face: Arial}

BROWSER SUPPORT

Internet Explorer 3, 4, and 5
Netscape 4 and 4.5

Pseudoclasses
Elements can be assigned pseudoclasses to affect their display. There are three
pseudoclasses: A:active, A:link, and A:visited.

A:active
This property specifies how the text in active links will display.

932 H T M L : T h e C o m p l e t e R e f e r e n c e

EXAMPLE

A:active {text-decoration: none}

BROWSER SUPPORT Internet Explorer 5

A:link
This property specifies how text in unvisited links will display.

EXAMPLE

A:link {text-decoration: underline}

BROWSER SUPPORT

Internet Explorer 3, 4, and 5
Netscape 4 and 4.5

A:visited
This property specifies how text in visited links will display.

EXAMPLE

A:visited {text-decoration: line-through}

BROWSER SUPPORT

Internet Explorer 4 and 5
Netscape 4 and 4.5

Pseudoelements
This section discusses pseudoelements, which affect typographical items, such as the first
line of a paragraph, rather than structural elements, such as the paragraph (<P>) itself.

first-letter
This property specifies how the first letter of text in a block-level element will display.

EXAMPLE

P:first-letter {font-face: Arial Black; font-size: 25pt}

BROWSER SUPPORT None currently; probable in future versions of Netscape

first-line
This property specifies how the first line of text in a block-level element will display.

EXAMPLE

P:first-line {font-face: Arial Black; font-size: 150%;

font-weight: bold}

BROWSER SUPPORT None currently; probable in future versions of Netscape

Miscellaneous
This section discusses some miscellaneous terms associated with style sheets.

/* comments */
Comments can be placed within style sheets. HTML comment syntax (<!- - comment
- ->) does not apply. Style sheets use the comment syntax used in C programming
(/*comment*/).

EXAMPLE

<STYLE>

P {font-face: Courier; font-size: 14pt; font-weight: bold;
background-color: yellow}

/*This style sheet was created at Big Company, Inc.
All rights reserved.*/

</STYLE>

BROWSER SUPPORT

Internet Explorer 3, 4, and 5
Netscape 4 and 4.5

A p p e n d i x B : S t y l e S h e e t R e f e r e n c e 933

A
P

P
EN

D
IX

ES

! Important
This property specifies that a style takes precedence over any different, conflicting
styles. A style specified as important by an author takes precedence over a rule set by
an end user.

EXAMPLE

DIV {font-size: 14pt; line-height: 150%; font-family: Arial ! important}

BROWSER SUPPORT

Internet Explorer 5
Future versions of Netscape

Fonts
The font properties are font-family, font-size, font-style, font-weight, font-variant,
text-transform, text-decoration, and font. The font property can be used as a
shorthand notation of font values.

EXAMPLE

{font-family: Arial, sans-serif; font-size: 18pt; font-style: italic;

font-variant: normal; font-weight: bold; text-decoration: underline

text-transform: capitalize;}

font-family
This property sets the font face for text. It is equivalent to the FACE attribute of the
 element.

EXAMPLE

{font-family: "Arial, Helvetica, sans-serif"}

Fonts are read in descending order and must be separated by commas. In the
preceding example, Arial is the primary font and will be displayed by browsers and
systems with that font. If Arial is not available, Helvetica will be displayed. The final
option, the generic font name sans-serif, will be used when no other listed font is
available.

934 H T M L : T h e C o m p l e t e R e f e r e n c e

A p p e n d i x B : S t y l e S h e e t R e f e r e n c e 935

A
P

P
EN

D
IX

ES
BROWSER SUPPORT

Internet Explorer 3, 4, and 5
Netscape 4 and 4.5

Name Values
These values define a specific font family or families.

EXAMPLES

{font-family: "Times New Roman"}

{font-family: "Courier"}

{font-family: "Times New Roman, Courier"}

BROWSER SUPPORT

Internet Explorer 3, 4, and 5
Netscape 4 and 4.5

Generic Font Names
These values can be used to set a final option in a list of fonts, generally to the default
generic font on a user's system. For example, serif defaults to Courier on many
systems. There are five generic font names currently available: serif, sans-serif,
cursive, fantasy, and monospace.

serif This value specifies a default serif font.

EXAMPLES

{font-family: "serif"}

{font-family: "Times New Roman, serif"}

BROWSER SUPPORT

Internet Explorer 3 (Windows only), 4, and 5
Netscape 4 and 4.5

sans-serif This value specifies a default sans-serif font.

EXAMPLES

{font-family: sans-serif}

{font-family: "Arial, sans-serif"}

BROWSER SUPPORT

Internet Explorer 3 (Windows only), 4, and 5
Netscape 4 and 4.5

cursive This value specifies a default cursive font.

EXAMPLE

{font-family: cursive}

BROWSER SUPPORT

Internet Explorer 3 (Windows only), 4, and 5
Future versions of Netscape

fantasy This value specifies a default fantasy font.

EXAMPLE

{font-family: fantasy}

BROWSER SUPPORT

Internet Explorer 3 (Windows only), 4, and 5
Future versions of Netscape

monospace This value specifies a default monospace font.

EXAMPLE

{font-family: monospace}

BROWSER SUPPORT

Internet Explorer 3, 4, and 5
Netscape 4 and 4.5

font-size
This property sets the font size of text. Options include exact sizes (point, pixel, or
other values), absolute sizes, relative sizes, and percentages.

936 H T M L : T h e C o m p l e t e R e f e r e n c e

EXAMPLE

{font-face: Arial; font-size: 18pt}

BROWSER SUPPORT

Internet Explorer 3, 4, and 5
Netscape 4 and 4.5

Exact Font Size Values
These values set the font size to an exact size in points (pt) or pixels (px).

EXAMPLES

{font-size: 12pt}

{font-size: 30px}

BROWSER SUPPORT

Internet Explorer 3, 4, and 5
Netscape 4 and 4.5

Absolute Font Size Values
These values set the font size to an absolute size. There are seven possible sizes:
xx-small, x-small, small, medium, large, x-large, and xx-large.

EXAMPLE

{font-size: xx-small}

BROWSER SUPPORT

Internet Explorer 3, 4, and 5
Netscape 4 and 4.5

xx-small The value sets the font size to the smallest absolute font size, which is
usually equivalent to one point size smaller than the HTML code .

EXAMPLE

{font-size: xx-small}

A p p e n d i x B : S t y l e S h e e t R e f e r e n c e 937

A
P

P
EN

D
IX

ES

938 H T M L : T h e C o m p l e t e R e f e r e n c e

BROWSER SUPPORT

Internet Explorer 3, 4, and 5
Netscape 4 and 4.5

x-small The value sets the font size to the second-smallest absolute font size, which
is equivalent to the HTML code .

EXAMPLE

{font-size: x-small}

BROWSER SUPPORT

Internet Explorer 3, 4, and 5
Netscape 4 and 4.5

small This value sets the font size to the third smallest absolute font size, which is
equivalent to the HTML code .

EXAMPLE

{font-size: small}

BROWSER SUPPORT

Internet Explorer 3, 4, and 5
Netscape 4 and 4.5

medium The value sets the font size to the middle absolute font size, which is
equivalent to the HTML code .

EXAMPLE

{font-size: medium}

BROWSER SUPPORT

Internet Explorer 3, 4, and 5
Netscape 4 and 4.5

large The value sets the font size to the third-largest absolute font size, which is
equivalent to the HTML code .

A
P

P
EN

D
IX

ES

A p p e n d i x B : S t y l e S h e e t R e f e r e n c e 939

EXAMPLE

{font-size: large}

BROWSER SUPPORT

Internet Explorer 3, 4, and 5
Netscape 4 and 4.5

x-large The value sets the font size to the second-largest absolute font size, which is
equivalent to the HTML code .

EXAMPLE

{font-size: x-large}

BROWSER SUPPORT

Internet Explorer 3, 4, and 5
Netscape 4 and 4.5

xx-large The value sets the font size to the largest absolute font size, which is
equivalent to the HTML code .

EXAMPLE

{font-size: xx-large}

BROWSER SUPPORT

Internet Explorer 3, 4, and 5
Netscape 4 and 4.5

Percentage Font Size Values
These values set the font size to a percentage of the primary font size of a section or
document. For example, if the font size for the <BODY> element were set to 12 points,
and font size for a <P> element inside the body were set to 200 percent, the text inside
the <P> element would display in 24-point type. This could be cleared on inheritance.

EXAMPLE

{font-size: 75%}

940 H T M L : T h e C o m p l e t e R e f e r e n c e

BROWSER SUPPORT

Internet Explorer 3 (incomplete), 4, and 5
Netscape 4 and 4.5

Relative Font Size Values
These values define the font size relative to the primary font size of a document or
section.

smaller This value sets the font size one point smaller than the primary font size of a
section or document. It is equivalent to the HTML code .

EXAMPLE

{font-size: smaller}

BROWSER SUPPORT

Internet Explorer 4 and 5
Netscape 4 and 4.5

larger This value sets the font size to one point larger than the primary font size of a
section or document. It is equivalent to the HTML code .

EXAMPLE

{font-size: larger}

BROWSER SUPPORT

Internet Explorer 4 and 5
Netscape 4 and 4.5

font-style
This property sets the style of a font to normal, oblique, or italic. This can also be done
by using a specific font (for example, Times New Roman Italic). It also allows control of
style across font families.

EXAMPLES

{font-style: normal}

{font-style: oblique}

{font-style: italic}

A p p e n d i x B : S t y l e S h e e t R e f e r e n c e 941

A
P

P
EN

D
IX

ES
BROWSER SUPPORT

Internet Explorer 3 (incomplete), 4, and 5
Netscape 4 and 4.5

normal
This value sets the style of a font to Roman.

EXAMPLE

{font-style: normal}

BROWSER SUPPORT

Internet Explorer 4 and 5
Netscape 4 and 4.5

italic
This value sets the style of a font to italic.

EXAMPLE

{font-style: normal}

BROWSER SUPPORT

Internet Explorer 3, 4, and 5
Netscape 4 and 4.5

oblique
This value sets the style of a font to oblique.

EXAMPLE

{font-style: oblique}

BROWSER SUPPORT

Internet Explorer 4 and 5
Netscape 4 and 4.5

942 H T M L : T h e C o m p l e t e R e f e r e n c e

font-weight
This property sets the weight, or relative boldness, of a font. Values can be set with
named values (normal, bold, bolder, or lighter) or with numbered values (100
through 900).

EXAMPLES

{font-weight: bold}

{font-weight: 300}

BROWSER SUPPORT

Internet Explorer 3 (incomplete), 4, and 5
Netscape 4 and 4.5 (incomplete)

normal
This value sets the weight of the font to normal.

EXAMPLE

{font-weight: normal}

BROWSER SUPPORT

Internet Explorer 4 and 5
Netscape 4 and 4.5

bold
This value sets the weight of the font to bold.

EXAMPLE

{font-weight: bold}

BROWSER SUPPORT

Internet Explorer 3, 4, and 5
Netscape 4 and 4.5

bolder
This value sets the weight of the font to one that is bolder than set by the bold value.

A p p e n d i x B : S t y l e S h e e t R e f e r e n c e 943

A
P

P
EN

D
IX

ES
EXAMPLE

{font-weight: bolder}

BROWSER SUPPORT Internet Explorer 4 and 5

lighter
This value sets the weight of the font to one that is lighter than set by the normal value.

EXAMPLE

{font-weight: lighter}

BROWSER SUPPORT Internet Explorer 4 and 5

100–900
These values set the weight of the font from lightest (100) to boldest (900) in increments
of 100. In practice, under Internet Explorer 4 and Netscape 4, the values 100 through
500 display as normal text; 600 through 800 display as bold; and 900 displays as extra
bold. Browser support for other values is inconsistent at best.

EXAMPLE

{font-weight: 600}

BROWSER SUPPORT

Internet Explorer 4 and 5 (Windows only, incomplete)
Netscape 4 and 4.5 (incomplete for Macs)

font-variant
This property sets a variation of the specified or default font family. Values currently
supported are normal and small-caps.

EXAMPLE

{font-family: Courier; font-size: 14pt; font-variant: small-caps}

BROWSER SUPPORT

Internet Explorer 4 and 5
Future versions of Netscape

normal
This value, which is the default, or “off” value for this property, sets the display to the
font’s normal appearance.

EXAMPLE

{font-family: Arial; font-size: 12pt; font-variant: normal}

BROWSER SUPPORT

Internet Explorer 4 and 5
Future versions of Netscape

small-caps
This value sets text to all small capitals.

EXAMPLE

{font-family: Times New Roman; font-size: 20pt;

font-variant: small-caps}

BROWSER SUPPORT

Internet Explorer 4 and 5
Future versions of Netscape

text-transform
This property transforms the case of the affected text. Possible values are capitalize,
uppercase, lowercase, and none.

EXAMPLE

{text-transform: capitalize}

BROWSER SUPPORT

Internet Explorer 4 and 5
Netscape 4 (incomplete for Macs) and 4.5

capitalize
This value capitalizes the initial letter of each word in the affected text.

944 H T M L : T h e C o m p l e t e R e f e r e n c e

A p p e n d i x B : S t y l e S h e e t R e f e r e n c e 945

A
P

P
EN

D
IX

ES
EXAMPLE

{font-family: Times New Roman; font-size: 20pt;

text-transform: capitalize}

BROWSER SUPPORT

Internet Explorer 4 and 5
Netscape 4 and 4.5

uppercase
This value capitalizes all the letters of each word in the affected text.

EXAMPLE

{font-family: Helvetica; font-size: 10pt; text-transform: uppercase}

BROWSER SUPPORT

Internet Explorer 4 and 5
Netscape 4 and 4.5

lowercase
This value sets the letters of each word in the affected text to lowercase.

EXAMPLE

{font-family: Verdana; font-size: 14pt; text-transform: lowercase}

BROWSER SUPPORT

Internet Explorer 4 and 5
Netscape 4 and 4.5

none
This value leaves text unaffected or overrides another established value.

EXAMPLE

{font-family: Arial; font-size: 12pt; text-transform: none}

946 H T M L : T h e C o m p l e t e R e f e r e n c e

BROWSER SUPPORT

Internet Explorer 4 and 5
Netscape 4 and 4.5

text-decoration
This property defines specific text effects. Possible values are blink, line-through,
overline, underline, and none.

EXAMPLE

{text-decoration: underline}

This property is often used with the <A> element and its associated pseudoclasses
(A:active, A:link, and A:visited). The following example draws a line through visited
links in a page.

EXAMPLE

A:visited {text-decoration: line-through}

BROWSER SUPPORT

Internet Explorer 3 (incomplete), 4, and 5
Netscape 4 and 4.5 (incomplete)

blink
This value causes text to blink.

EXAMPLE

{text-decoration: blink}

BROWSER SUPPORT Netscape 4 and 4.5

line-through
This value draws a line through text.

EXAMPLE

{text-decoration: line-through}

BROWSER SUPPORT

Internet Explorer 3, 4, and 5
Netscape 4 and 4.5

overline
This value draws a line over text.

EXAMPLE

{text-decoration: overline}

BROWSER SUPPORT

Internet Explorer 4 and 5
Future versions of Netscape

underline
This value draws a line under text.

EXAMPLE

{text-decoration: underline}

BROWSER SUPPORT

Internet Explorer 3, 4, and 5
Netscape 4 and 4.5

none
This value displays plain text. It can be used with A:active, A:link, and A:visited to
turn off underlining of links.

EXAMPLE

{text-decoration: none}

BROWSER SUPPORT

Internet Explorer 3, 4, and 5
Netscape 4 and 4.5

A p p e n d i x B : S t y l e S h e e t R e f e r e n c e 947

A
P

P
EN

D
IX

ES

948 H T M L : T h e C o m p l e t e R e f e r e n c e

font
This property provides a shorthand way to specify all font properties with one style
rule. Properties are font-family, font-size/line-height, font-style, font-weight, and
font-variant. It is not necessary to include all properties. The line-height property is
discussed in the following section, “Text.” Font names consisting of more than one
word should be placed in quotes. Lists of variant fonts should be separated by commas
and placed in quotes.

EXAMPLE

{font: normal small-caps bold 12pt/18pt

"Times New Roman, Courier, serif"}

BROWSER SUPPORT

Internet Explorer 3 (incomplete), 4, and 5
Netscape 4 (incomplete for Macs) and 4.5

Text
This section discusses style properties that affect text-level elements.

word-spacing
This property sets the spacing between words. Values can be set in inches (in),
centimeters (cm), millimeters (mm), points (pt), picas (pc), em spaces (em), or pixels
(px); or to the default value normal.

EXAMPLES

{font-family: Arial; font-size: 16pt; word-spacing: 3pt}

{font-family: Helvetica; font-size: 12pt; word-spacing: normal}

BROWSER SUPPORT None currently; probable in future versions of Netscape

normal
This value, which is the default for this property, sets word spacing to the
browser’s setting.

EXAMPLE

{font-family: Arial; font-size: 10pt; word-spacing: normal}

A p p e n d i x B : S t y l e S h e e t R e f e r e n c e 949

A
P

P
EN

D
IX

ES
BROWSER SUPPORT None currently; probable in future versions of Netscape

letter-spacing
This property sets the amount of spacing between letters. Values can be set in various
units or to the default value normal.

EXAMPLE

{font-family: Arial; font-size: 14pt; letter-spacing: 2pt}

BROWSER SUPPORT

Internet Explorer 4 and 5
Future versions of Netscape

Unit Values
These values set letter spacing to a certain number of units in inches (in), centimeters
(cm), millimeters (mm), points (pt), picas, (pc), em spaces (em), or pixels (px).

EXAMPLE

{font-family: Arial; font-size: 14pt; letter-spacing: 2pt}

BROWSER SUPPORT

Internet Explorer 4 and 5
Future versions of Netscape

normal
This value sets letter spacing to the browser’s default setting.

EXAMPLE

{font-family: Arial; font-size: 14pt; letter-spacing: normal}

BROWSER SUPPORT

Internet Explorer 4 and 5
Future versions of Netscape

line-height
This property sets the height (leading) between lines of text in a block-level element
such as a paragraph. Values can be specified as a number of lines, a number of units

950 H T M L : T h e C o m p l e t e R e f e r e n c e

(pixels, points, and so on), or a percentage of the font size. This property is generally
used in conjunction with the font-size property.

EXAMPLES

{font-family: Arial; font-size: 14pt; line-height: 2}

{font-family: Arial; font-size: 14pt; line-height: 16px}

{font-family: Arial; font-size: 14pt; line-height: normal}

{font-family: Arial; font-size: 14pt; line-height: 125%}

BROWSER SUPPORT

Internet Explorer 3, 4, and 5
Netscape 4 and 4.5

text-align
This property sets the horizontal alignment of block-level text elements. Values are left,
right, center, and justify. The default value is left. This property is similar to the
ALIGN attribute available with HTML block-level elements such as <P>.

BROWSER SUPPORT

Internet Explorer 3 (incomplete), 4, and 5 (Windows only; incomplete)
Netscape 4 and 4.5

left
This value sets the horizontal alignment of text in block-level elements to the left.

EXAMPLE

P {text-align: left}

BROWSER SUPPORT

Internet Explorer 3, 4, and 5
Netscape 4 and 4.5

right
This value sets the horizontal alignment of text in block-level elements to the right.

EXAMPLE

P {text-align: right}

A p p e n d i x B : S t y l e S h e e t R e f e r e n c e 951

A
P

P
EN

D
IX

ES
BROWSER SUPPORT

Internet Explorer 3, 4, and 5
Netscape 4 and 4.5

center
This value sets the horizontal alignment of text in block-level elements to the center.

EXAMPLE

P {text-align: center}

BROWSER SUPPORT

Internet Explorer 3, 4, and 5
Netscape 4 and 4.5

justify
This value sets the horizontal alignment of text in block-level elements flush to the left
and right.

EXAMPLE

P {text-align: justify}

BROWSER SUPPORT

Internet Explorer 5
Netscape 4 and 4.5

vertical-align
This property sets the vertical positioning of text and images with respect to the
baseline setting. Possible values are baseline, sub, super, top, text-top, middle,
bottom, and text-bottom. Percentages can also be given as values. The default value is
baseline.

EXAMPLE

P {vertical-align: baseline}

BROWSER SUPPORT Internet Explorer 4 and 5 (incomplete)

952 H T M L : T h e C o m p l e t e R e f e r e n c e

baseline
This value, which is the default for this property, aligns text or images to the
baseline setting.

EXAMPLE

P {vertical-align: baseline}

BROWSER SUPPORT Not supported

sub
This value positions text or images as a subscript of the baseline setting.

EXAMPLE

P {vertical-align: sub}

BROWSER SUPPORT Internet Explorer 4 and 5

super
This value positions text or images as a superscript of the baseline setting.

EXAMPLE

P {vertical-align: super}

BROWSER SUPPORT Internet Explorer 4 and 5

top
This value aligns the top of text or images with the top of the tallest element, relative to
the baseline.

EXAMPLE

P {vertical-align: top}

BROWSER SUPPORT Not supported

text-top
This value aligns the top of text or images with the top of the font in the containing
element.

A p p e n d i x B : S t y l e S h e e t R e f e r e n c e 953

A
P

P
EN

D
IX

ES
EXAMPLE

P {vertical-align: text-top}

BROWSER SUPPORT Not supported

middle
This value aligns the middle of text or images to the middle of the x-height of the
containing element.

EXAMPLE

P {vertical-align: middle}

BROWSER SUPPORT Not supported

bottom
This value aligns the bottom of text or images with the bottom of the lowest element,
relative to the baseline.

EXAMPLE

P {vertical-align: bottom}

BROWSER SUPPORT Not supported

text-bottom
This value aligns the bottom of text or images with the bottom of the font in the
containing element.

EXAMPLE

P {vertical-align: text-bottom}

BROWSER SUPPORT Not supported

text-indent
This property indents the text in the first line of a block-level element. Values can be
defined as length values (.5cm, 15px, 12pt, and so on) or as a percentage of the width of
the block element. The default value is 0, which indicates no indentation.

EXAMPLES

{text-indent: 5pt}

{text-indent: 15%}

BROWSER SUPPORT

Internet Explorer 3, 4, and 5
Netscape 4 and 4.5

Colors and Backgrounds
This section discusses the style properties that affect backgrounds and various
concerns associated with backgrounds, such as color, images, and scrolling, as well as
the property that affects the color of text.

color
This property sets the color of text. Values can be specified as color names, hex values
in three- or six-digit format, or red-green-blue (RGB) values (numbers or percentages).
For browser support of color values, see the section “Style Sheet Color Values,” later in
this appendix.

EXAMPLES

{color: yellow}

{color: #FFFF00}
{color: #FF0}

{color: rgb(255,255,0)}
{color: rgb(100%,100%,0%)}

BROWSER SUPPORT

Internet Explorer 3, 4, and 5
Netscape 4 and 4.5

background-color
This property sets an element’s background color. It is often used in conjunction with
the color property, which sets text color (see the discussion of the color property under
“color,” later in this appendix). Used with block elements, this property colors content
and padding but not margins. The default value, transparent, allows any underlying

954 H T M L : T h e C o m p l e t e R e f e r e n c e

A p p e n d i x B : S t y l e S h e e t R e f e r e n c e 955

A
P

P
EN

D
IX

ES
content to show through. See “Style Sheet Color Values,” later in this appendix, for
browser support of color values.

EXAMPLES

{background-color: #00CCFF}

{background-color: orange}

{background-color: rgb(255,0,255}

BROWSER SUPPORT

Internet Explorer 4 and 5
Netscape 4 and 4.5

transparent
The value, which is the default for this property, sets the background color to allow
any underlying content to show through, as it does when used with the background
property.

EXAMPLE

{background-color: transparent}

BROWSER SUPPORT

Internet Explorer 4 and 5
Netscape 4 and 4.5

background-image
This property associates a background image with an element. Underlying content
shows through transparent regions in the source image. The background image
requires a URL (complete or relative) to link it to the source image (GIF or JPEG). The
default value is none.

BROWSER SUPPORT

Internet Explorer 4 and 5
Netscape 4 and 4.5

Background Image URL Values
These values provide a URL link to a source image to be used as the
background image.

956 H T M L : T h e C o m p l e t e R e f e r e n c e

EXAMPLE

{background-image: url(yellowpattern.gif)}

BROWSER SUPPORT

Internet Explorer 4 and 5
Netscape 4 and 4.5

none This value, which is the default for this property, sets the background so that it
doesn’t display an image (any underlying content shows through).

EXAMPLE

{background-image: none}

BROWSER SUPPORT

Internet Explorer 4 and 5
Netscape 4 and 4.5

background-repeat
This value determines how background images tile when they are smaller than the
canvas space used by their associated elements. It is used in conjunction with the
background-image property. Possible values are repeat, repeat-x, repeat-y, and
no-repeat.

BROWSER SUPPORT

Internet Explorer 4 and 5
Netscape 4 and 4.5

repeat
This value, which is the default for this property, sets the background image to repeat
horizontally and vertically.

EXAMPLE

{background-image: url(yellowpattern.gif) background-repeat: repeat}

BROWSER SUPPORT

Internet Explorer 4 and 5
Netscape 4 and 4.5

A p p e n d i x B : S t y l e S h e e t R e f e r e n c e 957

A
P

P
EN

D
IX

ES
repeat-x
This value sets the background image to repeat horizontally only.

EXAMPLE

{background-image: url(yellowpattern.gif); background-repeat: repeat-x}

BROWSER SUPPORT

Internet Explorer 4 and 5
Netscape 4 and 4.5

repeat-y
This value sets the background image to repeat vertically only.

EXAMPLE

{background-image: url(yellowpattern.gif); background-repeat: repeat-y}

BROWSER SUPPORT

Internet Explorer 4 and 5
Netscape 4 and 4.5

no-repeat
This value prevents the background image from repeating.

EXAMPLE

{background-image: url(yellowpattern.gif);

background-repeat: no-repeat}

BROWSER SUPPORT

Internet Explorer 4 and 5
Netscape 4 and 4.5.

background-attachment
This property sets the background image to scroll or not to scroll with its associated
element’s content. The default value is scroll. The alternate value, fixed, is intended to
create a watermark effect similar to the proprietary attribute, BGPROPERTIES, of the
<BODY> element introduced by Microsoft.

958 H T M L : T h e C o m p l e t e R e f e r e n c e

EXAMPLE

{background-image: url(yellowpattern.gif);

background-attachment: scroll}

BROWSER SUPPORT Internet Explorer 4 and 5

scroll
This value, the default for this property, sets the background image to scroll with
associated content, such as text.

EXAMPLE

{background-image: url(yellowpattern.gif);

background-attachment: scroll}

BROWSER SUPPORT Internet Explorer 4 and 5

fixed
This value sets the background image to remain static while associated content, such as
text, scrolls.

EXAMPLE

{background-image: url(yellowpattern.gif);

background-attachment: fixed}

BROWSER SUPPORT Internet Explorer 4 and 5

background-position
This property determines how a background image is positioned within the canvas
space used by its associated element. The position of the image’s upper-left corner can
be specified as an absolute distance in pixels. It can also be specified as a percentage
along the horizontal and vertical dimensions. Finally, the position can be specified as
named values that describe the horizontal and vertical dimensions. The named values
for the horizontal axis are center, left, and right; those for the vertical axis are top,
center, and bottom. The default value for an unspecified dimension is assumed to
be center.

EXAMPLES

{background-image: url(yellowpattern.gif);

background-position: 50px 100px}
{background-image: url(yellowpattern.gif);

background-position: 10% 45%}
{background-image: url(yellowpattern.gif);

background-position: top center}

BROWSER SUPPORT Internet Explorer 4 and 5

Background Position Numeric Values
These values set the position of the background image by specifying a specific pixel
position for the upper-left corner of the image.

EXAMPLE

{background-image: url(picture.gif);

background-position: 10px 10px}

BROWSER SUPPORT Internet Explorer 4 and 5

Background Position Percentage Values
These values define a background’s position as a percentage of its parent element’s
horizontal and vertical axes.

EXAMPLE

{background-image: url(picture.gif);

background-position: 20% 40%}

BROWSER SUPPORT Internet Explorer 4 and 5

Background Position Named Values
These values, which include top, center, bottom, left, and right, define the position of a
background image relative to its parent element.

top This value sets the position of the background image to the top of its associated
element. It can be used in combination with the center value or with a horizontal value
(left or right).

A p p e n d i x B : S t y l e S h e e t R e f e r e n c e 959

A
P

P
EN

D
IX

ES

960 H T M L : T h e C o m p l e t e R e f e r e n c e

EXAMPLES

{background-image: url(picture.gif);

background-position: top}

{background-image: url(picture.gif);

background-position: top left}

BROWSER SUPPORT Internet Explorer 4 and 5

center This value sets the position of the background image to the center of its
associated element. It can be used in combination with a vertical value (bottom or top).

EXAMPLES

{background-image: url(picture.gif);

background-position: center}

{background-image: url(picture.gif);

background-position: center bottom}

BROWSER SUPPORT Internet Explorer 4 and 5

bottom This value sets the position of the background image to the bottom of its
associated element. It can be used in combination with the center value or with a
horizontal value (left or right).

EXAMPLES

{background-image: url(picture.gif);

background-position: bottom}

{background-image: url(picture.gif);

background-position: bottom left}

BROWSER SUPPORT Internet Explorer 4 and 5

left This value sets the position of the background image to the left side of its
associated element. It can be used in combination with the center value or with a
vertical value (bottom or top).

A p p e n d i x B : S t y l e S h e e t R e f e r e n c e 961

A
P

P
EN

D
IX

ES
EXAMPLES

{background-image: url(picture.gif);

background-position: left}

{background-image: url(picture.gif);

background-position: left center}

BROWSER SUPPORT Internet Explorer 4 and 5

right This value sets the position of the background image to the left side of its
associated element. It can be used in combination with the center value or with a
vertical value (bottom or top).

EXAMPLES

{background-image: url(picture.gif);

background-position: right}

{background-image: url(picture.gif);

background-position: right top}

BROWSER SUPPORT Internet Explorer 4 and 5

background
This property sets any or all background properties, including images. Properties not
specified use their default values. Property order does not matter, and semicolons are
not required.

EXAMPLE

{background: white url(picture.gif) repeat-y center}

BROWSER SUPPORT

Internet Explorer 3, 4, and 5
Netscape 4 and 4.5 (incomplete)

transparent
This value sets the background color to a transparent setting, which allows any
underlying content to show through.

EXAMPLE

{background: transparent}

BROWSER SUPPORT

Internet Explorer 3, 4, and 5
Netscape 4 and 4.5

Background URL Values
These values provide a URL link to a source image to be used as the background image
using the same syntax as background-image.

EXAMPLE

{background: url(yellowpattern.gif)}

BROWSER SUPPORT

Internet Explorer 3, 4, and 5
Netscape 4 and 4.5

none This value, which is the default for this property, specifies that there will be no
background image.

EXAMPLE

{background: none}

BROWSER SUPPORT

Internet Explorer 3, 4, and 5
Netscape 4 and 4.5

repeat This value sets the background image to repeat horizontally and vertically. If
no value is specified, repeat is assumed as the default value.

EXAMPLE

{background: url(yellowpattern.gif) repeat}

BROWSER SUPPORT

Internet Explorer 3, 4, and 5
Netscape 4 and 4.5

repeat-x This value sets the background image to repeat horizontally only.

962 H T M L : T h e C o m p l e t e R e f e r e n c e

EXAMPLE

{background: url(yellowpattern.gif) repeat-x}

BROWSER SUPPORT

Internet Explorer 3, 4, and 5
Netscape 4 and 4.5

repeat-y This value sets the background image to repeat vertically only.

EXAMPLE

{background: url(yellowpattern.gif) repeat-y}

BROWSER SUPPORT

Internet Explorer 3, 4, and 5
Netscape 4 and 4.5

no-repeat This value specifies that the background image does not repeat.

EXAMPLE

{background: url(yellowpattern.gif) no-repeat}

BROWSER SUPPORT

Internet Explorer 3, 4, and 5
Netscape 4 and 4.5

scroll This value specifies that the background image scrolls with its associated
content. Under Internet Explorer 3, setting the scroll value does not work; if this value
is not specified, however, the background scrolls with its associated content.

EXAMPLE

{background: url(yellowpattern.gif) repeat scroll}

BROWSER SUPPORT Internet Explorer 4 and 5

A p p e n d i x B : S t y l e S h e e t R e f e r e n c e 963

A
P

P
EN

D
IX

ES

fixed This value specifies that the background image remains stationary while its
associated content scrolls.

EXAMPLE

{background: url(yellowpattern.gif) fixed}

BROWSER SUPPORT Internet Explorer 3, 4, and 5

Background Positioning Percentage Values
These values set the position of the background image as a percentage along the
horizontal and vertical dimensions. The first percentage value sets horizontal
placement; the second sets vertical placement. If only one value is specified, the vertical
placement value defaults to 50%. Use of these values in a page with no content can lead
to problems under Internet Explorer 3. (For example, a value of bottom aligns the
bottom of the image with the top of the browser window, thus placing it completely
out of view. This has been corrected in Internet Explorer 4, which displays the image
properly at the bottom of the browser window.) If no values are set, the placement
defaults to the upper-left corner of the browser window.

EXAMPLE

{background url(picture.gif) no-repeat 20% 50%}

BROWSER SUPPORT Internet Explorer 3, 4, and 5

Background Positioning Named Values
These values sets the position of the background image. The values top, middle, and
bottom, assign vertical positions; center, left, and right assign horizontal positions.
Values can be combined as common sense suggests. If no values are set, the placement
defaults to the upper-left corner of the browser window.

EXAMPLES

{background url(picture.gif) no-repeat top center}

{background url(picture.gif) no-repeat right bottom}

BROWSER SUPPORT Internet Explorer 3, 4, and 5

top This value sets the position of the background image to the top of its associated
element. If no other value is set, the top-aligned image defaults to the left.

964 H T M L : T h e C o m p l e t e R e f e r e n c e

A p p e n d i x B : S t y l e S h e e t R e f e r e n c e 965

A
P

P
EN

D
IX

ES
EXAMPLE

{background url(picture.gif) no-repeat top}

BROWSER SUPPORT Internet Explorer 3, 4, and 5

center This value sets the position of the background image to the horizontal center
of its associated element. If no other value is set, the center-aligned image defaults to
the vertical middle.

EXAMPLE

{background url(picture.gif) no-repeat center}

BROWSER SUPPORT Internet Explorer 3, 4, and 5

middle This value sets the position of the background image to the vertical middle of
its associated element. If no other value is set, the middle-aligned image defaults to the
left. Under Internet Explorer 4, middle works only when assigned a horizontal value;
otherwise, the background image defaults to the upper left.

EXAMPLE

{background url(picture.gif) no-repeat middle}

BROWSER SUPPORT Internet Explorer 3, 4, and 5

bottom This value sets the position of the background image to the bottom of its
associated element. If no other value is set, the bottom-aligned image defaults to
the left.

EXAMPLE

{background url(picture.gif) no-repeat bottom}

BROWSER SUPPORT Internet Explorer 3, 4, and 5

left This value, which is the default horizontal position for this property, sets the
position of the background image to the left of its associated element.

EXAMPLE

{background url(picture.gif) no-repeat left}

BROWSER SUPPORT Internet Explorer 3, 4, and 5

right This value sets the position of the background image to the right of its
associated element.

EXAMPLE

{background url(picture.gif) no-repeat right}

BROWSER SUPPORT Internet Explorer 3, 4, and 5

Layout
This section discusses style properties that affect the layout of HTML documents.

Margins
Style sheets can be used to set margins around an element with the margin property.
Margin values can be set to a specific length (15pt, 2em, and so on) or to a percentage
value of the block element’s width. Another value, auto, attempts to calculate the
margin automatically. The auto value is not supported. Four distinct margins can be
set separately from one another using the following properties: margin-top,
margin-bottom, margin-right, and margin-left. By itself, margin sets a consistent
margin on all four sides of the affected element. Margins can also be set to
negative values.

BROWSER SUPPORT

Internet Explorer 3 (Windows only), 4, and 5
Netscape 4 and 4.5

margin-top
This property sets an element’s top margin.

EXAMPLE

{margin-top: 15pt}

966 H T M L : T h e C o m p l e t e R e f e r e n c e

BROWSER SUPPORT

Internet Explorer 3 (Windows only), 4, and 5
Netscape 4 and 4.5

margin-bottom
This property sets an element’s bottom margin.

EXAMPLE

{margin-bottom: 10pt}

BROWSER SUPPORT

Internet Explorer 3 (Windows only), 4, and 5
Netscape 4 and 4.5

margin-right
This property sets an element’s right margin.

EXAMPLE

{margin-right: 15pt}

BROWSER SUPPORT

Internet Explorer 3, 4, and 5
Netscape 4 and 4.5

margin-left
This property sets an element’s left margin.

EXAMPLE

{margin-left: 12pt}

BROWSER SUPPORT

Internet Explorer 3, 4, and 5
Netscape 4 and 4.5

A p p e n d i x B : S t y l e S h e e t R e f e r e n c e 967

A
P

P
EN

D
IX

ES

margin
This property sets all margins for an element. Up to four values can be defined, in this
order: top, right, bottom, and left. The value auto is not currently supported. A single
value defines the same margin for all four sides.

EXAMPLE

{margin: 25pt}

If two values are specified, the first defines the top and bottom margins, while the
second defines the left and right margins.

EXAMPLE

{margin: 15pt, 25pt}

If three values are specified, the first defines the top margin, the second defines the
left and right margins, and the third defines the bottom margin. Note that the
unspecified margin is inferred from the value defined for its opposite side.

EXAMPLE

{margin: 25pt, 50pt, 25pt}

Finally, all four margins can be set to different values if desired (top, right, bottom,
and left, in that order).

EXAMPLE

{margin: 15pt, 25pt, 50pt, 10pt}

BROWSER SUPPORT

Internet Explorer 3 (incomplete), 4, and 5
Netscape 4 and 4.5

Borders
There are five properties for setting the width of borders: border-top-width,
border-bottom-width, border-right-width, border-left-width, and border-width. The
first four set the width of specific borders; border-width is used to set all four. Values
for border widths can be set in numeric measurements or with the named values thin,

968 H T M L : T h e C o m p l e t e R e f e r e n c e

medium, or thick. Border colors and styles can be set with the properties border-color
and border-style, respectively. The properties border-top, border-bottom,
border-right, and border-left can be used to set width, style, and color values for
different sides of a border; the border property sets the width, style, and color of all
sides of an element's border.

border-top-width
This property sets the width of an element’s top border. Values can be keywords (thin,
medium, or thick) and numerical lengths.

EXAMPLES

{border-top-width: thin}

{border-top-width: 25px}

BROWSER SUPPORT

Internet Explorer 4 and 5
Netscape 4 and 4.5

border-bottom-width
This property sets the width of an element’s bottom border. Values can be keywords
(thin, medium, or thick) and numerical lengths.

EXAMPLES

{border-bottom-width: medium}

{border-bottom-width: 15px}

BROWSER SUPPORT

Internet Explorer 4 and 5
Netscape 4 and 4.5

border-right-width
This property sets the width of an element’s right border. Values can be keywords
(thin, medium, or thick) and numerical lengths.

EXAMPLES

{border-right-width: thick}

{border-right-width: 40px}

A p p e n d i x B : S t y l e S h e e t R e f e r e n c e 969

A
P

P
EN

D
IX

ES

970 H T M L : T h e C o m p l e t e R e f e r e n c e

BROWSER SUPPORT

Internet Explorer 4 and 5
Netscape 4 and 4.5

border-left-width
This property sets the width of an element’s left border. Values can be keywords (thin,
medium, or thick) and numerical lengths.

EXAMPLES

{border-left-width: thin}

{border-left-width: 5px}

BROWSER SUPPORT

Internet Explorer 4 and 5
Netscape 4 and 4.5

border-width
This property sets the width of an element’s complete border. Values can be keywords
(thin, medium, or thick) and numerical lengths.

EXAMPLES

{border-width: medium}

{border-width: 5px}

BROWSER SUPPORT

Internet Explorer 4 and 5
Netscape 4 and 4.5

thin This value sets the width of an element’s border to thin.

EXAMPLE

{border-width: thin}

BROWSER SUPPORT

Internet Explorer 4 and 5
Netscape 4 and 4.5

A p p e n d i x B : S t y l e S h e e t R e f e r e n c e 971

A
P

P
EN

D
IX

ES
thick This value sets the width of an element’s border to thick.

EXAMPLE

{border-width: thick}

BROWSER SUPPORT

Internet Explorer 4 and 5
Netscape 4 and 4.5

medium This value sets the width of an element’s border to medium.

EXAMPLE

{border-width: medium}

BROWSER SUPPORT

Internet Explorer 4 and 5
Netscape 4 and 4.5

border-color
This property defines the color of an element’s border. See “Style Sheet Color Values,”
later in this appendix, for browser support of color values.

EXAMPLES

{border-color: blue}

{border-color: #0000EE}

BROWSER SUPPORT

Internet Explorer 4 and 5
Netscape 4 and 4.5

border-style
This property defines an element’s border style.

EXAMPLE

{border-style: solid}

The border-style property defines the style of up to four different side of a border,
using the values none, dotted, dashed, solid, double, groove, ridge, inset, and outset.
These values are listed, in order, for the top, right, bottom, and left sides. Missing
values are inferred from the value defined for the opposite side.

EXAMPLE

{border-style: solid, double, solid, double}

Netscape 4 supports only one value for border-style. Use of multiple values will create
erratic display under that browser.

BROWSER SUPPORT

Internet Explorer 4 and 5
Netscape 4 (incomplete)

none This value “turns off” the border, even if other border properties have
been set.

EXAMPLE

{border-style: none}

BROWSER SUPPORT

Internet Explorer 4 and 5
Netscape 4 and 4.5

dotted This value defines a dotted border style.

EXAMPLE

{border-style: dotted}

BROWSER SUPPORT None currently; likely in future versions of Netscape

dashed This value defines a dashed border style.

EXAMPLE

{border-style: dashed}

972 H T M L : T h e C o m p l e t e R e f e r e n c e

BROWSER SUPPORT None currently; likely in future versions of Netscape

solid This value, which is the default for this property, sets the border to a solid line.
It does not need to be set.

EXAMPLE

{border-style: solid}

BROWSER SUPPORT

Internet Explorer 4 and 5
Netscape 4 and 4.5

double This value sets the border to two solid lines.

EXAMPLE

{border-style: double}

BROWSER SUPPORT

Internet Explorer 4 and 5
Netscape 4 and 4.5

groove This value sets the border to resemble a grooved line.

EXAMPLE

{border-style: grooved}

BROWSER SUPPORT

Internet Explorer 4 and 5
Netscape 4 and 4.5

inset This value sets the border to display a lighter shade of the border color on its
right and bottom sides.

EXAMPLE

{border-style: inset}

A p p e n d i x B : S t y l e S h e e t R e f e r e n c e 973

A
P

P
EN

D
IX

ES

BROWSER SUPPORT

Internet Explorer 4 and 5
Netscape 4 and 4.5

outset This value sets the border to display a lighter shade of the border color on its
top and left sides.

EXAMPLE

{border-style: outset}

BROWSER SUPPORT

Internet Explorer 4
Netscape 4 and 4.5

ridge This value sets the border to resemble a raised ridge by reversing the shading
of the grooved rendering.

EXAMPLE

{border-style: ridge}

BROWSER SUPPORT

Internet Explorer 4 and 5
Netscape 4 and 4.5

border-top
This property defines the width, style, and color for the top border of an element.

EXAMPLE

{border-top: thin solid blue}

BROWSER SUPPORT

Internet Explorer 4 and 5
Future versions of Netscape

border-bottom
This property defines the width, style, and color for the bottom border of an element.

974 H T M L : T h e C o m p l e t e R e f e r e n c e

A p p e n d i x B : S t y l e S h e e t R e f e r e n c e 975

A
P

P
EN

D
IX

ES
EXAMPLE

{border-bottom: thick double #CCFFCC}

BROWSER SUPPORT

Internet Explorer 4 and 5
Future versions of Netscape

border-right
This property defines the width, style, and color for the right border of an element.

EXAMPLE

{border-right: thick solid black}

BROWSER SUPPORT

Internet Explorer 4 and 5
Future versions of Netscape

border-left
This property defines the width, style, and color for the left border of an element.

EXAMPLE

{border-left: normal inset green}

BROWSER SUPPORT

Internet Explorer 4 and 5
Future versions of Netscape

border
This property defines the width, style, and color for all four sides of an
element’s border.

EXAMPLE

{border: normal inset green}

BROWSER SUPPORT

Internet Explorer 4 and 5
Netscape 4 and 4.5

Padding
The padding properties set the space between an element’s border and its content.
There are five properties for padding: padding-top, padding-bottom, padding-right,
padding-left, and padding. The padding value sets the padding for all four sides; the
other four set the padding for specific sides. Values can be specified as specific values
(pixels, points, and so on) or as a percentage of the element’s overall width. Unlike the
margin property, the padding property cannot take negative values.

padding-top
This property sets the distance between an element’s top border and the top of
its content.

EXAMPLE

{padding-top: 25px}

BROWSER SUPPORT

Internet Explorer 4 and 5
Netscape 4 and 4.5

padding-bottom
This property sets the distance between an element’s bottom border and the bottom of
its content.

EXAMPLE

{padding-bottom: 15px}

BROWSER SUPPORT

Internet Explorer 4 and 5
Netscape 4 and 4.5

padding-right
This property sets the distance between an element’s right border and the right side of
its content.

976 H T M L : T h e C o m p l e t e R e f e r e n c e

A p p e n d i x B : S t y l e S h e e t R e f e r e n c e 977

A
P

P
EN

D
IX

ES
EXAMPLE

{padding-right: 5px}

BROWSER SUPPORT

Internet Explorer 4 and 5
Netscape 4 and 4.5

padding-left
This property sets the distance between an element’s left border and the left side of
its content.

EXAMPLE

{padding-left: 25px}

BROWSER SUPPORT

Internet Explorer 4 and 5
Netscape 4 and 4.5

padding
This property sets the distance between an element’s border and its contents. A single
value creates equal padding on all sides.

EXAMPLE

{border-style: solid; padding: 10px}

Up to four values can be used, in the following clockwise order: top, right, bottom,
and left.

EXAMPLE

{border-style: solid; padding: 10px 20px 10px 50px}

Any missing value defaults to the value defined for the side opposite to it.

EXAMPLE

{border-style: solid; padding: 10px 20px 10px}

BROWSER SUPPORT

Internet Explorer 4 and 5
Netscape 4 and 4.5

width
This property sets the width of an element’s content region (excluding padding,
border, and margin). The next example sets a paragraph with a width of 400 pixels.

EXAMPLE

P {width: 400px; padding: 10px; border: solid 5px}

Percentage values, based on the width of the containing element, can also be used.

EXAMPLE

P {width: 80%; padding: 10px; border: solid 5px}

The auto value automatically calculates the width of an element, based on the
width of the containing element and the size of the content.

EXAMPLE

P {width: auto; padding: 10px; border: solid 5px}

BROWSER SUPPORT

Internet Explorer 5
Netscape 4 and 4.5

height
This property sets the height of an element’s content region (excluding padding,
border, and margin). The next example sets a paragraph with a height of 200 pixels.

EXAMPLE

P {height: 200px; padding: 10px; border: solid 5px}

Percentage values, based on the height of the containing element, can also be used.

978 H T M L : T h e C o m p l e t e R e f e r e n c e

EXAMPLE

P {height: 80%; padding: 10px; border: solid 5px}

The auto value automatically calculates the height of an element, based on the
height of the containing element and the size of the content.

EXAMPLE

P {height: auto; padding: 10px; border: solid 5px}

BROWSER SUPPORT

Internet Explorer 5
Future versions of Netscape

float
This property influences the horizontal alignment of an element, making it “float”
toward the left or right margin of its containing element. Possible values are left, right,
and none.

EXAMPLE

IMG {float: right}

BROWSER SUPPORT

Internet Explorer 4 and 5
Netscape 4 and 4.5

left
This value causes an element to float toward the left margin of its containing element.

EXAMPLE

IMG {float: left}

BROWSER SUPPORT

Internet Explorer 4 and 5
Netscape 4 and 4.5

A p p e n d i x B : S t y l e S h e e t R e f e r e n c e 979

A
P

P
EN

D
IX

ES

980 H T M L : T h e C o m p l e t e R e f e r e n c e

right
This value causes an element to float toward the right margin of its containing element.

EXAMPLE

IMG {float: right}

BROWSER SUPPORT

Internet Explorer 4 and 5
Netscape 4 and 4.5

none
This value, which is the default for this property, prevents an element from floating.

EXAMPLE

IMG {float: none}

BROWSER SUPPORT

Internet Explorer 4 and 5
Netscape 4 and 4.5

clear
This property specifies the placement of an element in relation to floating objects.
Possible values are left, right, both, and none.

EXAMPLE

{clear: right}

BROWSER SUPPORT

Internet Explorer 5
Netscape 4 and 4.5 (incomplete)

left
This value clears floating objects to the left of the element.

A p p e n d i x B : S t y l e S h e e t R e f e r e n c e 981

A
P

P
EN

D
IX

ES
EXAMPLE

{clear: left}

BROWSER SUPPORT

Internet Explorer 5
Netscape 4 and 4.5 (incomplete)

right
This value clears floating objects to the right of the element.

EXAMPLE

{clear: right}

BROWSER SUPPORT

Internet Explorer 5
Netscape 4 and 4.5 (incomplete)

both
This value clears floating objects to both sides of the element.

EXAMPLE

{clear: both}

BROWSER SUPPORT

Internet Explorer 5
Netscape 4 and 4.5 (incomplete)

none
This is the default value for this property. Objects around an element will not clear
when clear is set to none.

EXAMPLE

{clear: none}

982 H T M L : T h e C o m p l e t e R e f e r e n c e

BROWSER SUPPORT

Internet Explorer 5
Netscape 4 and 4.5

Layers and Positioning
This section discusses style properties that affect layering and positioning of elements.

position
This property defines how an element is positioned relative to other elements, using
the values static, absolute, and relative. The left and top properties define the
element’s precise location, using the affected element’s upper-left corner (0,0) as
reference. Because elements can contain other elements, 0,0 is not necessarily the
upper-left corner of the browser.

EXAMPLE

{position: relative; right: 190px; top: 30px}

BROWSER SUPPORT Internet Explorer 4 and 5

static
This value, which is the default for this property, places elements according to the
natural order in which they occur in a document.

EXAMPLE

{position: static; left: 120px; top: 50px}

BROWSER SUPPORT Internet Explorer 4 and 5

absolute
This value defines a coordinate system independent from other block and inline
element placement. An element whose position is absolute acts as a visual container for
any elements enclosed within its content. All elements defined inside it move with it.
Contained elements that are assigned coordinates outside their container’s dimensions
will disappear.

EXAMPLE

{position: absolute; left: 120px; top: 50px}

A p p e n d i x B : S t y l e S h e e t R e f e r e n c e 983

A
P

P
EN

D
IX

ES
BROWSER SUPPORT Internet Explorer 4 and 5

relative
This value positions elements relative to their natural position in document flow.

EXAMPLE

{position: relative; left: 120px; top: 50px}

BROWSER SUPPORT Internet Explorer 4 and 5

left
This value defines the x (horizontal) coordinate for a positioned element, relative to the
upper-left corner. Values can be specified as lengths (inches, pixels, and so on), as a
percentage of the containing object’s dimensions, or as auto.

EXAMPLES

{position: absolute; left: 120px; top: 50px}

{position: absolute; left: 30%; top: 50%}

{position: absolute; left: auto; top: auto}

BROWSER SUPPORT

Internet Explorer 4 and 5
Netscape 4 and 4.5

top
This value defines the y (vertical) coordinate for a positioned element, relative to the
upper-left corner. Values can be specified as lengths (inches, pixels, and so on), as a
percentage of the containing object’s dimensions, or as auto, which lets this property
function as determined by the browser or as defined by the parent element.

EXAMPLES

{position: absolute; left: 100px; top: 150px}

{position: absolute; left: 50%; top: 30%}

{position: absolute; left: auto; top: auto}

BROWSER SUPPORT

Internet Explorer 4 and 5
Netscape 4 and 4.5

984 H T M L : T h e C o m p l e t e R e f e r e n c e

width
This property defines the width of an element. Values can be specified as lengths
(positive values only), percentages (relative to the containing element’s width), or auto,
which defaults to the element’s natural width.

EXAMPLE

IMG {position: absolute; left: 120px; top: 50px; height: 200px;

width: 400px}

BROWSER SUPPORT Internet Explorer 4 and 5

height
This property defines the height of an element. Values can be specified as lengths
(positive values only), percentages (relative to the containing element’s height), or as
auto, which defaults to the element’s natural height.

EXAMPLE

IMG {position: absolute; left: 120px; top: 50px; height: 100px;

width: 150px}

BROWSER SUPPORT Internet Explorer 4 and 5

clip
This property sets the coordinates of the clipping rectangle that houses the content of
elements set to a position value of absolute. Coordinate values are top, right, bottom,
left, and auto. The auto value lets clipping occur as it will.

EXAMPLE

{position: absolute; left: 20; top: 20; width:100; height:100;

clip: rect(10 90 90 10)}

BROWSER SUPPORT Internet Explorer 5

overflow
This property determines an element’s behavior when its content doesn’t fit into the
space defined by the element’s other properties. Possible values are clip, scroll,
and none.

A p p e n d i x B : S t y l e S h e e t R e f e r e n c e 985

A
P

P
EN

D
IX

ES
EXAMPLE

{position: absolute; left: 20; top: 20; width: 100; height: 100;

clip: rect(10 90 90 10); overflow: scroll}

BROWSER SUPPORT Internet Explorer 5

clip
This value clips content to the size defined for the container.

EXAMPLE

{position: absolute; left: 20; top: 20; width: 100; height: 100;

clip: rect(10 90 90 10); overflow: clip}

BROWSER SUPPORT None

scroll
This value allows content to scroll using scroll bars or another browser-dependent
mechanism.

EXAMPLE

{position: absolute; left: 20; top: 20; width: 100; height: 100;

clip: rect(10 90 90 10); overflow: scroll}

BROWSER SUPPORT Internet Explorer 5

none
This value does nothing, but can allow clipping of the content.

EXAMPLE

{position: absolute; left: 20; top: 20; width: 100; height: 100;

clip: rect(10 90 90 10); overflow: none}

BROWSER SUPPORT None

z-index
This property defines a layering context for elements containing other elements with
relative or absolute positioning. By default, overlapping elements stack in the order in

986 H T M L : T h e C o m p l e t e R e f e r e n c e

which they are defined in an HTML document. This property can override default
layering by assigning numeric layering values to an element, with higher numbers
layering above lower numbers. The auto value tries to determine the z-placement of an
element automatically.

EXAMPLE

{position: absolute; top:20; left:20; height: 50; width: 50;

background-color: blue; z-index: 2}

BROWSER SUPPORT

Internet Explorer 5
Netscape 4 and 4.5

visibility
This property determines whether or not an element is visible. Possible values are
hidden, visible, and inherit.

EXAMPLE

{visibility: inherit}

BROWSER SUPPORT Internet Explorer 4 and 5

hidden
This value specifies that an element is hidden from view. A hidden element still
occupies its full canvas space.

EXAMPLE

{visibility: hidden}

BROWSER SUPPORT Internet Explorer 4 and 5

visible
This value specifies that an element is visible.

EXAMPLE

{visibility: visible}

A p p e n d i x B : S t y l e S h e e t R e f e r e n c e 987

A
P

P
EN

D
IX

ES
BROWSER SUPPORT Internet Explorer 4 and 5

inherit
This value specifies that an element inherits its visibility state from the element that
contains it.

EXAMPLE

{visibility: inherit}

BROWSER SUPPORT Internet Explorer 4 and 5

Classification
This section discusses style properties that affect the display type of elements
(block-level, inline, and so on) and the display of lists and white space.

display
This property specifies an element’s display type. This property can override an
element’s defined display type. For example, block-level elements can be redefined as
inline elements so that extra lines will not be placed between them.

EXAMPLE

P {display: inline}

BROWSER SUPPORT

Internet Explorer 4 and 5 (incomplete)
Netscape 4 and 4.5 (incomplete)

block
This value sets an element to display as a block element.

EXAMPLE

{display: block}

BROWSER SUPPORT

Internet Explorer 5
Netscape 4 and 4.5

988 H T M L : T h e C o m p l e t e R e f e r e n c e

inline
This value sets an element to display as an inline element.

EXAMPLE

P {display: inline}

BROWSER SUPPORT

Internet Explorer 5
Future versions of Netscape

list-item
This value sets an element to display as a list-item element.

EXAMPLE

P {display: list-item}

BROWSER SUPPORT Netscape 4 and 4.5

none
This value turns off the display of an element. Unlike the hidden value of the visibility
property, none does not preserve an element’s canvas space.

EXAMPLE

P {display: none}

BROWSER SUPPORT

Internet Explorer 4 and 5
Netscape 4 and 4.5

white-space
This property controls how spaces, tabs, and newline characters are handled in an
element. Possible values are normal, pre, and nowrap.

EXAMPLE

{white-space: pre}

BROWSER SUPPORT Netscape 4 and 4.5 (incomplete)

normal
This value collapses white-space characters into single spaces and automatically wraps
lines, as in normal HTML.

EXAMPLE

{white-space: normal}

BROWSER SUPPORT Netscape 4 and 4.5

pre
This value preserves white-space formatting, similar to the <PRE> element in HTML.

EXAMPLE

{white-space: pre}

BROWSER SUPPORT Netscape 4 and 4.5

nowrap
This value prevents lines from wrapping if they exceed the element’s content width.

EXAMPLE

{white-space: nowrap}

BROWSER SUPPORT None currently; likely in future versions of Netscape

list-style-type
This property defines labels for ordered and unordered lists. The value none prevents
a label from displaying.

EXAMPLES

OL {list-style-type: upper-roman}

UL {list-style-type: disc}

BROWSER SUPPORT Internet Explorer 4 and 5; Netscape 4 and 4.5

A p p e n d i x B : S t y l e S h e e t R e f e r e n c e 989

A
P

P
EN

D
IX

ES

none
This value specifies that no label will be displayed for items in ordered or
unordered lists.

EXAMPLES

OL {list-style-type: none}

UL {list-style-type: none}

BROWSER SUPPORT

Internet Explorer 4 and 5
Netscape 4 and 4.5

Ordered Lists
There are five values for ordered lists: decimal, lower-roman, upper-roman,
lower-alpha, and upper-alpha.

decimal This value specifies Arabic numerals (1, 2, 3, and so on) for the labeling of
items in an ordered list.

EXAMPLE

OL {list-style-type: decimal}

BROWSER SUPPORT

Internet Explorer 4 and 5
Netscape 4 and 4.5

lower-roman This value specifies lowercase Roman numerals (i, ii, iii, and so on) for
the labeling of items in an ordered list.

EXAMPLE

OL {list-style-type: lower-roman}

BROWSER SUPPORT

Internet Explorer 4 and 5
Netscape 4 and 4.5

990 H T M L : T h e C o m p l e t e R e f e r e n c e

A p p e n d i x B : S t y l e S h e e t R e f e r e n c e 991

A
P

P
EN

D
IX

ES
upper-roman This value specifies uppercase Roman numerals (I, II, III, and so on)
for the labeling of items in an ordered list.

EXAMPLE

OL {list-style-type: upper-roman}

BROWSER SUPPORT

Internet Explorer 4 and 5
Netscape 4 and 4.5

lower-alpha This value specifies lowercase letters (a, b, c, and so on) for the labeling
of items in an ordered list.

EXAMPLE

OL {list-style-type: lower-alpha}

BROWSER SUPPORT

Internet Explorer 4 and 5
Netscape 4 and 4.5

upper-alpha This value specifies uppercase letters (A, B, C, and so on) for the
labeling of items in an ordered list.

EXAMPLE

OL {list-style-type: upper-alpha}

BROWSER SUPPORT

Internet Explorer 4 and 5
Netscape 4 and 4.5

Unordered Lists
There are three values for unordered lists: disc, circle, and square.

disc This value specifies a black dot bullet for items in an unordered list.

992 H T M L : T h e C o m p l e t e R e f e r e n c e

EXAMPLE

UL {list-style-type: disc}

BROWSER SUPPORT

Internet Explorer 4 and 5
Netscape 4 and 4.5

circle This value specifies a circular bullet for items in an unordered list.

EXAMPLE

UL {list-style-type: circle}

BROWSER SUPPORT

Internet Explorer 4 and 5
Netscape 4 and 4.5

square This value specifies a square bullet for items in an unordered list.

EXAMPLE

UL {list-style-type: square}

BROWSER SUPPORT

Internet Explorer 4 and 5
Netscape 4 and 4.5

list-style-image
This property assigns a graphic image to a list label, using the URL of the image. The
other value for list-style-image other than a URL is none.

EXAMPLE

UL {list-style-image: url(ball.gif)}

BROWSER SUPPORT

Internet Explorer 4 and 5
Future versions of Netscape

list-style-position
This property specifies whether the labels for an element’s list items are positioned
inside or outside the “box” defined by the area. By default, labels appear outside
the “box.”

EXAMPLE

OL {list-style-type: upper-roman; list-style-position: outside;

background: yellow}

The inside value places the bullets inside the “box.”

EXAMPLE

UL {list-style-type: square; list-style-position: inside;

background: yellow}

BROWSER SUPPORT Internet Explorer 4 and 5

list-style
This property is more concise than the other list-style properties. It sets type, image,
and position properties for ordered and unordered lists. The properties can appear in
any order. The values inside and outside are not supported.

EXAMPLES

UL {list-style: inside url("bullet.gif")}

UL {list-style: outside square}

OL {list-style: lower-roman inside}

BROWSER SUPPORT Internet Explorer 4 and 5

Style Sheet Measurement Values
This section discusses measurement values used in association with style sheets.

%
This value defines a measurement as a percentage relative to another value.

A p p e n d i x B : S t y l e S h e e t R e f e r e n c e 993

A
P

P
EN

D
IX

ES

994 H T M L : T h e C o m p l e t e R e f e r e n c e

EXAMPLE

P {font-size: 14pt; line-height: 150%}

BROWSER SUPPORT

Internet Explorer 3, 4, and 5
Netscape 4 and 4.5

cm
This value defines a measurement in centimeters.

EXAMPLE

DIV {margin-bottom: 1cm}

BROWSER SUPPORT

Internet Explorer 3, 4, and 5
Netscape 4 and 4.5

em
This value defines a measurement for the height of a font in em spaces.

EXAMPLE

P {letter-spacing: 5em}

BROWSER SUPPORT

Internet Explorer 3 (Mac only)
Netscape 4 and 4.5 (incomplete)

ex (x-height)
This value defines a measurement relative to a font’s x-height. The x-height is
determined by the height of the font’s lowercase letter x.

EXAMPLE

P {font-size: 14pt; line-height: 2ex}

BROWSER SUPPORT

Internet Explorer 3 (Mac only)
Netscape 4 and 4.5 (incomplete)

in
This value defines a measurement in inches.

EXAMPLE

P {word-spacing: .25in}

BROWSER SUPPORT

Internet Explorer 3, 4, and 5
Netscape 4 and 4.5

mm
This value defines a measurement in millimeters.

EXAMPLE

P {word-spacing: 12mm}

BROWSER SUPPORT

Internet Explorer 3, 4, and 5
Netscape 4 and 4.5

pc
This value defines a measurement in picas.

EXAMPLE

P {font-size: 10pc}

BROWSER SUPPORT

Internet Explorer 3, 4, and 5
Netscape 4 and 4.5

A p p e n d i x B : S t y l e S h e e t R e f e r e n c e 995

A
P

P
EN

D
IX

ES

996 H T M L : T h e C o m p l e t e R e f e r e n c e

pt
This value defines a measurement in points.

EXAMPLE

BODY {font-size: 14pt}

BROWSER SUPPORT

Internet Explorer 3, 4, and 5
Netscape 4 and 4.5

px
This value defines a measurement in pixels.

EXAMPLE

P {padding: 15px}

BROWSER SUPPORT

Internet Explorer 3, 4, and 5
Netscape 4 and 4.5

Style Sheet Color Values
This section discusses color values used in association with style sheets.

Named Color Values
Color values can be defined using 16 color names: aqua, black, blue, fuchsia, gray,
green, lime, maroon, navy, olive, purple, red, silver, teal, white, and yellow. (An
extended list of color names has been introduced by Netscape, but it is safer to use the
hexadecimal equivalents of those names, which are listed in Appendix E.)

EXAMPLE

BODY {font-family: Arial; font-size: 12pt; color: red}

BROWSER SUPPORT

Internet Explorer 3, 4, and 5
Netscape 4 and 4.5

Six-Digit Hexadecimal Color Values
Color values can be defined using the six-digit hexadecimal color values commonly
used on the Web.

EXAMPLE

DIV {font-family: Courier; font-size: 10pt; color: #00CCFF}

BROWSER SUPPORT

Internet Explorer 3, 4, and 5
Netscape 4 and 4.5

Three-Digit Hexadecimal Color Values
Color values can be defined using the three-digit hexadecimal color values, a concise
version of the six-digit values just noted.

EXAMPLE

SPAN {font-family: Helvetica; font-size: 14pt; color: #0CF}

BROWSER SUPPORT

Internet Explorer 3, 4, and 5
Netscape 4 and 4.5

RGB Color Values
Color values can be defined using RGB values. Colors are defined by the letters rgb,
followed by three numbers between 0 and 255, contained in parentheses and separated
by commas, with no spaces between them.

EXAMPLE

P {color: rgb(204,0,51)}

A p p e n d i x B : S t y l e S h e e t R e f e r e n c e 997

A
P

P
EN

D
IX

ES

BROWSER SUPPORT

Internet Explorer 4
Netscape 4 and 4.5

RGB Color Values Using Percentages
RGB color values can also be defined using percentages. The format is the same, except
that the numbers are replaced by percentage values between 0% and 100%.

EXAMPLE

P {color: rgb(75%,10%,50%)}

BROWSER SUPPORT

Internet Explorer 4
Netscape 4 and 4.5

998 H T M L : T h e C o m p l e t e R e f e r e n c e

Appendix C
Special Characters

999

Copyright 1999 The McGraw-Hill Companies. Click Here for Terms of Use.

1000 H T M L : T h e C o m p l e t e R e f e r e n c e

This appendix lists the special characters available in standard HTML and HTML 4.
Note that browser support of entities is based on testing in the following browser
versions: Netscape 1.22, Netscape 2.02, Netscape 3.01, Netscape Communicator 4,

Netscape Communicator 4.5, Internet Explorer 3.02, Internet Explorer 4, Internet Explorer
5, and WebTV. In the tables in this appendix, the following abbreviations are used for the
different Netscape and Internet Explorer versions:

N1 = Netscape 1.22
N2 = Netscape 2.02
N3 = Netscape 3.01
N4 = Netscape Communicator 4
N4.5 = Netscape Communicator 4.5
IE3 = Internet Explorer 3.02
IE4 = Internet Explorer 4
IE5 = Internet Explorer 5

“Standard” HTML Character Entities
As discussed in Chapter 4, Web browsers do not read certain characters if they appear
in an HTML document. To get around this limitation, codes have been assigned to
certain characters. These codes consist of numbered entities; and some, but not all, of
these numbered entities have corresponding named entities. For example, the
numbered entity Ë produces the character Ë. The named entity Ë produces
the same character. Note that the named entity suggests the intended rendering of the
character, which provides a handy mnemonic device for dedicated HTML codes. While
Ë is widely supported, not all character entities work in all browsers.
Theoretically, a browser vendor could even create arbitrary interpretations of these
codes. For example, WebTV has assigned its own unique renderings for the entities
numbered 128 and 129. Under the HTML specifications, 128 and 129 are not assigned
characters. The codes numbered 32 through 255 (with some gaps) were assigned
standard keyboard characters. Some of these codes duplicate characters that Web
browsers can already interpret. The entity 5 represents the numeral 5, while
¥ represents A. Character entities become more practical when it is necessary to
employ characters used in foreign languages, such as Œ or Å, or special characters
such as ¶. The following chart lists these “standard” entities and their intended
renderings, and identifies which browsers support each of them.

Named
Entity

Browser
Support

Numbered
Entity

Browser
Support

Intended
Rendering Description

 N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

Space

! N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

! Exclamation
point

A
P

P
EN

D
IX

ES

A p p e n d i x C : S p e c i a l C h a r a c t e r s 1001

Named
Entity

Browser
Support

Numbered
Entity

Browser
Support

Intended
Rendering Description

" N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

" N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

" Double quotes

N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

Number symbol

$ N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

$ Dollar symbol

% N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

% Percent symbol

& N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

& N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

& Ampersand

' N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

' Single quote

(N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

(Opening
parenthesis

) N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

) Closing
parenthesis

* N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

* Asterisk

+ N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

+ Plus sign

, N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

, Comma

- N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

– Minus sign
(hyphen)

. N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

. Period

Named
Entity

Browser
Support

Numbered
Entity

Browser
Support

Intended
Rendering Description

/ N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

/ Slash/virgule/
bar

0 N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

0 Zero

1 N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

1 One

2 N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

2 Two

3 N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

3 Three

4 N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

4 Four

5 N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

5 Five

6 N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

6 Six

7 N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

7 Seven

8 N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

8 Eight

9 N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

9 Nine

: N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

: Colon

1002 H T M L : T h e C o m p l e t e R e f e r e n c e

Named
Entity

Browser
Support

Numbered
Entity

Browser
Support

Intended
Rendering Description

; N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

; Semicolon

< N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

< N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

< Less than
symbol

= N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

= Equal sign

> N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

> N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

> Greater than
symbol

? N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

? Question mark

@ N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

@ At symbol

A N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

A

B N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

B

C N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

C

D N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

D

E N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

E

F N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

F

A
P

P
EN

D
IX

ES

A p p e n d i x C : S p e c i a l C h a r a c t e r s 1003

Named
Entity

Browser
Support

Numbered
Entity

Browser
Support

Intended
Rendering Description

G N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

G

H N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

H

I N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

I

J N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

J

K N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

K

L N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

L

M N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

M

N N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

N

O N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

O

P N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

P

Q N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

Q

R N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

R

1004 H T M L : T h e C o m p l e t e R e f e r e n c e

Named
Entity

Browser
Support

Numbered
Entity

Browser
Support

Intended
Rendering Description

S N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

S

T N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

T

U N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

U

V N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

V

W N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

W

X N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

X

Y N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

Y

Z N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

Z

[N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

[Opening
bracket

\ N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

\ Backslash

] N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

] Closing bracket

^ N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

^ Caret

A
P

P
EN

D
IX

ES

A p p e n d i x C : S p e c i a l C h a r a c t e r s 1005

1006 H T M L : T h e C o m p l e t e R e f e r e n c e

Named
Entity

Browser
Support

Numbered
Entity

Browser
Support

Intended
Rendering Description

_ N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

_ Underscore

` N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

' Grave accent,
no letter

a N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

a

b N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

b

c N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

c

d N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

d

e N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

e

f N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

f

g N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

g

h N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

h

i N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

i

j N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

j

k N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

k

A
P

P
EN

D
IX

ES

A p p e n d i x C : S p e c i a l C h a r a c t e r s 1007

Named
Entity

Browser
Support

Numbered
Entity

Browser
Support

Intended
Rendering Description

l N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

l

m N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

m

n N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

n

o N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

o

p N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

p

q N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

q

r N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

r

s N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

s

t N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

t

u N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

u

v N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

v

w N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

w

x N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

x

Named
Entity

Browser
Support

Numbered
Entity

Browser
Support

Intended
Rendering Description

y N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

y

z N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

z

{ N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

{ Opening brace

| N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

| Vertical bar

} N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

} Closing brace

~ N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

~ Equivalency
symbol (tilde)

 n/a No character
(Note: In the
standard, the
values from 127
to 159 are not
assigned.
Authors are
advised not to
use them. Many
of them only
work under
Windows or
produce
different
characters on
other operating
systems or with
different default
font sets.)

€ WebTV
(nonstandard)*

No character
defined

1008 H T M L : T h e C o m p l e t e R e f e r e n c e

* WebTV renders € as a right-pointing arrowhead.

Named
Entity

Browser
Support

Numbered
Entity

Browser
Support

Intended
Rendering Description

™ IE3, IE4  WebTV
(nonstandard)✝

™ Trademark
symbol
(Nonstandard
numeric value;
use ™ or
™
instead.)

‚ N3, N2, N4,
N4.5, IE3, IE4,
IE5, WebTV

, Low-9 quote
(nonstandard)

ƒ N3, N4, N4.5,
IE3, IE4, IE5,
WebTV

ƒ Small f with
hook
(nonstandard)

„ N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

„ Low-9 double
quotes
(nonstandard)

… N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

… Ellipsis
(nonstandard)

† N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

† Dagger
(nonstandard)

‡ N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

‡ Double dagger
(nonstandard)

ˆ N3, N4, N4.5,
IE3, IE4, IE5,
WebTV

^ Circumflex
accent, no letter
(nonstandard)

‰ N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

‰ Per thousand
(nonstandard)

Š N3, N4, N4.5,
IE3, IE4, IE5,
WebTV

Š Uppercase S
with caron
(nonstandard)

‹ N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

< Opening single
angle quote
(nonstandard)

A
P

P
EN

D
IX

ES

A p p e n d i x C : S p e c i a l C h a r a c t e r s 1009

† WebTV renders  as a left-pointing arrowhead.

Named
Entity

Browser
Support

Numbered
Entity

Browser
Support

Intended
Rendering Description

Œ N3, N4, N4.5,
IE3, IE4, IE5,
WebTV

Œ Uppercase OE
ligature
(nonstandard)

 None Ÿ Uppercase Y
with umlaut
(nonstandard)

Ž n/a No character

 n/a No character

 n/a No character

‘ N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

‘ Opening
“smart” single
quote
(nonstandard)

’ N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

’ Closing “smart”
single quote
(nonstandard)

“ N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

“ Opening
“smart” double
quote
(nonstandard)

” N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

” Closing “smart”
double quote
(nonstandard)

• N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

• Bullet
(nonstandard)

– N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

– En dash
(nonstandard)

— N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

— Em dash
(nonstandard)

˜ N3, N4, N4.5,
IE3, IE4, IE5,
WebTV

~ Tilde
(nonstandard)

1010 H T M L : T h e C o m p l e t e R e f e r e n c e

Named
Entity

Browser
Support

Numbered
Entity

Browser
Support

Intended
Rendering Description

™ IE3, IE4 ™ N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

™ Trademark
symbol‡

(nonstandard
numeric value;
use ™ or
™
instead)

š N3, N4, N4.5,
IE3, IE4, IE5,
WebTV

š Lowercase S
with caron
(nonstandard)

› N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

> Closing single
angle quote
(nonstandard)

œ N3, N4, N4.5,
IE3, IE4, IE5,
WebTV

œ Lowercase oe
ligature
(nonstandard)

 n/a No character

ž n/a No character

Ÿ N3, N4, N4.5, IE3 Ÿ Uppercase Y
with umlaut
(nonstandard)

 N1, N3, N4,
N4.5, IE3

 N1, N2, N3, N4,
N4.5, IE3, IE4

Nonbreaking
space

¡ N3, N4, N4.5,
IE3, IE4, IE5,
WebTV

¡ N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

¡ Inverted
exclamation
point

¢ N3, N4, N4.5,
IE3, IE4, IE5,
WebTV

¢ N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

¢ Cent symbol

£ N3, N4, N4.5,
IE3, IE4, IE5,
WebTV

£ N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

£ Pound sterling
symbol

¤ N3, N4, N4.5,
IE3, IE4, IE5,
WebTV

¤ N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

¤ Currency
symbol

¥ N3, N4, N4.5,
IE3, IE4, IE5,
WebTV

¥ N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

¥ Japanese Yen

A
P

P
EN

D
IX

ES

A p p e n d i x C : S p e c i a l C h a r a c t e r s 1011

‡ Support for ™ (™) is inconsistent across platforms. Alternative tagging such as

^{<SMALL>TM</SMALL>} is recommended, at least until there is wider

support for &trade (™) as standardized under the HTML 4.0 specification (see Chapter 3).

Named
Entity

Browser
Support

Numbered
Entity

Browser
Support

Intended
Rendering Description

¦ N3, N4, N4.5,
IE3, IE4, IE5,
WebTV

¦ N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

¦ Broken vertical
bar

§ N3, N4, N4.5,
IE3, IE4, IE5,
WebTV

§ N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

§ Section symbol

¨ N3, N4, N4.5,
IE3, IE4, IE5,
WebTV

¨ N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

.. Umlaut, no
letter

© N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

© N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

© Copyright
symbol

ª N3, N4, N4.5,
IE3, IE4, IE5,
WebTV

ª N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

a Feminine
ordinal
indicator

« N3, N4, N4.5,
IE3, IE4, IE5,
WebTV

« N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

« Opening double
angle quote

¬ N3, N4, N4.5,
IE3, IE4, IE5,
WebTV

¬ N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

¬ Logical “not”
symbol

­ N3, N4, N4.5,
IE3, IE4, IE5,
WebTV

­ N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

- Soft hyphen

® N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

® N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

® Registration
mark

¯ N3, N4, N4.5,
IE3, IE4, IE5,
WebTV

¯ N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

– Macron

° N3, N4, N4.5,
IE3, IE4, IE5,
WebTV

° N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

° Degree symbol

± N3, N4, N4.5,
IE3, IE4, IE5,
WebTV

± N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

± Plus/minus
symbol

1012 H T M L : T h e C o m p l e t e R e f e r e n c e

Named
Entity

Browser
Support

Numbered
Entity

Browser
Support

Intended
Rendering Description

² N3, N4, N4.5,
IE3, IE4, IE5,
WebTV

² N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

² Superscript 2

³ N3, N4, N4.5,
IE3, IE4, IE5,
WebTV

³ N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

³ Superscript 3

´ N3, N4, N4.5,
IE3, IE4, IE5,
WebTV

´ N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

´ Acute accent, no
letter

µ N3, N4, N4.5,
IE3, IE4, IE5,
WebTV

µ N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

µ Micron

¶ N3, N4, N4.5,
IE3, IE4, IE5,
WebTV

¶ N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

¶ Paragraph
symbol

· N3, N4, N4.5,
IE3, IE4, IE5,
WebTV

· N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

• Middle dot

¸ N3, N4, N4.5,
IE3, IE4, IE5,
WebTV

¸ N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

¸ Cedilla

¹ N3, N4, N4.5,
IE3, IE4, IE5,
WebTV

¹ N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

¹ Superscript 1

º N3, N4, N4.5,
IE3, IE4, IE5,
WebTV

º N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

º Masculine
ordinal
indicator

» N3, N4, N4.5,
IE3, IE4, IE5,
WebTV

» N1, N2, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

» Closing double
angle quotes

¼ N3, N4, N4.5,
IE3, IE4, IE5,
WebTV

¼ N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

¼ One-quarter
fraction

½ N3, N4, N4.5,
IE3, IE4, IE5,
WebTV

½ N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

½ One-half
fraction

A p p e n d i x C : S p e c i a l C h a r a c t e r s 1013

A
P

P
EN

D
IX

ES

Named
Entity

Browser
Support

Numbered
Entity

Browser
Support

Intended
Rendering Description

¾ N3, N4, N4.5,
IE3, IE4, IE5,
WebTV

¾ N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

¾ Three-fourths
fraction

¿ N3, N4, N4.5,
IE3, IE4, IE5,
WebTV

¿ N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

¿ Inverted
question mark

À N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

À N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

À Uppercase A
with grave
accent

Á N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

Á N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

Á Uppercase A
with acute
accent

Â N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

Â N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

Â Uppercase A
with circumflex

Ã N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

Ã N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

Ã Uppercase A
with tilde

Ä N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

Ä N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

Ä Uppercase A
with umlaut

Å N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

Å N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

Å Uppercase A
with ring

Æ N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

Æ N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

Æ Uppercase AE
ligature

Ç N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

Ç N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

Ç Uppercase C
with cedilla

È N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

È N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

È Uppercase E
with grave
accent

É N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

É N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

É Uppercase E
with acute
accent

1014 H T M L : T h e C o m p l e t e R e f e r e n c e

Named
Entity

Browser
Support

Numbered
Entity

Browser
Support

Intended
Rendering Description

Ê N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

Ê N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

Ê Uppercase E
with circumflex

Ë N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

Ë N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

Ë Uppercase E
with umlaut

Ì N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

Ì N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

Ì Uppercase I
with grave
accent

Í N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

Í N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

Í Uppercase I
with acute
accent

Î N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

Î N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

Î Uppercase I
with circumflex

Ï N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

Ï N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

Ï Uppercase I
with umlaut

Ð N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

Ð N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

Ð Capital eth

Ñ N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

Ñ N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

Ñ Uppercase N
with tilde

Ò N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

Ò N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

Ò Uppercase O
with grave
accent

Ó N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

Ó N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

Ó Uppercase O
with acute
accent

Ô N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

Ô N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

Ô Uppercase O
with circumflex

Õ N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

Õ N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

Õ Uppercase O
with tilde

A p p e n d i x C : S p e c i a l C h a r a c t e r s 1015

A
P

P
EN

D
IX

ES

Named
Entity

Browser
Support

Numbered
Entity

Browser
Support

Intended
Rendering Description

Ö N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

Ö N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

Ö Uppercase O
with umlaut

× N3, N4, N4.5,
IE3, IE4, IE5,
WebTV

× N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

× Multiplication
symbol

Ø N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

Ø N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

Ø Uppercase O
with slash

Ù N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

Ù N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

Ù Uppercase U
with grave
accent

Ú N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

Ú N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

Ú Uppercase U
with acute
accent

Û N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

Û N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

Û Uppercase U
with circumflex
accent

Ü N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

Ü N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

Ü Uppercase U
with umlaut

Ý N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

Ý N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

Ý Uppercase Y
with acute
accent

Þ N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

Þ N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

Þ Capital thorn

ß N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

ß N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

ß SZ ligature

à N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

à N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

à Lowercase a
with grave
accent

á N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

á N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

á Lowercase a
with acute
accent

1016 H T M L : T h e C o m p l e t e R e f e r e n c e

Named
Entity

Browser
Support

Numbered
Entity

Browser
Support

Intended
Rendering Description

â N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

â N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

â Lowercase a
with circumflex

ã N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

ã N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

ã Lowercase a
with tilde

ä N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

ä N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

ä Lowercase a
with umlaut

å N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

å N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

å Lowercase a
with ring

æ N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

æ N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

æ Lowercase ae
ligature

ç N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

ç N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

ç Lowercase c
with cedilla

è N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

è N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

è Lowercase e
with grave
accent

é N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

é N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

é Lowercase e
with acute
accent

ê N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

ê N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

ê Lowercase e
with circumflex

ë N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

ë N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

ë Lowercase e
with umlaut

ì N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

ì N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

ì Lowercase i
with grave
accent

í N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

í N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

í Lowercase i
with acute
accent

A p p e n d i x C : S p e c i a l C h a r a c t e r s 1017

A
P

P
EN

D
IX

ES

Named
Entity

Browser
Support

Numbered
Entity

Browser
Support

Intended
Rendering Description

î N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

î N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

î Lowercase i
with circumflex

ï N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

ï N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

ï Lowercase i
with umlaut

ð N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

ð N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

∂/ Lowercase eth

ñ N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

ñ N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

ñ Lowercase n
with tilde

ò N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

ò N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

ò Lowercase o
with grave
accent

ó N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

ó N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

ó Lowercase o
with acute
accent

ô N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

ô N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

ô Lowercase o
with circumflex
accent

õ N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

õ N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

õ Lowercase o
with tilde

ö N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

ö N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

ö Lowercase o
with umlaut

÷ N3, N4, N4.5,
IE3, IE4, IE5,
WebTV

÷ N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

÷ Division symbol

ø N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

ø N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

ø Lowercase o
with slash

ù N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

ù N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

ù Lowercase u
with grave
accent

1018 H T M L : T h e C o m p l e t e R e f e r e n c e

A p p e n d i x C : S p e c i a l C h a r a c t e r s 1019

A
P

P
EN

D
IX

ES
Named
Entity

Browser
Support

Numbered
Entity

Browser
Support

Intended
Rendering Description

ú N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

ú N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

ú Lowercase u
with acute
accent

û N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

û N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

û Lowercase u
with circumflex

ü N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

ü N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

ü Lowercase u
with umlaut

ý N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

ý N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

ý Lowercase y
with acute
accent

þ N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

þ N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

þ Lowercase
thorn

ÿ N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

ÿ N1, N3, N4,
N4.5, IE3, IE4,
IE5, WebTV

ÿ Lowercase y
with umlaut

HTML 4 Character Entities
The HTML 4.0 specification introduces a wide array of new character entities. These
include additional Latin characters, the Greek alphabet, special spacing characters,
arrows, technical symbols, and various shapes. Some of these entities have yet to be
supported by browser vendors. Netscape 4 supports only a few of the extended Latin
characters and some entities that duplicate characters already available in the
“standard” list (34 through 255). Microsoft has taken the lead in this area, with Internet
Explorer 4 supporting many of these entities, including the Greek alphabet and
mathematical symbols. These character entities expand the presentation possibilities of

HTML, particularly in the presentation of foreign languages. Netscape’s neglect of
these tags is an unfortunate oversight that ideally should be corrected as soon as
possible.

Latin Extended-A

Named
Entity

Browser
Support

Numbered
Entity

Browser
Support

Intended
Rendering Description

&Oelig; IE4, IE5 Œ IE4, IE5,
N4, N4.5

Œ Uppercase
ligature OE

œ IE4, IE5 œ IE4, IE5,
N4, N4.5

œ Lowercase
ligature oe

Š IE4, IE5 Š IE4, IE5,
N4, N4.5

Š Uppercase S
with caron

š IE4, IE5 š IE4, IE5,
N4, N4.5

š Lowercase s
with caron

Ÿ IE4, IE5 Ÿ IE4, IE5,
N4, N4.5

Ÿ Uppercase Y
with umlaut

Latin Extended-B

Named
Entity

Browser
Support

Numbered
Entity

Browser
Support

Intended
Rendering Description

ƒ IE4, IE5 ƒ IE4, IE5,
N4, N4.5

ƒ Latin small f
with hook

Spacing Modifier Letters

Named
Entity

Browser
Support

Numbered
Entity

Browser
Support

Intended
Rendering Description

ˆ IE4, IE5 ˆ IE4, IE5,
N4, N4.5

^ Circumflex accent

˜ IE4, IE5 ˜ IE4, IE5,
N4, N4.5

~ Small tilde

1020 H T M L : T h e C o m p l e t e R e f e r e n c e

General Punctuation

Named
Entity

Browser
Support

Numbered
Entity

Browser
Support

Intended
Rendering Description

  None   None En space

  None   None Em space

  None   None Thin space

‌ IE4 ‌ IE4 | Zero width nonjoiner

‍ IE4 ‍ IE4 |× Zero width joiner

‎ None ‎ None Unknown Left-to-right mark

‏ None ‏ None Unknown Right-to-left mark

– IE4, IE5 – IE4, IE5,
N4, N4.5

– En dash

— IE4, IE5 — IE4, IE5,
N4, N4.5

— Em dash

‘ IE4, IE5 ‘ IE4, IE5,
N4, N4.5

‘ Left single
quotation mark

’ IE4, IE5 ’ IE4, IE5,
N4, N4.5

’ Right single
quotation mark

‚ IE4, IE5 ‚ IE4, IE5,
N4, N4.5

, Single low-9
quotation mark

“ IE4, IE5 “ IE4, IE5,
N4, N4.5

“ Left double
quotation mark

” IE4, IE5 ” IE4, IE5,
N4, N4.5

” Right double
quotation mark

„ IE4, IE5 „ IE4, IE5,
N4, N4.5

„ Double low-9
quotation mark

† IE4, IE5 † IE4, IE5,
N4, N4.5

† Dagger

‡ IE4, IE5 ‡ IE4, IE5,
N4, N4.5

‡ Double dagger

• IE4, IE5 • IE4, IE5,
N4, N4.5

• Bullet

… IE4, IE5 … IE4, IE5,
N4, N4.5

… Horizontal ellipsis

A
P

P
EN

D
IX

ES

A p p e n d i x C : S p e c i a l C h a r a c t e r s 1021

1022 H T M L : T h e C o m p l e t e R e f e r e n c e

Named
Entity

Browser
Support

Numbered
Entity

Browser
Support

Intended
Rendering Description

‰ IE4, IE5 ‰ IE4, IE5,
N4, N4.5

‰ Per thousand sign

′ IE4, IE5 ′ IE4, IE5 ' Prime, minutes,
or feet

″ IE4, IE5 ″ IE4, IE5 " Double prime,
seconds, or inches

‹ IE4, IE5 ‹ IE4, IE5,
N4, N4.5

< Single left-pointing
angle quotation mark

› IE4, IE5 › IE4, IE5,
N4, N4.5

> Single right-pointing
angle quotation mark

‾ IE4, IE5 ‾ IE4, IE5 ¯ Overline

⁄ IE4, IE5 ⁄ IE4, IE5 / Fraction slash

Greek

Testing suggests that Internet Explorer support for this set of characters only works
under Windows NT, not under Windows 95.

Named
Entity

Browser
Support

Numbered
Entity

Browser
Support

Intended
Rendering Description

Α IE4, IE5 Α IE4, IE5 Α Greek capital letter alpha

Β IE4, IE5 Β IE4, IE5 Β Greek capital letter beta

Γ IE4, IE5 Γ IE4, IE5 Γ Greek capital letter gamma

Δ IE4, IE5 Δ IE4, IE5 ∆ Greek capital letter delta

Ε IE4, IE5 Ε IE4, IE5 Ε Greek capital letter epsilon

Ζ IE4, IE5 Ζ IE4, IE5 Ζ Greek capital letter zeta

Η IE4, IE5 Η IE4, IE5 Η Greek capital letter eta

Θ IE4, IE5 Θ IE4, IE5 Θ Greek capital letter theta

Ι IE4, IE5 Ι IE4, IE5 Ι Greek capital letter iota

Κ IE4, IE5 Κ IE4, IE5 Κ Greek capital letter kappa

A p p e n d i x C : S p e c i a l C h a r a c t e r s 1023

A
P

P
EN

D
IX

ES
Named
Entity

Browser
Support

Numbered
Entity

Browser
Support

Intended
Rendering Description

Λ IE4, IE5 Λ IE4, IE5 Λ Greek capital letter lambda

Μ IE4, IE5 Μ IE4, IE5 Μ Greek capital letter mu

Ν IE4, IE5 Ν IE4, IE5 Ν Greek capital letter nu

Ξ IE4, IE5 Ξ IE4, IE5 Ξ Greek capital letter xi

Ο IE4, IE5 Ο IE4, IE5 Ο Greek capital letter omicron

Π IE4, IE5 Π IE4, IE5 Π Greek capital letter pi

Ρ IE4, IE5 Ρ IE4, IE5 Ρ Greek capital letter rho

Σ IE4, IE5 Σ IE4, IE5 Σ Greek capital letter sigma

Τ IE4, IE5 Τ IE4, IE5 Τ Greek capital letter tau

Υ IE4, IE5 Υ IE4, IE5 Υ Greek capital letter upsilon

Φ IE4, IE5 Φ IE4, IE5 Φ Greek capital letter phi

Χ IE4, IE5 Χ IE4, IE5 Χ Greek capital letter chi

Ψ IE4, IE5 Ψ IE4, IE5 Ψ Greek capital letter psi

Ω IE4, IE5 Ω IE4, IE5 Ω Greek capital letter omega

α IE4, IE5 α IE4, IE5 α Greek small letter alpha

β IE4, IE5 β IE4, IE5 β Greek small letter beta

γ IE4, IE5 γ IE4, IE5 γ Greek small letter gamma

δ IE4, IE5 δ IE4, IE5 δ Greek small letter delta

ε IE4, IE5 ε IE4, IE5 ε Greek small letter epsilon

ζ IE4, IE5 ζ IE4, IE5 ζ Greek small letter zeta

η IE4, IE5 η IE4, IE5 η Greek small letter eta

θ IE4, IE5 θ IE4, IE5 θ Greek small letter theta

ι IE4, IE5 ι IE4, IE5 ι Greek small letter iota

κ IE4, IE5 κ IE4, IE5 κ Greek small letter kappa

λ IE4, IE5 λ IE4, IE5 λ Greek small letter lambda

μ IE4, IE5 μ IE4, IE5 µ Greek small letter mu

ν IE4, IE5 ν IE4, IE5 ν Greek small letter nu

ξ IE4, IE5 ξ IE4, IE5 ξ Greek small letter xi

Named
Entity

Browser
Support

Numbered
Entity

Browser
Support

Intended
Rendering Description

ο IE4, IE5 ο IE4, IE5 ο Greek small letter omicron

π IE4, IE5 π IE4, IE5 π Greek small letter pi

ρ IE4, IE5 ρ IE4, IE5 ρ Greek small letter rho

ς IE4, IE5 ς IE4, IE5 ς Greek small letter final
sigma

σ IE4, IE5 σ IE4, IE5 σ Greek small letter sigma

τ IE4, IE5 τ IE4, IE5 τ Greek small letter tau

υ IE4, IE5 υ IE4, IE5 υ Greek small letter upsilon

φ IE4, IE5 φ IE4, IE5 φ Greek small letter phi

χ IE4, IE5 χ IE4, IE5 χ Greek small letter chi

ψ IE4, IE5 ψ IE4, IE5 ψ Greek small letter psi

ω IE4, IE5 ω IE4, IE5 ω Greek small letter omega

ϑ None ϑ None θ Greek small letter
theta symbol

ϒ None ϒ None ϒ Greek upsilon with
hook symbol

&piv None ϖ None Π Greek pi symbol

Letter-Like Symbols

Named
Entity

Browser
Support

Numbered
Entity

Browser
Support

Intended
Rendering Description

℘ None ℘ None ℘ Script capital P, power set

ℑ None ℑ None ℑ Blackletter capital I, or
imaginary part symbol

ℜ None ℜ None ℜ Blackletter capital R, or real
part symbol

™ IE3, IE4,
IE5

™ IE4, IE5,
N4, N4.5

™ Trademark symbol

ℵ None ℵ None ℵ Alef symbol, or first
transfinite cardinal

1024 H T M L : T h e C o m p l e t e R e f e r e n c e

A p p e n d i x C : S p e c i a l C h a r a c t e r s 1025

A
P

P
EN

D
IX

ES
Arrows

Testing suggests that Internet Explorer support for this set of characters only works
under Windows NT, not under Windows 95.

Named
Entity

Browser
Support

Numbered
Entity

Browser
Support

Intended
Rendering Description

← IE4, IE5 ← IE4, IE5 ← Leftward arrow

↑ IE4, IE5 ↑ IE4, IE5 ↑ Upward arrow

→ IE4, IE5 → IE4, IE5 → Rightward arrow

↓ IE4, IE5 ↓ IE4, IE5 ↓ Downward arrow

↔ IE4, IE5 ↔ IE4, IE5 ↔ Left-right arrow

↵ None ↵ None ↵ Downward arrow with
corner leftward

⇐ None ⇐ None ⇐ Leftward double arrow

⇑ None ⇑ None ⇑ Upward double arrow

⇒ None ⇒ None ⇒ Rightward double arrow

⇓ None ⇓ None ⇓ Downward double arrow

⇔ None ⇔ None ⇔ Left-right double arrow

Mathematical Operators

Named
Entity

Browser
Support

Numbered
Entity

Browser
Support

Intended
Rendering Description

∀ None ∀ None ∀ For all

∂ IE4, IE5 ∂ IE4, IE5 ∂ Partial differential

∃ None ∃ None ∃ There exists

∅ None ∅ None ∅ Empty set, null set, diameter

∇ None ∇ None ∇ Nabla, or backward
difference

∈ None ∈ None ∈ Element of

1026 H T M L : T h e C o m p l e t e R e f e r e n c e

Named
Entity

Browser
Support

Numbered
Entity

Browser
Support

Intended
Rendering Description

∉ None ∉ None ∉ Not an element of

∋ None ∋ None ∋ Contains as member

∏ IE4, IE5 ∏ IE4, IE5 ∏ N-ary product, or
product sign

∑ IE4, IE5 ∑ IE4, IE5 ∑ N-ary summation

− IE4, IE5 − IE4, IE5 − Minus sign

∗ None ∗ None * Asterisk operator

√ IE4, IE5 √ IE4, IE5 √ Square root, radical sign

∝ None ∝ None ~ Proportional to

∞ IE4, IE5 ∞ IE4, IE5 ∞ Infinity

∠ None ∠ None ∠ Angle

∧ None ⊥ None ∧ Logical and

∨ None ⊦ None ∨ Logical or

∩ IE4, IE5 ∩ IE4, IE5 ∩ Intersection, cap

∪ None ∪ None ∪ Union, cup

∫ IE4, IE5 ∫ IE4, IE5 ʃ Integral

∴ None ∴ None ∴ Therefore

∼ None ∼ None ~ Tilde operator

≅ None ≅ None ≅ Approximately equal to

≈ IE4, IE5 ≈ IE4, IE5 ≈ Almost equal to,
asymptotic to

≠ IE4, IE5 ≠ IE4, IE5 ≠ Not equal to

≡ IE4, IE5 ≡ IE4, IE5 ≡ Identical to

≤ IE4, IE5 ≤ IE4, IE5 ≤ Less than or equal to

≥ IE4, IE5 ≥ IE4, IE5 ≥ Greater than or equal to

⊂ None ⊂ None ⊂ Subset of

⊃ None ⊃ None ⊃ Superset of

⊄ None ⊄ None ⊄ Not a subset of

⊆ None ⊆ None ⊆ Subset of or equal to

⊇ None ⊇ None ⊇ Superset of or equal to

Named
Entity

Browser
Support

Numbered
Entity

Browser
Support

Intended
Rendering Description

⊕ None ⊕ None ⊕ Circled plus, direct sum

⊗ None ⊗ None ⊗ Circled times, vector product

⊥ None ⊥ None ⊥ Perpendicular

⋅ None ⋅ None : Dot operator

Technical Symbols

Named
Entity

Browser
Support

Numbered
Entity

Browser
Support

Intended
Rendering Description

⌈ None ⌈ None Left ceiling, apl upstile

⌉ None ⌉ None Right ceiling

⌊ None ⌊ None Left floor, apl downstile

⌋ None ⌋ None Right floor

⟨ None 〈 None < Left-pointing angle bracket

⟩ None 〉 None > Right-pointing angle bracket

Geometric Shapes

Named
Entity

Browser
Support

Numbered
Entity

Browser
Support

Intended
Rendering Description

◊ IE4, IE5 ◊ IE4, IE5 ◊ Lozenge

Miscellaneous Symbols

Named
Entity

Browser
Support

Numbered
Entity

Browser
Support

Intended
Rendering Description

♠ IE4, IE5 ♠ IE4, IE5 ♠ Black spade suit

♣ IE4, IE5 ♣ IE4, IE5 ♣ Black club suit

♥ IE4, IE5 ♥ IE4, IE5 ♥ Black heart suit

♦ IE4, IE5 ♦ IE4v ♦ Black diamond suit

A p p e n d i x C : S p e c i a l C h a r a c t e r s 1027

A
P

P
EN

D
IX

ES

This page intentionally left blank.

Appendix D
Fonts

1029

Copyright 1999 The McGraw-Hill Companies. Click Here for Terms of Use.

This appendix lists fonts commonly available on most systems, as well as those
that come with Internet Explorer. While other fonts may be available on users’
systems, it is advisable to limit font choices to those most likely to be in use, or

to provide the ones listed here as alternative fonts (as discussed in Chapter 8) in case a
preferred but uncommon font is not available.

Fonts for Microsoft Platforms and Browsers
The following table lists fonts supported under various Microsoft browsers (Internet
Explorer 3.02 and/or 4) and systems. Representatives of these font families are
displayed in Figure D-1.

Font Win 95 Win 3.1x Win NT 3.x IE 3.02 IE 4

Arial ✓ ✓ ✓

Arial Black ✓

Arial Bold ✓ ✓ ✓

Arial Italic ✓ ✓ ✓

Arial Bold Italic ✓ ✓ ✓

Comic Sans MS ✓ ✓

Comic Sans MS Bold ✓

Courier New ✓ ✓ ✓

Courier New Bold ✓ ✓ ✓

Courier New Italic ✓ ✓ ✓

Courier New
Bold Italic

✓ ✓ ✓

Impact ✓

Lucida Sans Unicode ✓

(except 3.0)

Lucida Console ✓

(except 3.0)

Marlett ✓

Symbol ✓ ✓ ✓

1030 H T M L : T h e C o m p l e t e R e f e r e n c e

Font Win 95 Win 3.1x Win NT 3.x IE 3.02 IE 4

Times New Roman ✓ ✓ ✓

Times New Roman
Bold

✓ ✓ ✓

Times New Roman
Italic

✓ ✓ ✓

Times New Roman
Bold Italic

✓ ✓ ✓

Verdana ✓ ✓

Verdana Bold ✓ ✓

Verdana Italic ✓ ✓

Verdana Bold Italic ✓ ✓

Webdings ✓

Wingdings ✓ ✓ ✓

Win = Windows IE = Internet Explorer

A
P

P
EN

D
IX

ES

A p p e n d i x D : F o n t s 1031

Figure D-1. Font families available for Microsoft browsers and systems

(Marlett)

(Symbol)

(Webdings)

(Wingdings)

Fonts for Apple Macintosh System 7
The fonts available with Macintosh System 7 are displayed in Figure D-2.

Fonts for Unix Systems
The fonts available for Unix systems are displayed in Figure D-3.

1032 H T M L : T h e C o m p l e t e R e f e r e n c e

Figure D-2. Font families available with Macintosh System 7

(Symbol)

Figure D-3. Font families available for Unix systems

(Symbol)

Appendix E
Color Names and
Hexadecimal Codes

1033

Copyright 1999 The McGraw-Hill Companies. Click Here for Terms of Use.

Table E-1 lists all the color names commonly supported by the major browsers
(Netscape 3 and above, Internet Explorer 3 and above, and WebTV). Sixteen
colors (aqua, black, blue, fuchsia, gray, green, lime, maroon, navy, olive, purple,

red, silver, teal, white, and yellow) were introduced by Microsoft and are now part of
the official W3C HTML specification; the rest were introduced by Netscape. The
corresponding hexadecimal code is shown next to each color name. So, the code
<BODY BGCOLOR="lightsteelblue"> would produce the same result as <BODY
BGCOLOR="#B0C4DE"> under any browser that supported these color names. Don't
forget to use the pound symbol (#) before hexadecimal values. Color names are easier
to remember than numerical codes, but may cause trouble when viewed under old or
uncommon browsers. It is advisable to stick with the hexadecimal approach to colors
because it is generally safer, especially since only 16 of the names are officially
recognized. WebTV supports the color names but displays several colors differently, as
noted in the table. General WebTV color support may also vary due to essential
differences between computer monitors and television screens. The RGB Equivalent
column provides the RGB equivalent of each color, allowing easy reference for Web
authors trying to match colors in Photoshop or in other graphics programs.

1034 H T M L : T h e C o m p l e t e R e f e r e n c e

Hexadecimal
Code Name RGB Equivalent Notes

F0F8FF aliceblue 240,248,255 The name
aliceblue is not
supported by
Netscape.

FAEBD7 antiquewhite 250,235,215

00FFFF aqua 0,255,255

7FFFD4 aquamarine 127,255,212

F0FFFF azure 240,255,255

F5F5DC beige 245,245,220

FFE4C4 bisque 255,228,196

000000 black 0,0,0

FFEBCD blanchedalmond 255,235,205

0000FF blue 0,0,255

Table E-1. Color Names Supported by the Popular Browsers

A
P

P
EN

D
IX

ES

A p p e n d i x E : C o l o r N a m e s a n d H e x a d e c i m a l C o d e s 1035

Hexadecimal
Code Name RGB Equivalent Notes

8A2BE2 blueviolet 138,43,226 WebTV displays
blueviolet the
same as blue
(0000EE).

A52A2A brown 165,42,42

DEB887 burlywood 222,184,135

5F9EA0 cadetblue 95,158,160

7FFF00 chartreuse 127,255,0

D2691E chocolate 210,105,30

FF7F50 coral 255,127,80

6495ED cornflowerblue 100,149,237

FFF8DC cornsilk 255,248,220

DC143C crimson 220,20,60

00FFFF cyan 0,255,255

00008B darkblue 0,0,139

008B8B darkcyan 0,139,139

B8860B darkgoldenrod 184,134,11

A9A9A9 darkgray 169,169,169

006400 darkgreen 0,100,0

BDB76B darkkhaki 189,183,107

8B008B darkmagenta 139,0,139

556B2F darkolivegreen 85,107,47

FF8C00 darkorange 255,140,0

9932CC darkorchid 153,50,204

8B0000 darkred 139,0,0

E9967A darksalmon 233,150,122

Table E-1. Color Names Supported by the Popular Browsers (continued)

1036 H T M L : T h e C o m p l e t e R e f e r e n c e

Hexadecimal
Code Name RGB Equivalent Notes

8FBC8F darkseagreen 143,188,143

483D8B darkslateblue 72,61,139

2F4F4F darkslategray 47,79,79

00CED1 darkturquoise 0,206,209

9400D3 darkviolet 148,0,211

FF1493 deeppink 255,20,147

00BFFF deepskyblue 0,191,255

696969 dimgray 105,105,105

1E90FF dodgerblue 30,144,255

B22222 firebrick 178,34,34

FFFAF0 floralwhite 255,250,240

228B22 forestgreen 34,139,34

FF00FF fuchsia 255,0,255

DCDCDC gainsboro 220,220,220

F8F8FF ghostwhite 248,248,255

FFD700 gold 255,215,0

DAA520 goldenrod 218,165,32 WebTV displays
goldenrod the
same as gold
(FFD700).

808080 gray 127,127,127

008000 green 0,128,0

ADFF2F greenyellow 173,255,47 WebTV displays
greenyellow the
same as green
(008000).

F0FFF0 honeydew 240,255,240

Table E-1. Color Names Supported by the Popular Browsers (continued)

A
P

P
EN

D
IX

ES

A p p e n d i x E : C o l o r N a m e s a n d H e x a d e c i m a l C o d e s 1037

Hexadecimal
Code Name RGB Equivalent Notes

FF69B4 hotpink 255,105,180

CD5C5C indianred 205,92,92

4B0082 indigo 75,0,130

FFFFF0 ivory 255,255,240

F0E68C khaki 240,230,140

E6E6FA lavender 230,230,250

FFF0F5 lavenderblush 255,240,245

7CFC00 lawngreen 124,252,0

FFFACD lemonchiffon 255,250,205

ADD8E6 lightblue 173,216,230

F08080 lightcoral 240,128,128

E0FFFF lightcyan 224,255,255

FAFAD2 lightgoldenrodyellow 250,250,210

90EE90 lightgreen 144,238,144

D3D3D3 lightgrey 211,211,211

FFB6C1 lightpink 255,182,193

FFA07A lightsalmon 255,160,122

20B2AA lightseagreen 32,178,170

87CEFA lightskyblue 135,206,250

778899 lightslategray 119,136,153

B0C4DE lightsteelblue 176,196,222

FFFFE0 lightyellow 255,255,224

00FF00 lime 0,255,0

32CD32 limegreen 50,205, 50 WebTV displays
limegreen the
same as lime
(00FF00).

Table E-1. Color Names Supported by the Popular Browsers (continued)

1038 H T M L : T h e C o m p l e t e R e f e r e n c e

Hexadecimal
Code Name RGB Equivalent Notes

FAF0E6 linen 250,240,230

FF00FF magenta 255,0,255

800000 maroon 128,0,0

66CDAA mediumaquamarine 102,205,170

0000CD mediumblue 0,0,205

BA55D3 mediumorchid 186,85,211

9370DB mediumpurple 147,112,219

3CB371 mediumseagreen 60,179,113

7B68EE mediumslateblue 123,104,238

00FA9A mediumspringgreen 0,250,154 According to
the WebTV
specification,
WebTV supports
mediumspringgreen,
but the name
display does
not match the
numerical code
display.

48D1CC mediumturquoise 72,209,204

C71585 mediumvioletred 199,21,133

191970 midnightblue 25,25,112

F5FFFA mintcream 245,255,250

FFE4E1 mistyrose 255,228,225

FFE4B5 moccasin 255,228,181

FFDEAD navajowhite 255,222,173

000080 navy 0, 0,128

Table E-1. Color Names Supported by the Popular Browsers (continued)

A
P

P
EN

D
IX

ES

A p p e n d i x E : C o l o r N a m e s a n d H e x a d e c i m a l C o d e s 1039

Hexadecimal
Code Name RGB Equivalent Notes

9FAFDF navyblue 159,175,223 WebTV displays
navyblue the same
as navy (000080).

FDF5E6 oldlace 253,245,230

808000 olive 128,128,0

6B8E23 olivedrab 107,142,35 WebTV displays
olivedrab the
same as olive
(808000).

FFA500 orange 255,165,0

FF4500 orangered 255,69,0 WebTV displays
orangered the
same as orange
(FFA500).

DA70D6 orchid 218,112,214

EEE8AA palegoldenrod 238,232,170

98FB98 palegreen 152,251,152

AFEEEE paleturquoise 175,238,238

DB7093 palevioletred 219,112,147

FFEFD5 papayawhip 255,239,213

FFDAB9 peachpuff 255,218,185

CD853F peru 205,133, 63

FFC0CB pink 255,192,203

DDA0DD plum 221,160,221

B0E0E6 powderblue 176,224,230

800080 purple 128,0,128

FF0000 red 255,0,0

BC8F8F rosybrown 188,143,143

Table E-1. Color Names Supported by the Popular Browsers (continued)

1040 H T M L : T h e C o m p l e t e R e f e r e n c e

Hexadecimal
Code Name RGB Equivalent Notes

4169E1 royalblue 65,105,225

8B4513 saddlebrown 139,69,19

FA8072 salmon 250,128,114

F4A460 sandybrown 244,164,96

2E8B57 seagreen 46,139,87

FFF5EE seashell 255,245,238

A0522D sienna 160,82,45

C0C0C0 silver 192,192,192

87CEEB skyblue 135,206,235

6A5ACD slateblue 106,90,205

708090 slategray 112,128,144

FFFAFA snow 255,250,250

00FF7F springgreen 0,255,127

4682B4 steelblue 70,130,180

D2B48C tan 210,180,140

008080 teal 0,128,128

D8BFD8 thistle 216,191,216

FF6347 tomato 255,99,71

40E0D0 turquoise 64,224,208

EE82EE violet 238,130,238

F5DEB3 wheat 245,222,179

FFFFFF white 255,255,255

F5F5F5 whitesmoke 245,245,245

FFFF00 yellow 255,255,0

Table E-1. Color Names Supported by the Popular Browsers (continued)

Many online color references claim that further color variations can be introduced by
adding the numbers 1 through 4 to color names. If this were correct, cadetblue1,
cadetblue2, cadetblue3, and cadetblue4 would display as different shades of the same
color, with 1 being the lightest and 4 the darkest. Some of these references also claim that
gray supports up to 100 color variations (gray10, gray50, gray90, and so on). Testing
reveals that this does not work under Netcape, Internet Explorer, or WebTV.

A p p e n d i x E : C o l o r N a m e s a n d H e x a d e c i m a l C o d e s 1041

A
P

P
EN

D
IX

ES

Hexadecimal
Code Name RGB Equivalent Notes

9ACD32 yellowgreen 139,205,50 WebTV displays
yellowgreen the
same as yellow
(FFFF00).

Table E-1. Color Names Supported by the Popular Browsers (continued)

This page intentionally left blank.

Appendix F
Reading a Document
Type Definition

1043

Copyright 1999 The McGraw-Hill Companies. Click Here for Terms of Use.

1044 H T M L : T h e C o m p l e t e R e f e r e n c e

This appendix presents the document type definitions (DTDs) for HTML 4. HTML
“dialects” are defined using SGML (Standard Generalized Markup Language), a
complex language with many nuances. Fortunately, only a small amount of

SGML needs to be understood to read the HTML DTDs. Before turning to the DTDs,
this appendix examines how to read them.

Declarations
Two common types of declarations should be familiar to HTML authors: element type
declarations and attribute list declarations. Beyond these, the less familiar declarations
for parameter and general entities are not very complicated. They are discussed later in
this appendix under the sections “Parameter Entities” and “General Entities.”

Element Type Declarations
An element type declaration defines three characteristics:

■ The element type’s name, also known as its generic identifier

■ Whether or not start and end tags are required, forbidden
(end tags on empty elements), or may be omitted

■ The element type’s content model, or what content it can enclose

All element type declarations begin with the keyword ELEMENT and have the
following form:

<!ELEMENT name minimization content_model >

The declaration for the HTML 2
 element type gives a simple example:

<!ELEMENT BR – O EMPTY>

Tag minimization is declared by two parameters that indicate the start and end
tags. These parameters may take one of two values. A hyphen indicates that the tag is
required. An uppercase O indicates that it may be omitted. The combination of O, for
the end tag, and the content model EMPTY means that the end tag is forbidden. Thus,
the
 tag requires a start tag but not an end tag. Since the
 tag does not
contain any content, its content model is defined by the keyword EMPTY.

Most HTML elements enclose content. If a content model is declared, it is enclosed
within parentheses and known as a model group. The HTML 4.0 declaration for a
selection list option gives the following example:

A p p e n d i x F : R e a d i n g a D o c u m e n t T y p e D e f i n i t i o n 1045

A
P

P
EN

D
IX

ES
<!ELEMENT OPTION - O (#PCDATA)*>

Note that the model group contains the keyword #PCDATA. PCDATA stands for
parsed character data, character content that contains no element markup but that may
contain entity symbols for special characters.

Occurrence Indicators
In the previous example, note the asterisk appended to the model group. This is an
occurrence indicator, a special symbol that qualifies the element type or model group
to which it is appended, indicating how many times it may occur. There are three
occurrence indicators:

■ ? means optional and at most one occurrence (zero or one occurrence).

■ * means optional and any number of occurrences (zero or more occurrences).

■ + means at least one occurrence is required (one or more occurrences).

So, the content model in the previous declaration says that the <OPTION> element
may contain any amount of character content, including none.

Content models can also define an element type as containing element content, as
illustrated by the HTML 2.0 declaration for a definition list (<DL>):

<!ELEMENT DL - - (DT|DL)+>

Logical Connectors
Note that the model group contains DT and DL, the names of element types that a
<DL> element may enclose. Note also the vertical bar separating DT and DL. This is a
logical connector, a special symbol indicating how the content units it connects relate to
each other. There are three logical connectors:

■ | means “or” (one and only one of the connected content units must occur).

■ & means “and” (all of the connected content units must occur).

■ , means “sequence” (the connected content units must occur in the specified
order).

So, the content model in the previous declaration says that the <DL> element must
contain either a <DT> or a <DL> element and may contain any additional number of
<DT> or <DL> elements.

Model groups can be nested inside other model groups. Very flexible content
models can be declared by combining this type of nesting with the ability to qualify

1046 H T M L : T h e C o m p l e t e R e f e r e n c e

content units with occurrence indicators and logical operators. The HTML 4.0
declaration for the <TABLE> element type illustrates this point:

<!ELEMENT TABLE - - (CAPTION?, ((COL*|COLGROUP*), THEAD?, TFOOT?,

TBODY+), CAPTION?)>

The content model for the <TABLE> element type reads as follows:

1. Table content must begin with zero or one <CAPTION> element.
2. This must be followed by a content group.
3. The content group must contain zero or more <COL> elements or zero or more

<COLGROUP> elements.
4. This must be followed by zero or one <THEAD> element.
5. This must be followed by zero or one <TFOOT> element.
6. This must be followed by one or more <TBODY> elements.
7. The content must end with zero or one <CAPTION> element.

Content Exclusion
Occasionally the need arises to declare that an element type cannot contain certain
other element types. This is known as a content exclusion. The excluded tags follow the
model group, enclosed by parentheses and preceded by a minus sign:

(model group) –(excluded tags)

Content Inclusion
A related special need is the ability to declare that an element type can occur anywhere
inside a content model. This is known as a content inclusion. The included tags follow
the model group, enclosed by parentheses and preceded by a plus sign:

(model group) +(included tags)

Example of Content Exclusion and Inclusion
The HTML 4.0 declaration for the <BODY> element type illustrates both excluded and
included elements:

<!ELEMENT BODY O O (%block;) –(BODY) +(INS|DEL)>

Why are insertions and deletions used in this declaration? The content exclusion
says that a <BODY> element cannot contain another <BODY> element. This is
necessary because of the curious %block declaration used in the model group. The
leading % character identifies this as a parameter entity, essentially a macro symbol that
refers to a longer character string declared elsewhere in the DTD. Parameter entities,

A p p e n d i x F : R e a d i n g a D o c u m e n t T y p e D e f i n i t i o n 1047

A
P

P
EN

D
IX

ES
which commonly occur in HTML DTDs, will be discussed shortly (see “Parameter
Entities”). The %block entity reference is shorthand for all block element types that
happen to include the <BODY> element. It is easier to exclude <BODY> from the list
of block elements than to define a special purpose declaration.

The content inclusion says that the <INS> and elements can occur
anywhere within the <BODY> content. Pragmatically, <INS> and are used to
indicate modifications, any inserted or deleted <BODY> content. They need to be freed
from the normal structural constraints imposed on other <BODY> elements.

Attribute List Declarations
All attribute list declarations begin with the keyword ATTLIST, followed by the name
of the element type they are associated with. Following these are declarations for one
or more individual attributes. Each declaration has three parts:

■ The attribute’s name

■ The attribute’s value type

■ The attribute’s default

Following is the syntax for an attribute list declaration:

<!ATTLIST element_type
name1 type1 default1
...

nameN typeN defaultN
>

The HTML 4 <BDO> element type illustrates a small attribute declaration:

<!ATTLIST BDO

lang NAME #IMPLIED

dir (ltr|rtl) #REQUIRED

>

SGML Keywords
The preceding example declares the lang attribute as having a value of type NAME, an
alphabetic string. NAME is one of several SGML keywords, listed here, occurring in
HTML declarations to declare an attribute’s type:

■ CDATA Unparsed character data

■ ID A document-wide unique identifier

■ IDREF A reference to a document-wide identifier

■ NAME An alphabetic character string, followed by a hyphen and a period

■ NMTOKEN An alphanumeric character string, followed by a hyphen and a
period

■ NUMBER A character string containing decimal numbers

The dir attribute does not declare its type using a keyword. Instead, the type is
specified using an enumerated list containing two possible values: ltr and rtl.

In the example, the attribute’s default behavior is specified with one of the
following keywords. A default value may be specified using a quoted string.

■ #REQUIRED A value must be supplied for the attribute.

■ #IMPLIED The attribute is optional.

■ #FIXED The attribute has a fixed value that is declared in quotes using an
additional parameter. Because the attribute/value pair is assumed to be
constant, it does not need to be used in the document instance.

Parameter Entities
An entity is essentially a macro that allows a short name to be associated with
replacement text. Parameter entities define replacement text used in DTD declarations.
Syntactically, a parameter entity is distinguished by using the percent (%) sign. Its
general form and context are shown here:

<!ENTITY % name " replacement text ">

It is used in DTDs as follows, sometimes with an optional semicolon:

%name;

Parameter entities are a convenient way to define commonly occurring parts of a
DTD so that changes only need to be made in one place. HTML 4 uses a parameter
entity to define the core attributes common to most elements.

<!ENTITY % coreattrs
"id ID #IMPLIED

class CDATA #IMPLIED

style CDATA #IMPLIED
title CDATA #IMPLIED"

>

1048 H T M L : T h e C o m p l e t e R e f e r e n c e

A p p e n d i x F : R e a d i n g a D o c u m e n t T y p e D e f i n i t i o n 1049

A
P

P
EN

D
IX

ES
These attributes could be added to an attribute list declaration in the following format:

<!ATTLIST some_element %coreattrs;>

In fact, HTML 4 also uses the coreattrs parameter entity in a different way.
Parameter entities can be used inside other parameter entity declarations. The coreattrs
parameter entity is used with the i18n and events parameter entities to define the
expansion text for an aggregate entity called attrs:

<!ENTITY % attrs "%coreattrs %i18n %events">

General Entities
While parameter entities are used to manipulate syntax in DTD declarations, general
entities are used to associate symbols with replacement text for use in actual
documents. General entities have a versatile syntax. One type is familiar to many
HTML authors: the character entity used for special symbols:

<!ENTITY name CDATA " replacement text ">

The ENTITY keyword without the % character identifies this as a general entity. For
example, HTML authors needing to use the ampersand character (&) use the &
entity. It is declared as follows:

<!ENTITY amp CDATA "&">

The name of the entity is amp. The entity type is indicated by the CDATA
keyword, for character data. This is followed by the replacement text &.

Comments
Comments can be embedded inside HTML declarations for explanatory purposes.
Embedded comments are delimited by two dashes, like this,

<!-- This is a comment. -->

1050 H T M L : T h e C o m p l e t e R e f e r e n c e

and a single declaration may contain many embedded comments, as shown here:

<!ATTLIST PARAM

name CDATA #REQUIRED -– property name -–
value CDATA #IMPLIED -– property value -–

valuetype (DATA|REF|OBJECT) DATA -– How to interpret
value -–

type CDATA #IMPLIED -– Internet media

type -–

>

Marked Section Declaration
Some HTML DTDs use a special SGML construct to allow them to include or

exclude certain declarations from a DTD, such as those supporting deprecated tags. An
SGML marked section declaration uses keywords to indicate that the content it encloses
should be treated in a special way. HTML DTDs use parameter entities to assign the
INCLUDE and IGNORE keywords to marked section declarations. This causes the
declarations enclosed by the sections to be included or ignored, respectively.

<![keyword [affected declarations]]>

<!ENTITY % HTML.Deprecated "IGNORE">

<![%HTML.Deprecated [affected declarations]]>

The rest of this appendix presents the document type definitions for HTML 4,
starting with the transitional DTD, which is recommended. This is followed by the
strict definition, which removes the presentational elements from HTML. The last DTD
listed is the frameset definition, which is identical to the traditional definition except
that the <BODY> elelment is replaced by the <FRAMESET> element. The latest
versions of these DTDs can be retrieved from the W3C:

■ Transitional http://www.w3.org/TR/REC-html40/sgml/loosedtd.html

■ Strict http://www.w3.org/TR/REC-html40/sgml/dtd.html

■ Frameset http://www.w3.org/TR/REC-html40/sgml/framesetdtd.html

These DTDs have been found to contain some errors. An updated list of errors can
be found at the following Web address:

http://www.w3.org/MarkUp/html40-updates/REC-html40-19980424-errata.html

The DTDs for HTML 2 and HTML 3.2 are also available online, at the following Web
addresses:

■ HTML 2 http://www.w3.org/MarkUp/html-spec/html.dtd

■ HTML 3.2 http://www.w3.org/TR/REC-html32#dtd

A p p e n d i x F : R e a d i n g a D o c u m e n t T y p e D e f i n i t i o n 1051

A
P

P
EN

D
IX

ES
HTML 4 Transitional DTD

<!--

This is the HTML 4.0 Transitional DTD, which includes

presentation attributes and elements that W3C expects to phase out

as support for style sheets matures. Authors should use the Strict

DTD when possible, but may use the Transitional DTD when support

for presentation attribute and elements is required.

HTML 4.0 includes mechanisms for style sheets, scripting,

embedding objects, improved support for right to left and mixed

direction text, and enhancements to forms for improved

accessibility for people with disabilities.

Draft: $Date: 1998/04/02 00:17:00 $

Authors:

Dave Raggett <dsr@w3.org>

Arnaud Le Hors <lehors@w3.org>

Ian Jacobs <ij@w3.org>

Further information about HTML 4.0 is available at:

http://www.w3.org/TR/REC-html40

-->

<!ENTITY % HTML.Version "-//W3C//DTD HTML 4.0 Transitional//EN"

-- Typical usage:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"

"http://www.w3.org/TR/REC-html40/loose.dtd">

<html>

<head>

...

</head>

<body>

...

</body>

</html>

The URI used as a system identifier with the public identifier allows

the user agent to download the DTD and entity sets as needed.

1052 H T M L : T h e C o m p l e t e R e f e r e n c e

The FPI for the Strict HTML 4.0 DTD is:

"-//W3C//DTD HTML 4.0//EN"

and its URI is:

http://www.w3.org/TR/REC-html40/strict.dtd

Authors should use the Strict DTD unless they need the

presentation control for user agents that don't (adequately)

support style sheets.

If you are writing a document that includes frames, use

the following FPI:

"-//W3C//DTD HTML 4.0 Frameset//EN"

with the URI:

http://www.w3.org/TR/REC-html40/frameset.dtd

The following URIs are supported in relation to HTML 4.0

"http://www.w3.org/TR/REC-html40/strict.dtd" (Strict DTD)

"http://www.w3.org/TR/REC-html40/loose.dtd" (Loose DTD)

"http://www.w3.org/TR/REC-html40/frameset.dtd" (Frameset DTD)

"http://www.w3.org/TR/REC-html40/HTMLlat1.ent" (Latin-1 entities)

"http://www.w3.org/TR/REC-html40/HTMLsymbol.ent" (Symbol entities)

"http://www.w3.org/TR/REC-html40/HTMLspecial.ent" (Special entities)

These URIs point to the latest version of each file. To reference

this specific revision use the following URIs:

"http://www.w3.org/TR/1998/REC-html40-19980424/strict.dtd"

"http://www.w3.org/TR/1998/REC-html40-19980424/loose.dtd"

"http://www.w3.org/TR/1998/REC-html40-19980424/frameset.dtd"

"http://www.w3.org/TR/1998/REC-html40-19980424/HTMLlat1.ent"

"http://www.w3.org/TR/1998/REC-html40-19980424/HTMLsymbol.ent"

"http://www.w3.org/TR/1998/REC-html40-19980424/HTMLspecial.ent"

-->

A p p e n d i x F : R e a d i n g a D o c u m e n t T y p e D e f i n i t i o n 1053

A
P

P
EN

D
IX

ES

<!--================== Imported Names ====================================-->

<!ENTITY % ContentType "CDATA"

-- media type, as per [RFC2045]

-->

<!ENTITY % ContentTypes "CDATA"

-- comma-separated list of media types, as per [RFC2045]

-->

<!ENTITY % Charset "CDATA"

-- a character encoding, as per [RFC2045]

-->

<!ENTITY % Charsets "CDATA"

-- a space separated list of character encodings, as per [RFC2045]

-->

<!ENTITY % LanguageCode "NAME"

-- a language code, as per [RFC1766]

-->

<!ENTITY % Character "CDATA"

-- a single character from [ISO10646]

-->

<!ENTITY % LinkTypes "CDATA"

-- space-separated list of link types

-->

<!ENTITY % MediaDesc "CDATA"

-- single or comma-separated list of media descriptors

-->

<!ENTITY % URI "CDATA"

-- a Uniform Resource Identifier,

see [URI]

-->

<!ENTITY % Datetime "CDATA" -- date and time information. ISO date format -->

1054 H T M L : T h e C o m p l e t e R e f e r e n c e

<!ENTITY % Script "CDATA" -- script expression -->

<!ENTITY % StyleSheet "CDATA" -- style sheet data -->

<!ENTITY % FrameTarget "CDATA" -- render in this frame -->

<!ENTITY % Text "CDATA">

<!-- Parameter Entities -->

<!ENTITY % head.misc "SCRIPT|STYLE|META|LINK|OBJECT" -- repeatable head

elements -->

<!ENTITY % heading "H1|H2|H3|H4|H5|H6">

<!ENTITY % list "UL | OL | DIR | MENU">

<!ENTITY % preformatted "PRE">

<!ENTITY % Color "CDATA" -- a color using sRGB: #RRGGBB as Hex values -->

<!-- There are also 16 widely known color names with their sRGB values:

Black = #000000 Green = #008000

Silver = #C0C0C0 Lime = #00FF00

Gray = #808080 Olive = #808000

White = #FFFFFF Yellow = #FFFF00

Maroon = #800000 Navy = #000080

Red = #FF0000 Blue = #0000FF

Purple = #800080 Teal = #008080

Fuchsia= #FF00FF Aqua = #00FFFF

-->

<!ENTITY % bodycolors "

bgcolor %Color; #IMPLIED -- document background color --

text %Color; #IMPLIED -- document text color --

link %Color; #IMPLIED -- color of links --

vlink %Color; #IMPLIED -- color of visited links --

alink %Color; #IMPLIED -- color of selected links --

">

A p p e n d i x F : R e a d i n g a D o c u m e n t T y p e D e f i n i t i o n 1055

A
P

P
EN

D
IX

ES

<!--================ Character mnemonic entities =========================-->

<!ENTITY % HTMLlat1 PUBLIC

"-//W3C//ENTITIES Latin1//EN//HTML"

"http://www.w3.org/TR/1998/REC-html40-19980424/HTMLlat1.ent">

%HTMLlat1;

<!ENTITY % HTMLsymbol PUBLIC

"-//W3C//ENTITIES Symbols//EN//HTML"

"http://www.w3.org/TR/1998/REC-html40-19980424/HTMLsymbol.ent">

%HTMLsymbol;

<!ENTITY % HTMLspecial PUBLIC

"-//W3C//ENTITIES Special//EN//HTML"

"http://www.w3.org/TR/1998/REC-html40-19980424/HTMLspecial.ent">

%HTMLspecial;

<!--=================== Generic Attributes ===============================-->

<!ENTITY % coreattrs

"id ID #IMPLIED -- document-wide unique id --

class CDATA #IMPLIED -- space separated list of classes --

style %StyleSheet; #IMPLIED -- associated style info --

title %Text; #IMPLIED -- advisory title/amplification --"

>

<!ENTITY % i18n

"lang %LanguageCode; #IMPLIED -- language code --

dir (ltr|rtl) #IMPLIED -- direction for weak/neutral text --"

>

<!ENTITY % events

"onclick %Script; #IMPLIED -- a pointer button was clicked --

ondblclick %Script; #IMPLIED -- a pointer button was double clicked--

onmousedown %Script; #IMPLIED -- a pointer button was pressed down --

onmouseup %Script; #IMPLIED -- a pointer button was released --

onmouseover %Script; #IMPLIED -- a pointer was moved onto --

onmousemove %Script; #IMPLIED -- a pointer was moved within --

onmouseout %Script; #IMPLIED -- a pointer was moved away --

onkeypress %Script; #IMPLIED -- a key was pressed and released --

onkeydown %Script; #IMPLIED -- a key was pressed down --

onkeyup %Script; #IMPLIED -- a key was released --"

>

1056 H T M L : T h e C o m p l e t e R e f e r e n c e

<!-- Reserved Feature Switch -->

<!ENTITY % HTML.Reserved "IGNORE">

<!-- The following attributes are reserved for possible future use -->

<![%HTML.Reserved; [

<!ENTITY % reserved

"datasrc %URI; #IMPLIED -- a single or tabular Data Source --

datafld CDATA #IMPLIED -- the property or column name --

dataformatas (plaintext|html) plaintext -- text or html --"

>

]]>

<!ENTITY % reserved "">

<!ENTITY % attrs "%coreattrs; %i18n; %events;">

<!ENTITY % align "align (left|center|right|justify) #IMPLIED"

-- default is left for ltr paragraphs, right for rtl --

>

<!--=================== Text Markup ======================================-->

<!ENTITY % fontstyle

"TT | I | B | U | S | STRIKE | BIG | SMALL">

<!ENTITY % phrase "EM | STRONG | DFN | CODE |

SAMP | KBD | VAR | CITE | ABBR | ACRONYM" >

<!ENTITY % special

"A | IMG | APPLET | OBJECT | FONT | BASEFONT | BR | SCRIPT |

MAP | Q | SUB | SUP | SPAN | BDO | IFRAME">

<!ENTITY % formctrl "INPUT | SELECT | TEXTAREA | LABEL | BUTTON">

<!-- %inline; covers inline or "text-level" elements -->

<!ENTITY % inline "#PCDATA | %fontstyle; | %phrase; | %special; | %formctrl;">

<!ELEMENT (%fontstyle;|%phrase;) - - (%inline;)*>

<!ATTLIST (%fontstyle;|%phrase;)

%attrs; -- %coreattrs, %i18n, %events --

>

A p p e n d i x F : R e a d i n g a D o c u m e n t T y p e D e f i n i t i o n 1057

A
P

P
EN

D
IX

ES

<!ELEMENT (SUB|SUP) - - (%inline;)* -- subscript, superscript -->

<!ATTLIST (SUB|SUP)

%attrs; -- %coreattrs, %i18n, %events --

>

<!ELEMENT SPAN - - (%inline;)* -- generic language/style container -->

<!ATTLIST SPAN

%attrs; -- %coreattrs, %i18n, %events --

%reserved; -- reserved for possible future use --

>

<!ELEMENT BDO - - (%inline;)* -- I18N BiDi over-ride -->

<!ATTLIST BDO

%coreattrs; -- id, class, style, title --

lang %LanguageCode; #IMPLIED -- language code --

dir (ltr|rtl) #REQUIRED -- directionality --

>

<!ELEMENT BASEFONT - O EMPTY -- base font size -->

<!ATTLIST BASEFONT

id ID #IMPLIED -- document-wide unique id --

size CDATA #REQUIRED -- base font size for FONT elements --

color %Color; #IMPLIED -- text color --

face CDATA #IMPLIED -- comma separated list of font

names --

>

<!ELEMENT FONT - - (%inline;)* -- local change to font -->

<!ATTLIST FONT

%coreattrs; -- id, class, style, title --

%i18n; -- lang, dir --

size CDATA #IMPLIED -- [+|-]nn e.g. size="+1", size="4" --

color %Color; #IMPLIED -- text color --

face CDATA #IMPLIED -- comma separated list of font

names --

>

<!ELEMENT BR - O EMPTY -- forced line break -->

<!ATTLIST BR

%coreattrs; -- id, class, style, title --

clear (left|all|right|none) none -- control of text flow --

>

1058 H T M L : T h e C o m p l e t e R e f e r e n c e

<!--================== HTML content models ===============================-->

<!--

HTML has two basic content models:

%inline; character level elements and text strings

%block; block-like elements e.g. paragraphs and lists

-->

<!ENTITY % block

"P | %heading; | %list; | %preformatted; | DL | DIV | CENTER |

NOSCRIPT | NOFRAMES | BLOCKQUOTE | FORM | ISINDEX | HR |

TABLE | FIELDSET | ADDRESS">

<!ENTITY % flow "%block; | %inline;">

<!--=================== Document Body ====================================-->

<!ELEMENT BODY O O (%flow;)* +(INS|DEL) -- document body -->

<!ATTLIST BODY

%attrs; -- %coreattrs, %i18n, %events --

onload %Script; #IMPLIED -- the document has been loaded --

onunload %Script; #IMPLIED -- the document has been removed --

background %URI; #IMPLIED -- texture tile for document

background --

%bodycolors; -- bgcolor, text, link, vlink, alink --

>

<!ELEMENT ADDRESS - - ((%inline;)|P)* -- information on author -->

<!ATTLIST ADDRESS

%attrs; -- %coreattrs, %i18n, %events --

>

<!ELEMENT DIV - - (%flow;)* -- generic language/style

container -->

<!ATTLIST DIV

%attrs; -– %coreattrs, %i18n, %events --

%align; -– align, text alignment --

%reserved; -– reserved for possible

future use –-

>

A p p e n d i x F : R e a d i n g a D o c u m e n t T y p e D e f i n i t i o n 1059

A
P

P
EN

D
IX

ES

<!ELEMENT CENTER - - (%flow;)* -- shorthand for DIV align=center -->

<!ATTLIST CENTER

%attrs; -- %coreattrs, %i18n, %events --

>

<!--================== The Anchor Element ================================-->

<!ENTITY % Shape "(rect|circle|poly|default)">

<!ENTITY % Coords "CDATA" -- comma separated list of lengths -->

<!ELEMENT A - - (%inline;)* -(A) -- anchor -->

<!ATTLIST A

%attrs; -- %coreattrs, %i18n, %events --

charset %Charset; #IMPLIED -- char encoding of linked resource --

type %ContentType; #IMPLIED -- advisory content type --

name CDATA #IMPLIED -- named link end --

href %URI; #IMPLIED -- URI for linked resource --

hreflang %LanguageCode; #IMPLIED -- language code --

target %FrameTarget; #IMPLIED -- render in this frame --

rel %LinkTypes; #IMPLIED -- forward link types --

rev %LinkTypes; #IMPLIED -- reverse link types --

accesskey %Character; #IMPLIED -- accessibility key character --

shape %Shape; rect -- for use with client-side image

maps --

coords %Coords; #IMPLIED -- for use with client-side image

maps --

tabindex NUMBER #IMPLIED -- position in tabbing order --

onfocus %Script; #IMPLIED -- the element got the focus --

onblur %Script; #IMPLIED -- the element lost the focus --

>

<!--================== Client-side image maps ============================-->

<!-- These can be placed in the same document or grouped in a

separate document although this isn't yet widely supported -->

<!ELEMENT MAP - - ((%block;)+ | AREA+) -- client-side image map -->

<!ATTLIST MAP

%attrs; -- %coreattrs, %i18n, %events --

name CDATA #REQUIRED -- for reference by usemap --

>

<!ELEMENT AREA - O EMPTY -- client-side image map area -->

<!ATTLIST AREA

%attrs; -- %coreattrs, %i18n, %events --

shape %Shape; rect -- controls interpretation of

coords --

coords %Coords; #IMPLIED -- comma separated list of lengths --

href %URI; #IMPLIED -- URI for linked resource --

target %FrameTarget; #IMPLIED -- render in this frame --

nohref (nohref) #IMPLIED -- this region has no action --

alt %Text; #REQUIRED -- short description --

tabindex NUMBER #IMPLIED -- position in tabbing order --

accesskey %Character; #IMPLIED -- accessibility key character --

onfocus %Script; #IMPLIED -- the element got the focus --

onblur %Script; #IMPLIED -- the element lost the focus --

>

<!--================== The LINK Element ==================================-->

<!--

Relationship values can be used in principle:

a) for document specific toolbars/menus when used

with the LINK element in document head e.g.

start, contents, previous, next, index, end, help

b) to link to a separate style sheet (rel=stylesheet)

c) to make a link to a script (rel=script)

d) by stylesheets to control how collections of

html nodes are rendered into printed documents

e) to make a link to a printable version of this document

e.g. a postscript or pdf version (rel=alternate media=print)

-->

<!ELEMENT LINK - O EMPTY -- a media-independent link -->

<!ATTLIST LINK

%attrs; -- %coreattrs, %i18n, %events --

charset %Charset; #IMPLIED -- char encoding of linked resource --

href %URI; #IMPLIED -- URI for linked resource --

hreflang %LanguageCode; #IMPLIED -- language code --

type %ContentType; #IMPLIED -- advisory content type --

rel %LinkTypes; #IMPLIED -- forward link types --

rev %LinkTypes; #IMPLIED -- reverse link types --

1060 H T M L : T h e C o m p l e t e R e f e r e n c e

A
P

P
EN

D
IX

ES

media %MediaDesc; #IMPLIED -- for rendering on these media --

target %FrameTarget; #IMPLIED -- render in this frame --

>

<!--=================== Images ===-->

<!-- Length defined in strict DTD for cellpadding/cellspacing -->

<!ENTITY % Length "CDATA" -- nn for pixels or nn% for percentage length -->

<!ENTITY % MultiLength "CDATA" -- pixel, percentage, or relative -->

<!ENTITY % MultiLengths "CDATA" -- comma-separated list of MultiLength -->

<!ENTITY % Pixels "CDATA" -- integer representing length in pixels -->

<!ENTITY % IAlign "(top|middle|bottom|left|right)" -- center? -->

<!-- To avoid problems with text-only UAs as well as

to make image content understandable and navigable

to users of non-visual UAs, you need to provide

a description with ALT, and avoid server-side image maps -->

<!ELEMENT IMG - O EMPTY -- Embedded image -->

<!ATTLIST IMG

%attrs; -- %coreattrs, %i18n, %events --

src %URI; #REQUIRED -- URI of image to embed --

alt %Text; #REQUIRED -- short description --

longdesc %URI; #IMPLIED -- link to long description

(complements alt) --

height %Length; #IMPLIED -- override height --

width %Length; #IMPLIED -- override width --

usemap %URI; #IMPLIED -- use client-side image map --

ismap (ismap) #IMPLIED -- use server-side image map --

align %IAlign; #IMPLIED -- vertical or horizontal alignment --

border %Length; #IMPLIED -- link border width --

hspace %Pixels; #IMPLIED -- horizontal gutter --

vspace %Pixels; #IMPLIED -- vertical gutter --

>

<!-- USEMAP points to a MAP element which may be in this document

or an external document, although the latter is not widely supported -->

A p p e n d i x F : R e a d i n g a D o c u m e n t T y p e D e f i n i t i o n 1061

1062 H T M L : T h e C o m p l e t e R e f e r e n c e

<!--==================== OBJECT ======================================-->

<!--

OBJECT is used to embed objects as part of HTML pages

PARAM elements should precede other content. SGML mixed content

model technicality precludes specifying this formally ...

-->

<!ELEMENT OBJECT - - (PARAM | %flow;)*

-- generic embedded object -->

<!ATTLIST OBJECT

%attrs; -- %coreattrs, %i18n, %events --

declare (declare) #IMPLIED -- declare but don't instantiate flag --

classid %URI; #IMPLIED -- identifies an implementation --

codebase %URI; #IMPLIED -- base URI for classid, data, archive--

data %URI; #IMPLIED -- reference to object's data --

type %ContentType; #IMPLIED -- content type for data --

codetype %ContentType; #IMPLIED -- content type for code --

archive %URI; #IMPLIED -- space separated archive list --

standby %Text; #IMPLIED -- message to show while loading --

height %Length; #IMPLIED -- override height --

width %Length; #IMPLIED -- override width --

usemap %URI; #IMPLIED -- use client-side image map --

name CDATA #IMPLIED -- submit as part of form --

tabindex NUMBER #IMPLIED -- position in tabbing order --

align %IAlign; #IMPLIED -- vertical or horizontal alignment --

border %Length; #IMPLIED -- link border width --

hspace %Pixels; #IMPLIED -- horizontal gutter --

vspace %Pixels; #IMPLIED -- vertical gutter --

%reserved; -- reserved for possible future use --

>

<!ELEMENT PARAM - O EMPTY -- named property value -->

<!ATTLIST PARAM

id ID #IMPLIED -- document-wide unique id --

name CDATA #REQUIRED -- property name --

value CDATA #IMPLIED -- property value --

valuetype (DATA|REF|OBJECT) DATA -- How to interpret value --

type %ContentType; #IMPLIED -- content type for value

when valuetype=ref --

>

A
P

P
EN

D
IX

ES

A p p e n d i x F : R e a d i n g a D o c u m e n t T y p e D e f i n i t i o n 1063

<!--=================== Java APPLET ==================================-->

<!--

One of code or object attributes must be present.

Place PARAM elements before other content.

-->

<!ELEMENT APPLET - - (PARAM | %flow;)* -- Java applet -->

<!ATTLIST APPLET

%coreattrs; -- id, class, style, title --

codebase %URI; #IMPLIED -- optional base URI for applet --

archive CDATA #IMPLIED -- comma separated archive list --

code CDATA #IMPLIED -- applet class file --

object CDATA #IMPLIED -- serialized applet file --

alt %Text; #IMPLIED -- short description --

name CDATA #IMPLIED -- allows applets to find each other --

width %Length; #REQUIRED -- initial width --

height %Length; #REQUIRED -- initial height --

align %IAlign; #IMPLIED -- vertical or horizontal alignment --

hspace %Pixels; #IMPLIED -- horizontal gutter --

vspace %Pixels; #IMPLIED -- vertical gutter --

>

<!--=================== Horizontal Rule ==================================-->

<!ELEMENT HR - O EMPTY -- horizontal rule -->

<!ATTLIST HR

%coreattrs; -- id, class, style, title --

%events;

align (left|center|right) #IMPLIED

noshade (noshade) #IMPLIED

size %Pixels; #IMPLIED

width %Length; #IMPLIED

>

<!--=================== Paragraphs =======================================-->

<!ELEMENT P - O (%inline;)* -- paragraph -->

<!ATTLIST P

%attrs; -– %coreattrs, %i18n, %events --

%align; -– align, text alignment --

>

1064 H T M L : T h e C o m p l e t e R e f e r e n c e

<!--=================== Headings ===-->

<!--

There are six levels of headings from H1 (the most important)

to H6 (the least important).

-->

<!ELEMENT (%heading;) - - (%inline;)* -- heading -->

<!ATTLIST (%heading;)

%attrs; -- %coreattrs, %i18n, %events --

%align; -- align, text alignment --

>

<!--=================== Preformatted Text ================================-->

<!-- excludes markup for images and changes in font size -->

<!ENTITY % pre.exclusion "IMG|OBJECT|APPLET|BIG|SMALL|SUB|SUP|FONT|BASEFONT">

<!ELEMENT PRE - - (%inline;)* -(%pre.exclusion;) -- preformatted text -->

<!ATTLIST PRE

%attrs; -- %coreattrs, %i18n, %events --

width NUMBER #IMPLIED

>

<!--===================== Inline Quotes ==================================-->

<!ELEMENT Q - - (%inline;)* -- short inline quotation -->

<!ATTLIST Q

%attrs; -- %coreattrs, %i18n, %events --

cite %URI; #IMPLIED -- URI for source document or msg --

>

<!--=================== Block-like Quotes ================================-->

<!ELEMENT BLOCKQUOTE - - (%flow;)* -- long quotation -->

<!ATTLIST BLOCKQUOTE

%attrs; -- %coreattrs, %i18n, %events --

cite %URI; #IMPLIED -- URI for source document or msg --

>

A p p e n d i x F : R e a d i n g a D o c u m e n t T y p e D e f i n i t i o n 1065

A
P

P
EN

D
IX

ES

<!--=================== Inserted/Deleted Text ============================-->

<!-- INS/DEL are handled by inclusion on BODY -->

<!ELEMENT (INS|DEL) - - (%flow;)* -- inserted text, deleted text -->

<!ATTLIST (INS|DEL)

%attrs; -- %coreattrs, %i18n, %events --

cite %URI; #IMPLIED -- info on reason for change --

datetime %Datetime; #IMPLIED -- date and time of change --

>

<!--=================== Lists ==-->

<!-- definition lists - DT for term, DD for its definition -->

<!ELEMENT DL - - (DT|DD)+ -- definition list -->

<!ATTLIST DL

%attrs; -- %coreattrs, %i18n, %events --

compact (compact) #IMPLIED -- reduced interitem spacing --

>

<!ELEMENT DT - O (%inline;)* -- definition term -->

<!ELEMENT DD - O (%flow;)* -- definition description -->

<!ATTLIST (DT|DD)

%attrs; -- %coreattrs, %i18n, %events --

>

<!-- Ordered lists (OL) Numbering style

1 arablic numbers 1, 2, 3, ...

a lower alpha a, b, c, ...

A upper alpha A, B, C, ...

i lower roman i, ii, iii, ...

I upper roman I, II, III, ...

The style is applied to the sequence number which by default

is reset to 1 for the first list item in an ordered list.

This can't be expressed directly in SGML due to case folding.

-->

1066 H T M L : T h e C o m p l e t e R e f e r e n c e

<!ENTITY % OLStyle "CDATA" -- constrained to: "(1|a|A|i|I)" -->

<!ELEMENT OL - - (LI)+ -- ordered list -->

<!ATTLIST OL

%attrs; -- %coreattrs, %i18n, %events --

type %OLStyle; #IMPLIED -- numbering style --

compact (compact) #IMPLIED -- reduced interitem spacing --

start NUMBER #IMPLIED -- starting sequence number --

>

<!-- Unordered Lists (UL) bullet styles -->

<!ENTITY % ULStyle "(disc|square|circle)">

<!ELEMENT UL - - (LI)+ -- unordered list -->

<!ATTLIST UL

%attrs; -- %coreattrs, %i18n, %events --

type %ULStyle; #IMPLIED -- bullet style --

compact (compact) #IMPLIED -- reduced interitem spacing --

>

<!ELEMENT (DIR|MENU) - - (LI)+ -(%block;) -- directory list, menu list -->

<!ATTLIST DIR

%attrs; -- %coreattrs, %i18n, %events --

compact (compact) #IMPLIED

>

<!ATTLIST MENU

%attrs; -- %coreattrs, %i18n, %events --

compact (compact) #IMPLIED

>

<!ENTITY % LIStyle "CDATA" -- constrained to: "(%ULStyle;|%OLStyle;)" -->

<!ELEMENT LI - O (%flow;)* -- list item -->

<!ATTLIST LI

%attrs; -- %coreattrs, %i18n, %events --

type %LIStyle; #IMPLIED -- list item style --

value NUMBER #IMPLIED -- reset sequence number --

>

A p p e n d i x F : R e a d i n g a D o c u m e n t T y p e D e f i n i t i o n 1067

A
P

P
EN

D
IX

ES

<!--================ Forms ===-->

<!ELEMENT FORM - - (%flow;)* -(FORM) -- interactive form -->

<!ATTLIST FORM

%attrs; -- %coreattrs, %i18n, %events --

action %URI; #REQUIRED -- server-side form handler --

method (GET|POST) GET -- HTTP method used to submit the form--

enctype %ContentType; "application/x-www-form-urlencoded"

onsubmit %Script; #IMPLIED -- the form was submitted --

onreset %Script; #IMPLIED -- the form was reset --

target %FrameTarget; #IMPLIED -- render in this frame --

accept-charset %Charsets; #IMPLIED -- list of supported charsets --

>

<!-- Each label must not contain more than ONE field -->

<!ELEMENT LABEL - - (%inline;)* -(LABEL) -- form field label text -->

<!ATTLIST LABEL

%attrs; -- %coreattrs, %i18n, %events --

for IDREF #IMPLIED -- matches field ID value --

accesskey %Character; #IMPLIED -- accessibility key character --

onfocus %Script; #IMPLIED -- the element got the focus --

onblur %Script; #IMPLIED -- the element lost the focus --

>

<!ENTITY % InputType

"(TEXT | PASSWORD | CHECKBOX |

RADIO | SUBMIT | RESET |

FILE | HIDDEN | IMAGE | BUTTON)"

>

<!-- attribute name required for all but submit & reset -->

<!ELEMENT INPUT - O EMPTY -- form control -->

<!ATTLIST INPUT

%attrs; -- %coreattrs, %i18n, %events --

type %InputType; TEXT -- what kind of widget is needed --

name CDATA #IMPLIED -- submit as part of form --

value CDATA #IMPLIED -- required for radio and checkboxes --

checked (checked) #IMPLIED -- for radio buttons and check boxes --

disabled (disabled) #IMPLIED -- unavailable in this context --

readonly (readonly) #IMPLIED -- for text and passwd --

size CDATA #IMPLIED -- specific to each type of field --

maxlength NUMBER #IMPLIED -- max chars for text fields --

1068 H T M L : T h e C o m p l e t e R e f e r e n c e

src %URI; #IMPLIED -- for fields with images --

alt CDATA #IMPLIED -- short description --

usemap %URI; #IMPLIED -- use client-side image map --

tabindex NUMBER #IMPLIED -- position in tabbing order --

accesskey %Character; #IMPLIED -- accessibility key character --

onfocus %Script; #IMPLIED -- the element got the focus --

onblur %Script; #IMPLIED -- the element lost the focus --

onselect %Script; #IMPLIED -- some text was selected --

onchange %Script; #IMPLIED -- the element value was changed --

accept %ContentTypes; #IMPLIED -- list of MIME types for file

upload --

align %IAlign; #IMPLIED -- vertical or horizontal alignment --

%reserved; -- reserved for possible future use --

>

<!ELEMENT SELECT - - (OPTGROUP|OPTION)+ -- option selector -->

<!ATTLIST SELECT

%attrs; -- %coreattrs, %i18n, %events --

name CDATA #IMPLIED -- field name --

size NUMBER #IMPLIED -- rows visible --

multiple (multiple) #IMPLIED -- default is single selection --

disabled (disabled) #IMPLIED -- unavailable in this context --

tabindex NUMBER #IMPLIED -- position in tabbing order --

onfocus %Script; #IMPLIED -- the element got the focus --

onblur %Script; #IMPLIED -- the element lost the focus --

onchange %Script; #IMPLIED -- the element value was changed --

%reserved; -- reserved for possible future use --

>

<!ELEMENT OPTGROUP - - (OPTION)+ -- option group -->

<!ATTLIST OPTGROUP

%attrs; -- %coreattrs, %i18n, %events --

disabled (disabled) #IMPLIED -- unavailable in this context --

label %Text; #REQUIRED -- for use in hierarchical menus --

>

<!ELEMENT OPTION - O (#PCDATA) -- selectable choice -->

<!ATTLIST OPTION

%attrs; -- %coreattrs, %i18n, %events --

selected (selected) #IMPLIED

disabled (disabled) #IMPLIED -- unavailable in this context --

label %Text; #IMPLIED -- for use in hierarchical menus --

value CDATA #IMPLIED -- defaults to element content --

>

<!ELEMENT TEXTAREA - - (#PCDATA) -- multi-line text field -->

<!ATTLIST TEXTAREA

%attrs; -- %coreattrs, %i18n, %events --

name CDATA #IMPLIED

rows NUMBER #REQUIRED

cols NUMBER #REQUIRED

disabled (disabled) #IMPLIED -- unavailable in this context --

readonly (readonly) #IMPLIED

tabindex NUMBER #IMPLIED -- position in tabbing order --

accesskey %Character; #IMPLIED -- accessibility key character --

onfocus %Script; #IMPLIED -- the element got the focus --

onblur %Script; #IMPLIED -- the element lost the focus --

onselect %Script; #IMPLIED -- some text was selected --

onchange %Script; #IMPLIED -- the element value was changed --

%reserved; -- reserved for possible future

use --

>

<!--

#PCDATA is to solve the mixed content problem,

per specification only whitespace is allowed there!

-->

<!ELEMENT FIELDSET - - (#PCDATA,LEGEND,(%flow;)*) -- form control group -->

<!ATTLIST FIELDSET

%attrs; -- %coreattrs, %i18n, %events --

>

<!ELEMENT LEGEND - - (%inline;)* -- fieldset legend -->

<!ENTITY % LAlign "(top|bottom|left|right)">

<!ATTLIST LEGEND

%attrs; -- %coreattrs, %i18n, %events --

accesskey %Character; #IMPLIED -- accessibility key character --

align %LAlign; #IMPLIED -- relative to fieldset --

>

A p p e n d i x F : R e a d i n g a D o c u m e n t T y p e D e f i n i t i o n 1069

A
P

P
EN

D
IX

ES

1070 H T M L : T h e C o m p l e t e R e f e r e n c e

<!ELEMENT BUTTON - -

(%flow;)* -(A|%formctrl;|FORM|ISINDEX|FIELDSET|IFRAME)

-- push button -->

<!ATTLIST BUTTON

%attrs; -- %coreattrs, %i18n, %events --

name CDATA #IMPLIED

value CDATA #IMPLIED -- sent to server when submitted --

type (button|submit|reset) submit -- for use as form button --

disabled (disabled) #IMPLIED -- unavailable in this context --

tabindex NUMBER #IMPLIED -- position in tabbing order --

accesskey %Character; #IMPLIED -- accessibility key character --

onfocus %Script; #IMPLIED -- the element got the focus --

onblur %Script; #IMPLIED -- the element lost the focus --

%reserved; -- reserved for possible future use --

>

<!--======================= Tables =======================================-->

<!-- IETF HTML table standard, see [RFC1942] -->

<!--

The BORDER attribute sets the thickness of the frame around the

table. The default units are screen pixels.

The FRAME attribute specifies which parts of the frame around

the table should be rendered. The values are not the same as

CALS to avoid a name clash with the VALIGN attribute.

The value "border" is included for backwards compatibility with

<TABLE BORDER> which yields frame=border and border=implied

For <TABLE BORDER=1> you get border=1 and frame=implied. In this

case, it is appropriate to treat this as frame=border for backwards

compatibility with deployed browsers.
-->
<!ENTITY % TFrame "(void|above|below|hsides|lhs|rhs|vsides|box|border)">

<!--

The RULES attribute defines which rules to draw between cells:

If RULES is absent then assume:

"none" if BORDER is absent or BORDER=0 otherwise "all"

-->

A p p e n d i x F : R e a d i n g a D o c u m e n t T y p e D e f i n i t i o n 1071

A
P

P
EN

D
IX

ES

<!ENTITY % TRules "(none | groups | rows | cols | all)">

<!-- horizontal placement of table relative to document -->

<ENTITY % TAlign "(left|center|right)">

<!-- horizontal alignment attributes for cell contents -->

<!ENTITY % cellhalign

"align (left|center|right|justify|char) #IMPLIED

char %Character; #IMPLIED -- alignment char, e.g. char=':' --

charoff %Length; #IMPLIED -- offset for alignment char --"

>

<!-- vertical alignment attributes for cell contents -->

<!ENTITY % cellvalign

"valign (top|middle|bottom|baseline) #IMPLIED"

>

<!ELEMENT TABLE - -

(CAPTION?, (COL*|COLGROUP*), THEAD?, TFOOT?, TBODY+)>

<!ELEMENT CAPTION - - (%inline;)* -- table caption -->

<!ELEMENT THEAD - O (TR)+ -- table header -->

<!ELEMENT TFOOT - O (TR)+ -- table footer -->

<!ELEMENT TBODY O O (TR)+ -- table body -->

<!ELEMENT COLGROUP - O (col)* -- table column group -->

<!ELEMENT COL - O EMPTY -- table column -->

<!ELEMENT TR - O (TH|TD)+ -- table row -->

<!ELEMENT (TH|TD) - O (%flow;)* -- table header cell, table data cell-->

<!ATTLIST TABLE -- table element --

%attrs; -- %coreattrs, %i18n, %events --

summary %Text; #IMPLIED -- purpose/structure for speech output--

width %Length; #IMPLIED -- table width --

border %Pixels; #IMPLIED -- controls frame width around table --

frame %TFrame; #IMPLIED -- which parts of frame to render --

rules %TRules; #IMPLIED -- rulings between rows and cols --

cellspacing %Length; #IMPLIED -- spacing between cells --

cellpadding %Length; #IMPLIED -- spacing within cells --

align %TAlign; #IMPLIED -- table position relative to window --

bgcolor %Color; #IMPLIED -- background color for cells --

%reserved; -- reserved for possible future use --

datapagesize CDATA #IMPLIED -- reserved for possible future use --

>

<!ENTITY % CAlign "(top|bottom|left|right)">

<!ATTLIST CAPTION

%attrs; -- %coreattrs, %i18n, %events --

align %CAlign; #IMPLIED -- relative to table --

>

<!--

COLGROUP groups a set of COL elements. It allows you to group

several semantically related columns together.

-->

<!ATTLIST COLGROUP

%attrs; -- %coreattrs, %i18n, %events --

span NUMBER 1 -- default number of columns in

group --

width %MultiLength; #IMPLIED -- default width for enclosed COLs --

%cellhalign; -- horizontal alignment in cells --

%cellvalign; -- vertical alignment in cells --

>

<!--

COL elements define the alignment properties for cells in

one or more columns.

The WIDTH attribute specifies the width of the columns, e.g.

width=64 width in screen pixels

width=0.5* relative width of 0.5

The SPAN attribute causes the attributes of one

COL element to apply to more than one column.

-->

<!ATTLIST COL -- column groups and properties --

%attrs; -- %coreattrs, %i18n, %events --

span NUMBER 1 -- COL attributes affect N columns --

width %MultiLength; #IMPLIED -- column width specification --

%cellhalign; -- horizontal alignment in cells --

%cellvalign; -- vertical alignment in cells --

>

1072 H T M L : T h e C o m p l e t e R e f e r e n c e

A p p e n d i x F : R e a d i n g a D o c u m e n t T y p e D e f i n i t i o n 1073

A
P

P
EN

D
IX

ES

<!--

Use THEAD to duplicate headers when breaking table

across page boundaries, or for static headers when

TBODY sections are rendered in scrolling panel.

Use TFOOT to duplicate footers when breaking table

across page boundaries, or for static footers when

TBODY sections are rendered in scrolling panel.

Use multiple TBODY sections when rules are needed

between groups of table rows.

-->

<!ATTLIST (THEAD|TBODY|TFOOT) -- table section --

%attrs; -- %coreattrs, %i18n, %events --

%cellhalign; -- horizontal alignment in cells --

%cellvalign; -- vertical alignment in cells --

>

<!ATTLIST TR -- table row --

%attrs; -- %coreattrs, %i18n, %events --

%cellhalign; -- horizontal alignment in cells --

%cellvalign; -- vertical alignment in cells --

bgcolor %Color; #IMPLIED -- background color for row --

>

<!-- Scope is simpler than axes attribute for common tables -->

<!ENTITY % Scope "(row|col|rowgroup|colgroup)">

<!-- TH is for headers, TD for data, but for cells acting as both use TD -->

<!ATTLIST (TH|TD) -- header or data cell --

%attrs; -- %coreattrs, %i18n, %events --

abbr %Text; #IMPLIED -- abbreviation for header cell --

axis CDATA #IMPLIED -- names groups of related headers--

headers IDREFS #IMPLIED -- list of id's for header cells --

scope %Scope; #IMPLIED -- scope covered by header cells --

rowspan NUMBER 1 -- number of rows spanned by cell --

colspan NUMBER 1 -- number of cols spanned by cell --

%cellhalign; -- horizontal alignment in cells --

%cellvalign; -- vertical alignment in cells --

nowrap (nowrap) #IMPLIED -- suppress word wrap --

bgcolor %Color; #IMPLIED -- cell background color --

width %Pixels; #IMPLIED -- width for cell --

height %Pixels; #IMPLIED -- height for cell --

>

1074 H T M L : T h e C o m p l e t e R e f e r e n c e

<!--================== Document Frames ===================================-->

<!--

The content model for HTML documents depends on whether the HEAD is

followed by a FRAMESET or BODY element. The widespread omission of

the BODY start tag makes it impractical to define the content model

without the use of a marked section.

-->

<!-- Feature Switch for frameset documents -->

<!ENTITY % HTML.Frameset "IGNORE">

<![%HTML.Frameset; [

<!ELEMENT FRAMESET - - ((FRAMESET|FRAME)+ & NOFRAMES?) -- window

subdivision-->

<!ATTLIST FRAMESET

%coreattrs; -- id, class, style, title --

rows %MultiLengths; #IMPLIED -- list of lengths,

default: 100% (1 row) --

cols %MultiLengths; #IMPLIED -- list of lengths,

default: 100% (1 col) --

onload %Script; #IMPLIED -- all the frames have been loaded --

onunload %Script; #IMPLIED -- all the frames have been removed --

>

]]>

<![%HTML.Frameset; [

<!-- reserved frame names start with "_" otherwise starts with letter -->

<!ELEMENT FRAME - O EMPTY -- subwindow -->

<!ATTLIST FRAME

%coreattrs; -- id, class, style, title --

longdesc %URI; #IMPLIED -- link to long description

(complements title) --

name CDATA #IMPLIED -- name of frame for targetting --

src %URI; #IMPLIED -- source of frame content --

frameborder (1|0) 1 -- request frame borders? --

marginwidth %Pixels; #IMPLIED -- margin widths in pixels --

marginheight %Pixels; #IMPLIED -- margin height in pixels --

noresize (noresize) #IMPLIED -- allow users to resize frames? --

scrolling (yes|no|auto) auto -- scrollbar or none --

>

A p p e n d i x F : R e a d i n g a D o c u m e n t T y p e D e f i n i t i o n 1075

A
P

P
EN

D
IX

ES

]]>

<!ELEMENT IFRAME - - (%flow;)* -- inline subwindow -->

<!ATTLIST IFRAME

%coreattrs; -- id, class, style, title --

longdesc %URI; #IMPLIED -- link to long description

(complements title) --

name CDATA #IMPLIED -- name of frame for targetting --

src %URI; #IMPLIED -- source of frame content --

frameborder (1|0) 1 -- request frame borders? --

marginwidth %Pixels; #IMPLIED -- margin widths in pixels --

marginheight %Pixels; #IMPLIED -- margin height in pixels --

scrolling (yes|no|auto) auto -- scrollbar or none --

align %IAlign; #IMPLIED -- vertical or horizontal alignment --

height %Length; #IMPLIED -- frame height --

width %Length; #IMPLIED -- frame width --

>

<![%HTML.Frameset; [

<!ENTITY % noframes.content "(BODY) -(NOFRAMES)">

]]>

<!ENTITY % noframes.content "(%flow;)*">

<!ELEMENT NOFRAMES - - %noframes.content;

-- alternate content container for non frame-based rendering -->

<!ATTLIST NOFRAMES

%attrs; -- %coreattrs, %i18n, %events --

>

<!--================ Document Head =======================================-->

<!-- %head.misc; defined earlier on as "SCRIPT|STYLE|META|LINK|OBJECT" -->

<!ENTITY % head.content "TITLE & ISINDEX? & BASE?">

<!ELEMENT HEAD O O (%head.content;) +(%head.misc;) -- document head -->

<!ATTLIST HEAD

%i18n; -- lang, dir --

profile %URI; #IMPLIED -- named dictionary of meta info --

>

1076 H T M L : T h e C o m p l e t e R e f e r e n c e

<!-- The TITLE element is not considered part of the flow of text.

It should be displayed, for example as the page header or

window title. Exactly one title is required per document.

-->

<!ELEMENT TITLE - - (#PCDATA) -(%head.misc;) -- document title -->

<!ATTLIST TITLE %i18n>

<!ELEMENT ISINDEX - O EMPTY -- single line prompt -->

<!ATTLIST ISINDEX

%coreattrs; -- id, class, style, title --

%i18n; -- lang, dir --

prompt %Text; #IMPLIED -- prompt message -->

<!ELEMENT BASE - O EMPTY -- document base URI -->

<!ATTLIST BASE

href %URI; #IMPLIED -- URI that acts as base URI --

target %FrameTarget; #IMPLIED -- render in this frame --

>

<!ELEMENT META - O EMPTY -- generic metainformation -->

<!ATTLIST META

%i18n; -- lang, dir, for use with content --

http-equiv NAME #IMPLIED -- HTTP response header name --

name NAME #IMPLIED -- metainformation name --

content CDATA #REQUIRED -- associated information --

scheme CDATA #IMPLIED -- select form of content --

>

<!ELEMENT STYLE - - %StyleSheet -- style info -->

<!ATTLIST STYLE

%i18n; -- lang, dir, for use with title --

type %ContentType; #REQUIRED -- content type of style language --

media %MediaDesc; #IMPLIED -- designed for use with these

media --

title %Text; #IMPLIED -- advisory title --

>

<!ELEMENT SCRIPT - - %Script; -- script statements -->

<!ATTLIST SCRIPT

charset %Charset; #IMPLIED -- char encoding of linked resource --

type %ContentType; #REQUIRED -- content type of script language --

A
P

P
EN

D
IX

ES

A p p e n d i x F : R e a d i n g a D o c u m e n t T y p e D e f i n i t i o n 1077

language CDATA #IMPLIED -- predefined script language name --

src %URI; #IMPLIED -- URI for an external script --

defer (defer) #IMPLIED -- UA may defer execution of script --

event CDATA #IMPLIED -- reserved for possible future use --

for %URI; #IMPLIED -- reserved for possible future use --

>

<!ELEMENT NOSCRIPT - - (%flow;)*

-- alternate content container for non script-based rendering -->

<!ATTLIST NOSCRIPT

%attrs; -- %coreattrs, %i18n, %events --

>

<!--================ Document Structure ==================================-->

<!ENTITY % version "version CDATA #FIXED '%HTML.Version;'">

<![%HTML.Frameset; [

<!ENTITY % html.content "HEAD, FRAMESET">

]]>

<!ENTITY % html.content "HEAD, BODY">

<!ELEMENT HTML O O (%html.content;) -- document root element -->

<!ATTLIST HTML

%i18n; -- lang, dir --

%version;

>

HTML 4 Strict DTD

<!--

This is HTML 4.0 Strict DTD, which excludes the presentation

attributes and elements that W3C expects to phase out as

support for style sheets matures. Authors should use the Strict

DTD when possible, but may use the Transitional DTD when support

for presentation attribute and elements is required.

1078 H T M L : T h e C o m p l e t e R e f e r e n c e

HTML 4.0 includes mechanisms for style sheets, scripting,

embedding objects, improved support for right to left and mixed

direction text, and enhancements to forms for improved

accessibility for people with disabilities.

Draft: $Date: 1998/04/02 00:17:00 $

Authors:

Dave Raggett <dsr@w3.org>

Arnaud Le Hors <lehors@w3.org>

Ian Jacobs <ij@w3.org>

Further information about HTML 4.0 is available at:

http://www.w3.org/TR/REC-html40

-->

<!--

Typical usage:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN"

"http://www.w3.org/TR/REC-html40/strict.dtd">

<html>

<head>

...

</head>

<body>

...

</body>

</html>

The URI used as a system identifier with the public identifier allows

the user agent to download the DTD and entity sets as needed.

The FPI for the Transitional HTML 4.0 DTD is:

"-//W3C//DTD HTML 4.0 Transitional//EN"

and its URI is:

http://www.w3.org/TR/REC-html40/loose.dtd

A p p e n d i x F : R e a d i n g a D o c u m e n t T y p e D e f i n i t i o n 1079

A
P

P
EN

D
IX

ES

If you are writing a document that includes frames, use

the following FPI:

"-//W3C//DTD HTML 4.0 Frameset//EN"

with the URI:

http://www.w3.org/TR/REC-html40/frameset.dtd

The following URIs are supported in relation to HTML 4.0

"http://www.w3.org/TR/REC-html40/strict.dtd" (Strict DTD)

"http://www.w3.org/TR/REC-html40/loose.dtd" (Loose DTD)

"http://www.w3.org/TR/REC-html40/frameset.dtd" (Frameset DTD)

"http://www.w3.org/TR/REC-html40/HTMLlat1.ent" (Latin-1 entities)

"http://www.w3.org/TR/REC-html40/HTMLsymbol.ent" (Symbol entities)

"http://www.w3.org/TR/REC-html40/HTMLspecial.ent" (Special entities)

These URIs point to the latest version of each file. To reference

this specific revision use the following URIs:

"http://www.w3.org/TR/1998/REC-html40-19980424/strict.dtd"

"http://www.w3.org/TR/1998/REC-html40-19980424/loose.dtd"

"http://www.w3.org/TR/1998/REC-html40-19980424/frameset.dtd"

"http://www.w3.org/TR/1998/REC-html40-19980424/HTMLlat1.ent"

"http://www.w3.org/TR/1998/REC-html40-19980424/HTMLsymbol.ent"

"http://www.w3.org/TR/1998/REC-html40-19980424/HTMLspecial.ent"

-->

<!--================== Imported Names ====================================-->

<!ENTITY % ContentType "CDATA"

-- media type, as per [RFC2045]

-->

<!ENTITY % ContentTypes "CDATA"

-- comma-separated list of media types, as per [RFC2045]

-->

<!ENTITY % Charset "CDATA"

-- a character encoding, as per [RFC2045]

-->

<!ENTITY % Charsets "CDATA"

-- a space separated list of character encodings, as per [RFC2045]

-->

<!ENTITY % LanguageCode "NAME"

-- a language code, as per [RFC1766]

-->

<!ENTITY % Character "CDATA"

-- a single character from [ISO10646]

-->

<!ENTITY % LinkTypes "CDATA"

-- space-separated list of link types

-->

<!ENTITY % MediaDesc "CDATA"

-- single or comma-separated list of media descriptors

-->

<!ENTITY % URI "CDATA"

-- a Uniform Resource Identifier,

see [URI]

-->

<!ENTITY % Datetime "CDATA" -- date and time information. ISO date format -->

<!ENTITY % Script "CDATA" -- script expression -->

<!ENTITY % StyleSheet "CDATA" -- style sheet data -->

<!ENTITY % Text "CDATA">

<!-- Parameter Entities -->

1080 H T M L : T h e C o m p l e t e R e f e r e n c e

A
P

P
EN

D
IX

ES

A p p e n d i x F : R e a d i n g a D o c u m e n t T y p e D e f i n i t i o n 1081

<!ENTITY % head.misc "SCRIPT|STYLE|META|LINK|OBJECT" -- repeatable head

elements -->

<!ENTITY % heading "H1|H2|H3|H4|H5|H6">

<!ENTITY % list "UL | OL">

<!ENTITY % preformatted "PRE">

<!--================ Character mnemonic entities =========================-->

<!ENTITY % HTMLlat1 PUBLIC

"-//W3C//ENTITIES Latin1//EN//HTML"

"http://www.w3.org/TR/1998/REC-html40-19980424/HTMLlat1.ent">

%HTMLlat1;

<!ENTITY % HTMLsymbol PUBLIC

"-//W3C//ENTITIES Symbols//EN//HTML"

"http://www.w3.org/TR/1998/REC-html40-19980424/HTMLsymbol.ent">

%HTMLsymbol;

<!ENTITY % HTMLspecial PUBLIC

"-//W3C//ENTITIES Special//EN//HTML"

"http://www.w3.org/TR/1998/REC-html40-19980424/HTMLspecial.ent">

%HTMLspecial;

<!--=================== Generic Attributes ===============================-->

<!ENTITY % coreattrs

"id ID #IMPLIED -- document-wide unique id --

class CDATA #IMPLIED -- space separated list of classes --

style %StyleSheet; #IMPLIED -- associated style info --

title %Text; #IMPLIED -- advisory title/amplification --"

>

<!ENTITY % i18n

"lang %LanguageCode; #IMPLIED -- language code --

dir (ltr|rtl) #IMPLIED -- direction for weak/neutral

text --"

>

1082 H T M L : T h e C o m p l e t e R e f e r e n c e

<!ENTITY % events

"onclick %Script; #IMPLIED -- a pointer button was clicked --

ondblclick %Script; #IMPLIED -- a pointer button was double

clicked--

onmousedown %Script; #IMPLIED -- a pointer button was pressed down --

onmouseup %Script; #IMPLIED -- a pointer button was released --

onmouseover %Script; #IMPLIED -- a pointer was moved onto --

onmousemove %Script; #IMPLIED -- a pointer was moved within --

onmouseout %Script; #IMPLIED -- a pointer was moved away --

onkeypress %Script; #IMPLIED -- a key was pressed and released --

onkeydown %Script; #IMPLIED -- a key was pressed down --

onkeyup %Script; #IMPLIED -- a key was released --"

>

<!-- Reserved Feature Switch -->

<!ENTITY % HTML.Reserved "IGNORE">

<!-- The following attributes are reserved for possible future use -->

<![%HTML.Reserved; [

<!ENTITY % reserved

"datasrc %URI; #IMPLIED -- a single or tabular Data Source --

datafld CDATA #IMPLIED -- the property or column name --

dataformatas (plaintext|html) plaintext -- text or html --"

>

]]>

<!ENTITY % reserved "">

<!ENTITY % attrs "%coreattrs; %i18n; %events;">

<!--=================== Text Markup ======================================-->

<!ENTITY % fontstyle

"TT | I | B | BIG | SMALL">

<!ENTITY % phrase "EM | STRONG | DFN | CODE |

SAMP | KBD | VAR | CITE | ABBR | ACRONYM" >

<!ENTITY % special

"A | IMG | OBJECT | BR | SCRIPT | MAP | Q | SUB | SUP | SPAN | BDO">

A p p e n d i x F : R e a d i n g a D o c u m e n t T y p e D e f i n i t i o n 1083

A
P

P
EN

D
IX

ES

<!ENTITY % formctrl "INPUT | SELECT | TEXTAREA | LABEL | BUTTON">

<!-- %inline; covers inline or "text-level" elements -->

<!ENTITY % inline "#PCDATA | %fontstyle; | %phrase; | %special; |

%formctrl;">

<!ELEMENT (%fontstyle;|%phrase;) - - (%inline;)*>

<!ATTLIST (%fontstyle;|%phrase;)

%attrs; -- %coreattrs, %i18n, %events --

>

<!ELEMENT (SUB|SUP) - - (%inline;)* -- subscript, superscript -->

<!ATTLIST (SUB|SUP)

%attrs; -- %coreattrs, %i18n, %events --

>

<!ELEMENT SPAN - - (%inline;)* -- generic language/style

container -->

<!ATTLIST SPAN

%attrs; -- %coreattrs, %i18n, %events --

%reserved; -- reserved for possible future use --

>

<!ELEMENT BDO - - (%inline;)* -- I18N BiDi over-ride -->

<!ATTLIST BDO

%coreattrs; -- id, class, style, title --

lang %LanguageCode; #IMPLIED -- language code --

dir (ltr|rtl) #REQUIRED -- directionality --

>

<!ELEMENT BR - O EMPTY -- forced line break -->

<!ATTLIST BR

%coreattrs; -- id, class, style, title --

>

<!--================== HTML content models ===============================-->

<!--

HTML has two basic content models:

%inline; character level elements and text strings

1084 H T M L : T h e C o m p l e t e R e f e r e n c e

%block; block-like elements e.g. paragraphs and lists

-->

<!ENTITY % block

"P | %heading; | %list; | %preformatted; | DL | DIV | NOSCRIPT |

BLOCKQUOTE | FORM | HR | TABLE | FIELDSET | ADDRESS">

<!ENTITY % flow "%block; | %inline;">

<!--=================== Document Body ====================================-->

<!ELEMENT BODY O O (%block;|SCRIPT)+ +(INS|DEL) -- document body -->

<!ATTLIST BODY

%attrs; -- %coreattrs, %i18n, %events --

onload %Script; #IMPLIED -- the document has been loaded --

onunload %Script; #IMPLIED -- the document has been removed --

>

<!ELEMENT ADDRESS - - (%inline;)* -- information on author -->

<!ATTLIST ADDRESS

%attrs; -- %coreattrs, %i18n, %events --

>

<!ELEMENT DIV - - (%flow;)* -- generic language/style

container -->

<!ATTLIST DIV

%attrs; -- %coreattrs, %i18n, %events --

%reserved; -- reserved for possible future use --

>

<!--================== The Anchor Element ================================-->

<!ENTITY % Shape "(rect|circle|poly|default)">

<!ENTITY % Coords "CDATA" -- comma separated list of lengths -->

<!ELEMENT A - - (%inline;)* -(A) -- anchor -->

<!ATTLIST A

%attrs; -- %coreattrs, %i18n, %events --

charset %Charset; #IMPLIED -- char encoding of linked resource --

type %ContentType; #IMPLIED -- advisory content type --

name CDATA #IMPLIED -- named link end --

A p p e n d i x F : R e a d i n g a D o c u m e n t T y p e D e f i n i t i o n 1085

A
P

P
EN

D
IX

ES

href %URI; #IMPLIED -- URI for linked resource --

hreflang %LanguageCode; #IMPLIED -- language code --

rel %LinkTypes; #IMPLIED -- forward link types --

rev %LinkTypes; #IMPLIED -- reverse link types --

accesskey %Character; #IMPLIED -- accessibility key character --

shape %Shape; rect -- for use with client-side image

maps --

coords %Coords; #IMPLIED -- for use with client-side image

maps --

tabindex NUMBER #IMPLIED -- position in tabbing order --

onfocus %Script; #IMPLIED -- the element got the focus --

onblur %Script; #IMPLIED -- the element lost the focus --

>

<!--================== Client-side image maps ============================-->

<!-- These can be placed in the same document or grouped in a

separate document although this isn't yet widely supported -->

<!ELEMENT MAP - - ((%block;)+ | AREA+) -- client-side image map -->

<!ATTLIST MAP

%attrs; -- %coreattrs, %i18n, %events --

name CDATA #REQUIRED -- for reference by usemap --

>

<!ELEMENT AREA - O EMPTY -- client-side image map area -->

<!ATTLIST AREA

%attrs; -- %coreattrs, %i18n, %events --

shape %Shape; rect -- controls interpretation of coords --

coords %Coords; #IMPLIED -- comma separated list of lengths --

href %URI; #IMPLIED -- URI for linked resource --

nohref (nohref) #IMPLIED -- this region has no action --

alt %Text; #REQUIRED -- short description --

tabindex NUMBER #IMPLIED -- position in tabbing order --

accesskey %Character; #IMPLIED -- accessibility key character --

onfocus %Script; #IMPLIED -- the element got the focus --

onblur %Script; #IMPLIED -- the element lost the focus --

>

1086 H T M L : T h e C o m p l e t e R e f e r e n c e

<!--================== The LINK Element ==================================-->

<!--

Relationship values can be used in principle:

a) for document specific toolbars/menus when used

with the LINK element in document head e.g.

start, contents, previous, next, index, end, help

b) to link to a separate style sheet (rel=stylesheet)

c) to make a link to a script (rel=script)

d) by stylesheets to control how collections of

html nodes are rendered into printed documents

e) to make a link to a printable version of this document

e.g. a postscript or pdf version (rel=alternate media=print)

-->

<!ELEMENT LINK - O EMPTY -- a media-independent link -->

<!ATTLIST LINK

%attrs; -- %coreattrs, %i18n, %events --

charset %Charset; #IMPLIED -- char encoding of linked resource --

href %URI; #IMPLIED -- URI for linked resource --

hreflang %LanguageCode; #IMPLIED -- language code --

type %ContentType; #IMPLIED -- advisory content type --

rel %LinkTypes; #IMPLIED -- forward link types --

rev %LinkTypes; #IMPLIED -- reverse link types --

media %MediaDesc; #IMPLIED -- for rendering on these media --

>

<========== Images ===-->

<!-- Length defined in strict DTD for cellpadding/cellspacing -->

<!ENTITY % Length "CDATA" -- nn for pixels or nn% for percentage length -->

<!ENTITY % MultiLength "CDATA" -- pixel, percentage, or relative -->

<!ENTITY % MultiLengths "CDATA" -- comma-separated list of MultiLength -->

<!ENTITY % Pixels "CDATA" -- integer representing length in pixels -->

<!-- To avoid problems with text-only UAs as well as

to make image content understandable and navigable

to users of non-visual UAs, you need to provide

A p p e n d i x F : R e a d i n g a D o c u m e n t T y p e D e f i n i t i o n 1087

A
P

P
EN

D
IX

ES

a description with ALT, and avoid server-side image maps -->

<!ELEMENT IMG - O EMPTY -- Embedded image -->

<!ATTLIST IMG

%attrs; -- %coreattrs, %i18n, %events --

src %URI; #REQUIRED -- URI of image to embed --

alt %Text; #REQUIRED -- short description --

longdesc %URI; #IMPLIED -- link to long description

(complements alt) --

height %Length; #IMPLIED -- override height --

width %Length; #IMPLIED -- override width --

usemap %URI; #IMPLIED -- use client-side image map --

ismap (ismap) #IMPLIED -- use server-side image map --

>

<!-- USEMAP points to a MAP element which may be in this document

or an external document, although the latter is not widely supported -->

<!--==================== OBJECT ======================================-->

<!--

OBJECT is used to embed objects as part of HTML pages

PARAM elements should precede other content. SGML mixed content

model technicality precludes specifying this formally ...

-->

<!ELEMENT OBJECT - - (PARAM | %flow;)*

-- generic embedded object -->

<!ATTLIST OBJECT

%attrs; -- %coreattrs, %i18n, %events --

declare (declare) #IMPLIED -- declare but don't instantiate flag --

classid %URI; #IMPLIED -- identifies an implementation --

codebase %URI; #IMPLIED -- base URI for classid, data, archive--

data %URI; #IMPLIED -- reference to object's data --

type %ContentType; #IMPLIED -- content type for data --

codetype %ContentType; #IMPLIED -- content type for code --

archive %URI; #IMPLIED -- space separated archive list --

standby %Text; #IMPLIED -- message to show while loading --

height %Length; #IMPLIED -- override height --

width %Length; #IMPLIED -- override width --

usemap %URI; #IMPLIED -- use client-side image map --

name CDATA #IMPLIED -- submit as part of form --

1088 H T M L : T h e C o m p l e t e R e f e r e n c e

tabindex NUMBER #IMPLIED -- position in tabbing order --

%reserved; -- reserved for possible future use --

>

<!ELEMENT PARAM - O EMPTY -- named property value -->

<!ATTLIST PARAM

id ID #IMPLIED -- document-wide unique id --

name CDATA #REQUIRED -- property name --

value CDATA #IMPLIED -- property value --

valuetype (DATA|REF|OBJECT) DATA -- How to interpret value --

type %ContentType; #IMPLIED -- content type for value

when valuetype=ref --

>

<!--=================== Horizontal Rule ==================================-->

<!ELEMENT HR - O EMPTY -- horizontal rule -->

<!ATTLIST HR

%coreattrs; -- id, class, style, title --

%events;

>

<!--=================== Paragraphs =======================================-->

<!ELEMENT P - O (%inline;)* -- paragraph -->

<!ATTLIST P

%attrs; -- %coreattrs, %i18n, %events --

>

<!--=================== Headings ===-->

<!--

There are six levels of headings from H1 (the most important)

to H6 (the least important).

-->

<!ELEMENT (%heading;) - - (%inline;)* -- heading -->

<!ATTLIST (%heading;)

%attrs; -- %coreattrs, %i18n, %events --

>

A p p e n d i x F : R e a d i n g a D o c u m e n t T y p e D e f i n i t i o n 1089

A
P

P
EN

D
IX

ES

<!--=================== Preformatted Text ================================-->

<!-- excludes markup for images and changes in font size -->

<!ENTITY % pre.exclusion "IMG|OBJECT|BIG|SMALL|SUB|SUP">

<!ELEMENT PRE - - (%inline;)* -(%pre.exclusion;) -- preformatted text -->

<!ATTLIST PRE

%attrs; -- %coreattrs, %i18n, %events --

>

<!--===================== Inline Quotes ==================================-->

<!ELEMENT Q - - (%inline;)* -- short inline quotation -->

<!ATTLIST Q

%attrs; -- %coreattrs, %i18n, %events --

cite %URI; #IMPLIED -- URI for source document or msg --

>

<!--=================== Block-like Quotes ================================-->

<!ELEMENT BLOCKQUOTE - - (%block;|SCRIPT)+ -- long quotation -->

<!ATTLIST BLOCKQUOTE

%attrs; -- %coreattrs, %i18n, %events --

cite %URI; #IMPLIED -- URI for source document or msg --

>

<!--=================== Inserted/Deleted Text ============================-->

<!-- INS/DEL are handled by inclusion on BODY -->

<!ELEMENT (INS|DEL) - - (%flow;)* -- inserted text, deleted text -->

<!ATTLIST (INS|DEL)

%attrs; -- %coreattrs, %i18n, %events --

cite %URI; #IMPLIED -- info on reason for change --

datetime %Datetime; #IMPLIED -- date and time of change --

>

<!--=================== Lists ==-->

<!-- definition lists - DT for term, DD for its definition -->

1090 H T M L : T h e C o m p l e t e R e f e r e n c e

<!ELEMENT DL - - (DT|DD)+ -- definition list -->

<!ATTLIST DL

%attrs; -- %coreattrs, %i18n, %events --

>

<!ELEMENT DT - O (%inline;)* -- definition term -->

<!ELEMENT DD - O (%flow;)* -- definition description -->

<!ATTLIST (DT|DD)

%attrs; -- %coreattrs, %i18n, %events --

>

<!ELEMENT OL - - (LI)+ -- ordered list -->

<!ATTLIST OL

%attrs; -- %coreattrs, %i18n, %events --

>

<!-- Unordered Lists (UL) bullet styles -->

<!ELEMENT UL - - (LI)+ -- unordered list -->

<!ATTLIST UL

%attrs; -- %coreattrs, %i18n, %events --

>

<!ELEMENT LI - O (%flow;)* -- list item -->

<!ATTLIST LI

%attrs; -- %coreattrs, %i18n, %events --

>

<!--================ Forms ===-->

<!ELEMENT FORM - - (%block;|SCRIPT)+ -(FORM) -- interactive form -->

<!ATTLIST FORM

%attrs; -- %coreattrs, %i18n, %events --

action %URI; #REQUIRED -- server-side form handler --

method (GET|POST) GET -- HTTP method used to submit the

form--

enctype %ContentType; "application/x-www-form-urlencoded"

onsubmit %Script; #IMPLIED -- the form was submitted --

onreset %Script; #IMPLIED -- the form was reset --

accept-charset %Charsets; #IMPLIED -- list of supported charsets --

>

A p p e n d i x F : R e a d i n g a D o c u m e n t T y p e D e f i n i t i o n 1091

A
P

P
EN

D
IX

ES

<!-- Each label must not contain more than ONE field -->

<!ELEMENT LABEL - - (%inline;)* -(LABEL) -- form field label text -->

<!ATTLIST LABEL

%attrs; -- %coreattrs, %i18n, %events --

for IDREF #IMPLIED -- matches field ID value --

accesskey %Character; #IMPLIED -- accessibility key character --

onfocus %Script; #IMPLIED -- the element got the focus --

onblur %Script; #IMPLIED -- the element lost the focus --

>

<!ENTITY % InputType

"(TEXT | PASSWORD | CHECKBOX |

RADIO | SUBMIT | RESET |

FILE | HIDDEN | IMAGE | BUTTON)"

>

<!-- attribute name required for all but submit & reset -->

<!ELEMENT INPUT - O EMPTY -- form control -->

<!ATTLIST INPUT

%attrs; -- %coreattrs, %i18n, %events --

type %InputType; TEXT -- what kind of widget is needed --

name CDATA #IMPLIED -- submit as part of form --

value CDATA #IMPLIED -- required for radio and checkboxes --

checked (checked) #IMPLIED -- for radio buttons and check boxes --

disabled (disabled) #IMPLIED -- unavailable in this context --

readonly (readonly) #IMPLIED -- for text and passwd --

size CDATA #IMPLIED -- specific to each type of field --

maxlength NUMBER #IMPLIED -- max chars for text fields --

src %URI; #IMPLIED -- for fields with images --

alt CDATA #IMPLIED -- short description --

usemap %URI; #IMPLIED -- use client-side image map --

tabindex NUMBER #IMPLIED -- position in tabbing order --

accesskey %Character; #IMPLIED -- accessibility key character --

onfocus %Script; #IMPLIED -- the element got the focus --

onblur %Script; #IMPLIED -- the element lost the focus --

onselect %Script; #IMPLIED -- some text was selected --

onchange %Script; #IMPLIED -- the element value was changed --

accept %ContentTypes; #IMPLIED -- list of MIME types for file upload --

%reserved; -- reserved for possible future use --

>

<!ELEMENT SELECT - - (OPTGROUP|OPTION)+ -- option selector -->

<!ATTLIST SELECT

%attrs; -- %coreattrs, %i18n, %events --

name CDATA #IMPLIED -- field name --

size NUMBER #IMPLIED -- rows visible --

multiple (multiple) #IMPLIED -- default is single selection --

disabled (disabled) #IMPLIED -- unavailable in this context --

tabindex NUMBER #IMPLIED -- position in tabbing order --

onfocus %Script; #IMPLIED -- the element got the focus --

onblur %Script; #IMPLIED -- the element lost the focus --

onchange %Script; #IMPLIED -- the element value was changed --

%reserved; -- reserved for possible future

use --

>

<!ELEMENT OPTGROUP - - (OPTION)+ -- option group -->

<!ATTLIST OPTGROUP

%attrs; -- %coreattrs, %i18n, %events --

disabled (disabled) #IMPLIED -- unavailable in this context --

label %Text; #REQUIRED -- for use in hierarchical menus --

>

<!ELEMENT OPTION - O (#PCDATA) -- selectable choice -->

<!ATTLIST OPTION

%attrs; -- %coreattrs, %i18n, %events --

selected (selected) #IMPLIED

disabled (disabled) #IMPLIED -- unavailable in this context --

label %Text; #IMPLIED -- for use in hierarchical menus --

value CDATA #IMPLIED -- defaults to element content --

>

<!ELEMENT TEXTAREA - - (#PCDATA) -- multi-line text field -->

<!ATTLIST TEXTAREA

%attrs; -- %coreattrs, %i18n, %events --

name CDATA #IMPLIED

rows NUMBER #REQUIRED

cols NUMBER #REQUIRED

disabled (disabled) #IMPLIED -- unavailable in this context --

readonly (readonly) #IMPLIED

tabindex NUMBER #IMPLIED -- position in tabbing order --

1092 H T M L : T h e C o m p l e t e R e f e r e n c e

A
P

P
EN

D
IX

ES

A p p e n d i x F : R e a d i n g a D o c u m e n t T y p e D e f i n i t i o n 1093

accesskey %Character; #IMPLIED -- accessibility key character --

onfocus %Script; #IMPLIED -- the element got the focus --

onblur %Script; #IMPLIED -- the element lost the focus --

onselect %Script; #IMPLIED -- some text was selected --

onchange %Script; #IMPLIED -- the element value was changed --

%reserved; -- reserved for possible future use --

>

<!--

#PCDATA is to solve the mixed content problem,

per specification only whitespace is allowed there!

-->

<!ELEMENT FIELDSET - - (#PCDATA,LEGEND,(%flow;)*) -- form control group -->

<!ATTLIST FIELDSET

%attrs; -- %coreattrs, %i18n, %events --

>

<!ELEMENT LEGEND - - (%inline;)* -- fieldset legend -->

<!ENTITY % LAlign "(top|bottom|left|right)">

<!ATTLIST LEGEND

%attrs; -- %coreattrs, %i18n, %events --

accesskey %Character; #IMPLIED -- accessibility key character --

>

<!ELEMENT BUTTON - -

(%flow;)* -(A|%formctrl;|FORM|FIELDSET)

-- push button -->

<!ATTLIST BUTTON

%attrs; -- %coreattrs, %i18n, %events --

name CDATA #IMPLIED

value CDATA #IMPLIED -- sent to server when submitted --

type (button|submit|reset) submit -- for use as form button --

disabled (disabled) #IMPLIED -- unavailable in this context --

tabindex NUMBER #IMPLIED -- position in tabbing order --

accesskey %Character; #IMPLIED -- accessibility key character --

onfocus %Script; #IMPLIED -- the element got the focus --

onblur %Script; #IMPLIED -- the element lost the focus --

%reserved; -- reserved for possible future use --

>

<!--======================= Tables ======================================-->

<!-- IETF HTML table standard, see [RFC1942] -->

<!--

The BORDER attribute sets the thickness of the frame around the

table. The default units are screen pixels.

The FRAME attribute specifies which parts of the frame around

the table should be rendered. The values are not the same as

CALS to avoid a name clash with the VALIGN attribute.

The value "border" is included for backwards compatibility with

<TABLE BORDER> which yields frame=border and border=implied

For <TABLE BORDER=1> you get border=1 and frame=implied. In this

case, it is appropriate to treat this as frame=border for backwards

compatibility with deployed browsers.

-->

<!ENTITY % TFrame "(void|above|below|hsides|lhs|rhs|vsides|box|border)">

<!--

The RULES attribute defines which rules to draw between cells:

If RULES is absent then assume:

"none" if BORDER is absent or BORDER=0 otherwise "all"

-->

<!ENTITY % TRules "(none | groups | rows | cols | all)">

<!-- horizontal placement of table relative to document -->

<!ENTITY % TAlign "(left|center|right)">

<!-- horizontal alignment attributes for cell contents -->

<!ENTITY % cellhalign

"align (left|center|right|justify|char) #IMPLIED

char %Character; #IMPLIED -- alignment char, e.g. char=':' --

charoff %Length; #IMPLIED -- offset for alignment char --"

>

1094 H T M L : T h e C o m p l e t e R e f e r e n c e

A p p e n d i x F : R e a d i n g a D o c u m e n t T y p e D e f i n i t i o n 1095

A
P

P
EN

D
IX

ES

<!-- vertical alignment attributes for cell contents -->

<!ENTITY % cellvalign

"valign (top|middle|bottom|baseline) #IMPLIED"

>

<!ELEMENT TABLE - -

(CAPTION?, (COL*|COLGROUP*), THEAD?, TFOOT?, TBODY+)>

<!ELEMENT CAPTION - - (%inline;)* -- table caption -->

<!ELEMENT THEAD - O (TR)+ -- table header -->

<!ELEMENT TFOOT - O (TR)+ -- table footer -->

<!ELEMENT TBODY O O (TR)+ -- table body -->

<!ELEMENT COLGROUP - O (col)* -- table column group -->

<!ELEMENT COL - O EMPTY -- table column -->

<!ELEMENT TR - O (TH|TD)+ -- table row -->

<!ELEMENT (TH|TD) - O (%flow;)* -- table header cell, table data

cell-->

<!ATTLIST TABLE -- table element --

%attrs; -- %coreattrs, %i18n, %events --

summary %Text; #IMPLIED -- purpose/structure for speech

output--

width %Length; #IMPLIED -- table width --

border %Pixels; #IMPLIED -- controls frame width around

table --

frame %TFrame; #IMPLIED -- which parts of frame to render --

rules %TRules; #IMPLIED -- rulings between rows and cols --

cellspacing %Length; #IMPLIED -- spacing between cells --

cellpadding %Length; #IMPLIED -- spacing within cells --

%reserved; -- reserved for possible future

use --

datapagesize CDATA #IMPLIED -- reserved for possible future

use --

>

<!ENTITY % CAlign "(top|bottom|left|right)">

<!ATTLIST CAPTION

%attrs; -- %coreattrs, %i18n, %events --

>

1096 H T M L : T h e C o m p l e t e R e f e r e n c e

<!--

COLGROUP groups a set of COL elements. It allows you to group

several semantically related columns together.

-->

<!ATTLIST COLGROUP

%attrs; -- %coreattrs, %i18n, %events --

span NUMBER 1 -- default number of columns in group --

width %MultiLength; #IMPLIED -- default width for enclosed COLs --

%cellhalign; -- horizontal alignment in cells --

%cellvalign; -- vertical alignment in cells --

>

<!--

COL elements define the alignment properties for cells in

one or more columns.

The WIDTH attribute specifies the width of the columns, e.g.

width=64 width in screen pixels

width=0.5* relative width of 0.5

The SPAN attribute causes the attributes of one

COL element to apply to more than one column.

-->

<!ATTLIST COL -- column groups and properties --

%attrs; -- %coreattrs, %i18n, %events --

span NUMBER 1 -- COL attributes affect N columns --

width %MultiLength; #IMPLIED -- column width specification --

%cellhalign; -- horizontal alignment in cells --

%cellvalign; -- vertical alignment in cells --

>

<!--

Use THEAD to duplicate headers when breaking table

across page boundaries, or for static headers when

TBODY sections are rendered in scrolling panel.

Use TFOOT to duplicate footers when breaking table

across page boundaries, or for static footers when

TBODY sections are rendered in scrolling panel.

A p p e n d i x F : R e a d i n g a D o c u m e n t T y p e D e f i n i t i o n 1097

A
P

P
EN

D
IX

ES

Use multiple TBODY sections when rules are needed

between groups of table rows.

-->

<!ATTLIST (THEAD|TBODY|TFOOT) -- table section --

%attrs; -- %coreattrs, %i18n, %events --

%cellhalign; -- horizontal alignment in cells --

%cellvalign; -- vertical alignment in cells --

>

<!ATTLIST TR -- table row --

%attrs; -- %coreattrs, %i18n, %events --

%cellhalign; -- horizontal alignment in cells --

%cellvalign; -- vertical alignment in cells --

>

<!-- Scope is simpler than axes attribute for common tables -->

<!ENTITY % Scope "(row|col|rowgroup|colgroup)">

<!-- TH is for headers, TD for data, but for cells acting as both use TD -->

<!ATTLIST (TH|TD) -- header or data cell --

%attrs; -- %coreattrs, %i18n, %events --

abbr %Text; #IMPLIED -- abbreviation for header cell --

axis CDATA #IMPLIED -- names groups of related headers--

headers IDREFS #IMPLIED -- list of id's for header cells --

scope %Scope; #IMPLIED -- scope covered by header cells --

rowspan NUMBER 1 -- number of rows spanned by cell --

colspan NUMBER 1 -- number of cols spanned by cell --

%cellhalign; -- horizontal alignment in cells --

%cellvalign; -- vertical alignment in cells --

>

<!--================ Document Head =======================================-->

<!-- %head.misc; defined earlier on as "SCRIPT|STYLE|META|LINK|OBJECT" -->

<!ENTITY % head.content "TITLE & BASE?">

<!ELEMENT HEAD O O (%head.content;) +(%head.misc;) -- document head -->

<!ATTLIST HEAD

%i18n; -- lang, dir --

profile %URI; #IMPLIED -- named dictionary of meta info --

>

1098 H T M L : T h e C o m p l e t e R e f e r e n c e

<!-- The TITLE element is not considered part of the flow of text.

It should be displayed, for example as the page header or

window title. Exactly one title is required per document.

-->

<!ELEMENT TITLE - - (#PCDATA) -(%head.misc;) -- document title -->

<!ATTLIST TITLE %i18n>

<!ELEMENT BASE - O EMPTY -- document base URI -->

<!ATTLIST BASE

href %URI; #REQUIRED -- URI that acts as base URI --

>

<!ELEMENT META - O EMPTY -- generic metainformation -->

<!ATTLIST META

%i18n; -- lang, dir, for use with content --

http-equiv NAME #IMPLIED -- HTTP response header name --

name NAME #IMPLIED -- metainformation name --

content CDATA #REQUIRED -- associated information --

scheme CDATA #IMPLIED -- select form of content --

>

<!ELEMENT STYLE - - %StyleSheet -- style info -->

<!ATTLIST STYLE

%i18n; -- lang, dir, for use with title --

type %ContentType; #REQUIRED -- content type of style language --

media %MediaDesc; #IMPLIED -- designed for use with these

media --

title %Text; #IMPLIED -- advisory title --

>

<!ELEMENT SCRIPT - - %Script; -- script statements -->

<!ATTLIST SCRIPT

charset %Charset; #IMPLIED -- char encoding of linked resource --

type %ContentType; #REQUIRED -- content type of script language --

src %URI; #IMPLIED -- URI for an external script --

defer (defer) #IMPLIED -- UA may defer execution of script --

event CDATA #IMPLIED -- reserved for possible future use --

for %URI; #IMPLIED -- reserved for possible future use --

>

A p p e n d i x F : R e a d i n g a D o c u m e n t T y p e D e f i n i t i o n 1099

A
P

P
EN

D
IX

ES

<!ELEMENT NOSCRIPT - - (%block;)+

-- alternate content container for non script-based rendering -->

<!ATTLIST NOSCRIPT

%attrs; -- %coreattrs, %i18n, %events --

>

<!--================ Document Structure =================================-->

<!ENTITY % html.content "HEAD, BODY">

<!ELEMENT HTML O O (%html.content;) -- document root element -->

<!ATTLIST HTML

%i18n; -- lang, dir --

>

HTML 4 Frameset DTD

<!--

This is the HTML 4.0 Frameset DTD, which should be

used for documents with frames. This DTD is identical

to the HTML 4.0 Transitional DTD except for the

content model of the "HTML" element: in frameset

documents, the "FRAMESET" element replaces the "BODY"

element.

Draft: $Date: 1997/12/11 15:31:11 $

Authors:

Dave Raggett <dsr@w3.org>

Arnaud Le Hors <lehors@w3.org>

Ian Jacobs <ij@w3.org>

Further information about HTML 4.0 is available at:

http://www.w3.org/TR/REC-html40.

-->

<!ENTITY % HTML.Version "-//W3C//DTD HTML 4.0 Frameset//EN"

– Typical usage:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Frameset//EN"

"http://www.w3.org/TR/REC-html40/frameset.dtd">

<html>

<head>

...

</head>

<frameset>

...

</frameset>

</html>

–>

<!ENTITY % HTML.Frameset "INCLUDE">

<!ENTITY % HTML4.dtd PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

%HTML4.dtd;

1100 H T M L : T h e C o m p l e t e R e f e r e n c e

1101

Index

Note: Page numbers in italics refer to charts or illustrations.

Numbers & Symbols
"404 Not Found" error, broken

links, 168–170
% (percent sign)

parameter entities and
DTDs, 1048–1049

style sheet reference, 993
& (ampersand), logical connectors,

1045–1046
<!- -...- -> element. See comments
! Important property, style sheet

reference, 934
, (comma), logical connectors,

1045–1046
/ (slash), HTML tags, 6, 56
@import rule, CSS2, 387–388
| (pipe), logical connectors,

1045–1046

A
<A> element, 129–142, 683–687

ACCESSKEY attribute,
138–139, 684

attributes, 133–139, 684–686
broken links, 168–170
examples, 686–687
hot spots and, 129
image maps, 209–211
images as buttons, 207–209
 element and,

141–153
linking in HTML, 106, 129–131
NAME attribute, 134–136, 685
REL attribute, 140, 685
REV attribute, 140, 685
rollover buttons and, 140
scripting and, 140

TABINDEX attribute, 139,
686

TARGET attribute, 139,
272–274, 686

TITLE attribute, 136–137
A:active pseudoclass, style sheet

reference, 931–932
ABBR attribute

<TD> element (table data),
887

<TH> element (table
headers), 900

<ABBR> element, 688–689
ABOVE attribute

<ILAYER> element, 783
<LAYER> element, 802

ABSBOTTOM value, ALIGN
attribute, 199–200

Copyright 1999 The McGraw-Hill Companies. Click Here for Terms of Use.

1102 H T M L : T h e C o m p l e t e R e f e r e n c e

ABSHEIGHT attribute
<TD> element (table data), 887
<TH> element (table

headers), 900
ABSMIDDLE value, ALIGN

attribute, 199–200
ABSWIDTH attribute

<TD> element (table data), 888
<TH> element (table

headers), 900
Accept:

MIME-type/MIME-subtype
field, HTTP, 607–608

ACCEPT attribute, <INPUT>
element, 790

Accept-Charset: charset field,
HTTP, 608

ACCEPT-CHARSET attribute,
<FORM> element, 417, 761

Accept-Encoding: encoding-type
field, HTTP, 609

Accept-Language: language field,
HTTP, 609

access and security
DHTML (Dynamic HTML),

542–547
See also security

accessibility enhancements, forms,
441–443

ACCESSKEY attribute
<A> element, 138–139, 684
<AREA> element, 698
<BUTTON> element, 721
form accessibility

enhancements, 441–443
<INPUT> element, 790–791
<LABEL> element, 799
<LEGEND> element, 804
<OBJECT> element, 832
<SELECT> element, 859
<TEXTAREA> element, 892

Acrobat. See Adobe Acrobat
<ACRONYM> element, 689–691
ACTION attribute

<FORM> element, 410–411,
417, 762

<ISINDEX> element, 795
passing form data to CGI

scripts, 468
Active Server Pages. See ASP
ActiveMovie (downloading and

playing video), 317–321
<EMBED> element and, 319
 element and

DYNSRC attribute,
319–321

<OBJECT> element and,
318–319

ActiveX controls, 578–589
adding to Web pages,

580–588
certificates, 579
cross-platform support,

588–589
Data Objects (ADO), 262
installing, 582–583
<OBJECT> element,

292–293, 580–583
obtaining, 584–585
overview, 578–579
passing data to, 583–584
scripting and, 585–588
security and, 579

<ADDRESS> element, 94,
691–693

addressing. See linking; URLs
ADO (ActiveX Data Objects),

databinding tables, 262
Adobe Acrobat, 325–326

PDF (Portable Document
Format), 325

Age response header, HTTP, 619
ALIGN attribute, 219

<APPLET> element, 694
<AUDIOSCOPE> element,

700
<CAPTION> element, 723
<COL> element, 730
<COLGROUP> element,

733
<DIV> element, 78–79, 744
DOM (Document Object

Model), 538
<EMBED> element, 563, 752
<FIELDSET> element, 755
<Hn> elements (headings),

70–71, 771
<HR> element (horizontal

rules), 92, 775
<IFRAME> element, 780
images, 196–200, 220–221
 element, 786
<INPUT> element, 791
invisible images and layout,

221
<LEGEND> element,

804–805
LiveAudio, 302
LiveVideo, 311
<MARQUEE> element, 817
<OBJECT> element, 832

<P> element (paragraphs),
73–74, 842

QuickTime, 313
<SELECT> element, 859
<SPACER> element, 864
<TABLE> element, 261, 878
<TBODY> element, 884
<TD> element (table data), 888
<TEXTAREA> element, 893
<TFOOT> element, 897
<TH> element (table

headers), 900
<THEAD> element (table

headers), 904
<TR> element (table

rows), 908
aligning

images, 220–221
text, 217–219

alignment attributes, 219
ALINK attribute, <BODY>

element, 235–236, 715
A:link pseudoclass, style sheet

reference, 932
LLCAPS attribute, <TEXTAREA>

element, 893
ALT attribute

<APPLET> element, 694
<AREA> element, 698
<EMBED> element, 752
images and alternative text,

192–196
 element (image

maps), 151, 786
<INPUT> element, 791
<PARAM> element, 574

ALTERNATE value, proposed
REL values, 155

anchors. See <A> element
Andreessen, Marc, Mosaic and

history of HTML, 47
animation

Flash format, 323–325
GIF images, 183–184, 185
moving objects with

DHTML, 551–556
anti-aliasing, GIF images,

181–182, 183
Apache Web server, 603
APPENDIX value, proposed REL

values, 155
Apple Macintosh fonts, 1032
<APPLET> element, 293–294,

572–574, 693–696
ARCHIVE attribute,

572–573, 694

I n d e x 1103

attributes, 693–695
CODE attribute, 294,

572, 694
CODEBASE attribute,

294, 572, 695
Flash format (animation),

324
ID attribute, 574
MAYSCRIPT attribute, 5

74, 695
NAME attribute, 574, 695
<PARAM> element and,

573–574
passing data to Java applets,

573–574
syntax, 572–574
See also Java applets

application object, ASP, 495
application profiles, XML, 628
application-specific presentations,

future of HTML, 663–664
ARCHIVE attribute

<APPLET> element,
572–573, 694

<OBJECT> element, 832
<AREA> element, 696–700

attributes, 146, 697–699
broken links, 168–170
client-side image maps, 145,

146, 210
arrows, character entities, 1025
ASP (Active Server Pages),

490–495
built-in objects, 494–495
database access, 491–494
overview, 490
RUNAT attribute, 491
<SCRIPT> element, 491
VBScript and, 492

ATTLIST keyword, DTD, 1047
attribute list declarations,

DTD, 1047
attributes, 11–12

alignment, 219
case insensitivity of

names, 56
case sensitivity of, 12, 56
case sensitivity of values, 56
core, 67
custom plug-in, 564
document-wide color for

<BODY> element,
235–236

for installation of plug-ins,
564–565

Internet Explorer
background, 240–241

language, 68
quoted values, 56–57
unknown ignored, 58
See also element reference;

elements
audience considerations, process

of Web publishing, 25
audio

<BGSOUND> element,
304–305, 707–708

cross-browser background,
305

proprietary sound formats,
305

sound formats, 298, 299, 305
audio support in browsers,

297–308
digital sound overview, 298
downloading and playing

audio, 298–308
file formats and

compression, 298, 299
overview, 297
sampling, 298

<AUDIOSCOPE> element,
700–701

aural improvements, CSS2, 392–393
authenticated services,

URLs and, 116
authentication, FTP URLs, 122–123
AUTHOR value, proposed REL

values, 158
Authorization:

authorization-scheme
authorization-data field,
HTTP, 609

AUTOACTIVATE attribute
<SELECT> element, 860
<TEXTAREA> element, 893

AUTOCAPS attribute,
<TEXTAREA> element, 893

AUTOPLAY attribute,
QuickTime, 313

AUTOSTART attribute
LiveAudio, 301
LiveVideo, 311
RealAudio, 308

AVI
ActiveMovie, 317–321
standard Internet video

formats, 310
A:visited pseudoclass, style sheet

reference, 932

AXIS attribute
<TD> element (table data),

888
<TH> element (table

headers), 900
azimuth property, CSS2, 396

B
 element (bold), 701–702
BACKGROUND attribute

background images, 237
<BODY> element, 237, 715
<ILAYER> element, 783
<LAYER> element, 802
<TABLE> element, 261, 879
<TD> element (table data),

888
<TH> element (table

headers), 715, 900
background attributes, Internet

Explorer, 240–241
background images, 237–241

BACKGROUND attribute,
237

Internet Explorer
background attributes,
240–241

style sheet reference,
954–966

tiling, 238–240
background property

color and background
properties, 355–356

style sheet reference,
961–966

background sounds,
cross-browser, 305

background-attachment property
color and background

properties, 353
style sheet reference,

957–958
background-color property,

351–352
style sheet reference,

954–955
background-image property

color and background
properties, 352

style sheet reference,
955–956

background-position property
color and background

properties, 353–354
style sheet reference, 958–961

1104 H T M L : T h e C o m p l e t e R e f e r e n c e

background-repeat property
color and background

properties, 352–353
style sheet reference,

956–957
BALANCE attribute,

<BGSOUND> element, 707
balancing linear and Web

structures, organization of
information, 34, 35

bandwidth, downloading images,
187–188

<BASE> element, 703–704
<HEAD> element and, 62
relative URLs and, 128

<BASEFONT> element, 704–706
COLOR attribute, 229–

230, 705
document-wide font

settings, 229–230
SIZE attribute, 229–230, 705

BASELINE value, ALIGN
attribute, 199–200

<BDO> element, bidirectional
override, 706–707

BEGIN value, proposed REL
values, 157

BEHAVIOR attribute,
<MARQUEE> element,
297, 817

BELOW attribute
<ILAYER> element, 783
<LAYER> element, 802

Berners-Lee, Tim, history of
HTML, 46

BGCOLOR attribute
<BODY> element, 66, 235,

715
<ILAYER> element (inflow

layers), 283, 783
<INPUT> element, 791
<LAYER> element, 802
<MARQUEE> element, 817
positioned layers, 280
<SELECT> element, 860
<TABLE> element, 251, 879
<TBODY> element, 884
<TD> element (table data),

888
<TEXTAREA> element, 893
<TFOOT> element, 897
<TH> element (table

headers), 900
<THEAD> element (table

headers), 904
<TR> element (table

rows), 908

BGPROPERTIES attribute
<BODY> element, 715
Internet Explorer

background attributes,
240

<BGSOUND> element, 304–305,
707–708

LOOP attribute, 304, 707
BIBLIOENTRY value, proposed

REL values, 157
BIBLIOGRAPHY value, proposed

REL values, 157
bidirectional override, <BDO>

element, 706–707
<BIG> element, 97, 708–710
binary objects, 290–295, 322–326

Adobe Acrobat, 325–326
<EMBED> element and

plug-ins, 290–291
Flash format, 323–325
Java applets, 293–295
miscellaneous formats,

322–326
<NOEMBED> element,

291–292
<OBJECT> element, 323
<OBJECT> element and

ActiveX controls, 292–293
overview, 322–323
summary, 326

binding data. See databinding
bitmapped images, 178, 179
<BLACKFACE> element,

fonts, 710
_blank value, TARGET attribute,

273
<BLINK> element, 710–711

<MARQUEE> element and,
295

block elements, 69–94
<ADDRESS> element, 94
<BLOCKQUOTE> element,

80–81

 element (breaks),

73–77
<CENTER> element, 77–78
<DIV> element, 78–79
<Hn> elements (headings),

70–72, 73
<HR> element (horizontal

rules), 92–93
lists, 83–91
<P> element (paragraphs),

73–77
<PRE> element

(preformatted text), 81–83

<BLOCKQUOTE> element,
80–81, 711–713

attributes, 712–713
blockquotes, <BQ> element,

717–718
<BODY> element, 8, 713–717

ALINK attribute, 235–236,
715

attributes, 714–716
BACKGROUND attribute,

237, 715
BGCOLOR attribute, 66,

235, 715
document-wide color

attributes for, 235–236
LEFTMARGIN attribute,

241, 716
LINK attribute, 235–236, 716
<SCRIPT> element and,

505–506
structure of HTML

documents, 59, 60
syntax, 713–714
TEXT attribute, 235, 716
TOPMARGIN attribute,

241, 716
VLINK attribute, 235–236, 716

bold, element, 701–702
BOOKMARK value, proposed

REL values, 155
BORDER attribute

<AUDIOSCOPE> element,
700

<EMBED> element, 563, 752
<FRAMESET> element, 767
<IFRAME> element, 780
images as buttons, 208–209
 element, 141, 142,

786
<OBJECT> element, 832
<TABLE> element, 244–246,

250, 879
border properties, 365–369

border-color property, 367
border-style property, 366
border-width property, 367
combining properties,

367–369
BORDERCOLOR attribute

<FRAME> element, 764
<FRAMESET> element, 767
<IFRAME> element, 780
<TABLE> element, 261, 879
<TD> element (table data),

888
<TH> element (table

headers), 900

I n d e x 1105

<TR> element (table
rows), 908

BORDERCOLORDARK attribute
<TABLE> element, 879
<TD> element (table data),

888
<TH> element (table

headers), 900
<TR> element (table

rows), 908
BORDERCOLORLIGHT

attribute
<TABLE> element, 879
<TD> element (table

data), 888
<TH> element (table

headers), 900
<TR> element (table

rows), 908
BORDERIMAGE attribute,

<INPUT> element, 791
borders, style sheet reference,

968–976
BOTTOM value, ALIGN

attribute, 196
BOTTOMMARGIN attribute,

<BODY> element, 715
box properties, style sheet,

361–362
<BQ> element, block quotes,

717–718

 element (breaks), 73–77,

718–719
extensions and images,

202–204
<P> element comparison, 77

broken links, 168–170
See also <LINK> element;

linking
browsers

audio support, 297–308
compatibility and Web

publishing, 42–43
cross-browser background

sounds, 305
Netscape object models, 539,

540, 541
non-script-aware and

scripting, 510–511
plug-ins, 561–569
sensing of by CGI scripts,

466–467
video support in, 308–322

buffering data, downloading and
playing audio, 306

<BUTTON> element
form buttons, 719–722
forms, 438–439

buttons
dynamic. See rollover buttons
generalized, 437
images as, 207–209
radio, 430–431
rollover, 547–551

C
CACHE attribute, QuickTime, 313
cached script files, 510
<CAPTION> element, 722–724

ALIGN attribute, 723
attributes, 723–724
LANGUAGE attribute, 724
syntax, 722–723
<TABLE> element, 246, 256

cascading style sheets. See CSS;
CSS2; style sheets

case insensitivity of attribute
names, 12, 56

case insensitivity of elements, 12, 55
case sensitivity of attribute

values, 56
CDF (Channel Definition Format),

XML data files, 638–640
CELLBORDER attribute,

<TABLE> element, 879
CELLPADDING attribute,

<TABLE> element, 252, 255
CELLSPACING attribute,

<TABLE> element, 879
<CENTER> element, 77–78,

725–726
layout and, 219

CENTER value, ALIGN
attribute, 199

CERN, history of HTML, 46
certificates, ActiveX controls, 579
<CFIF> element, ColdFusion

conditional statements, 485–488
CFML (ColdFusion Markup

Language). See ColdFusion
<CFOUTPUT> element,

ColdFusion (parsed HTML),
483–484

<CFQUERY> element,
ColdFusion (parsed HTML),
481, 482

CGI scripts, 458–471
ACTION attribute, 468
browser sensing, 466–467

buying or borrowing, 471
client/server programming,

454, 455
environment variables,

462–466
forms and, 458, 468–470
HTTP URLs and, 120–121
HTTP_USER_AGENT

environment variable, 467
language choices, 470, 471
mapping files, 460, 461
obtaining, 471
output, 460–462
overview, 458–460
passing data to, 468–470
slowness of, 471
telnet and, 459
variables, 462–466
writing, 470–471

CHAPTER value, proposed REL
values, 155

CHAR attribute
<COL> element, 730
<COLGROUP> element,

733
<TBODY> element, 884
<TD> element (table data),

888
<TFOOT> element, 897
<TH> element (table

headers), 901
<THEAD> element (table

headers), 904
<TR> element (table rows),

909
character entities, 100–103,

1019–1027
arrows, 1025
general punctuation, 1020
geometric shapes, 1027
Greek, 1022–1024
Latin extended-A, 1020
Latin extended-B, 1020
letter-like symbols, 1024
mathematical operators,

1025–1027
miscellaneous symbols, 1027
punctuation, 1020
spacing modifier letters,

1020
“standard,” 1000–1019
technical symbols, 1027
See also special characters

character-encoding values, URLs
and, 117–118

1106 H T M L : T h e C o m p l e t e R e f e r e n c e

character-formatting elements,
physical, 94, 95–97

characters, special. See special
characters

CHAROFF attribute
<COL> element, 730
<COLGROUP> element,

733
<TBODY> element, 884
<TD> element (table data),

888
<TFOOT> element, 897
<TH> element (table

headers), 901
<THEAD> element (table

headers), 904
<TR> element (table rows),

909
CHARSET attribute

<A> element, 684
<DIV> element, 744
<LINK> element, 809
<SCRIPT> element, 856

check boxes, text controls, 428–429
CHECKED attribute, <INPUT>

element, 791
CHILD value, proposed REL

values, 156
CITATION value, proposed REL

values, 158
<CITE> element, citations,

726–728
CITE attribute

<BLOCKQUOTE> element,
712

 element, 738
<INS> element, 793
<Q> element (quotes), 851

Clark, Dr. James, Netscape and
history of HTML, 48

CLASS attribute, 67, 670
<BASEFONT> element, 705
<FORM> element, 417
<ILAYER> element, 783
images and, 211
<SCRIPT> element, 856
style sheets and, 337–339

class selectors, style sheet
reference, 928–929

CLASSID attribute
installing ActiveX controls,

582–583
<OBJECT> element,

318, 832
<OBJECT> element and

ActiveX controls, 580, 581

<OBJECT> element syntax
for plug-ins, 567

classification properties, 374–377
display property, 375–376
style sheet reference,

987–993
white-space property,

376–377
CLEAR attribute

 element, 718

 extensions and

images, 202–204
clear property, style sheet

reference, 980–982
client error codes, HTTP, 615–617
client-pull, <META> element

(meta-information), 164
client-side image maps, 144–149,

210–211
<AREA> element, 145, 146,

210
example, 148–149
ISMAP attribute, 148–149
<MAP> element, 144–145,

210
USEMAP attribute, 148–149,

210
x/y coordinates, 147

client-side programming, 559–591
ActiveX controls, 578–589
future of <OBJECT>

element, 590
Java applets, 569–577
overview, 560
plug-ins, 561–569
summary, 590–591

client/server programming,
454–456

CGI scripts, 454, 455
See also client-side

programming; server-side
programming

client/server relationship, HTTP,
605, 606

CLIP attribute
<ILAYER> element, 783
<LAYER> element, 802

clip property
positioning with style

sheets, 381
style sheet reference, 984

cm value, style sheet reference, 994
colocation, outsourcing Web

hosting, 596, 597
<CODE> element, code listing,

728–730

CODE attribute
<APPLET> element, 294,

572, 694
<EMBED> element, 753
installing ActiveX controls,

582–583
<OBJECT> element, 832

CODEBASE attribute
<APPLET> element, 294,

572, 695
<EMBED> element, 753
installing ActiveX controls,

583
<OBJECT> element, 567,

832
CODETYPE attribute

installing ActiveX controls,
583

<OBJECT> element, 832
<COL> element, 730–732

attributes, 730–731
syntax, 730
<TABLE> element, 256–257

ColdFusion (parsed HTML),
478–490

<CFIF> element, 485–488
CFML (ColdFusion Markup

Language), 478
<CFOUTPUT> element,

483–484
<CFQUERY> element, 481,

482
conditional statements,

485–488
data selection, 490–482
database overview, 479–480
DATASOURCE attribute,

481
language summary, 488–490
ODBC and, 482
outputting data, 483–484
overview, 478–479
SQL and, 490–482
WHERE modifier, 481

<COLGROUP> element, 732–734
attributes, 733
syntax, 732
<TABLE> element, 256–257

color attibutes, document-wide for
<BODY> element, 235–236

COLOR attribute
<BASEFONT> element,

229–230, 705
 element, 227, 759
<HR> element, 775

I n d e x 1107

color and background properties,
351–356

background property,
355–356

background-attachment
property, 353

background-color property,
351–352

background-image
property, 352

background-position
property, 353–354

background-repeat
property, 352–353

color property, 351
style sheet reference, 954–966

color in HTML
 element, 233–235
hex values, 234, 1033–1041

color preferences, CSS2, 389–391
color property, style sheet

reference, 954
color resolutions, images and, 178
color values, style sheet reference,

996–998
COLS attribute

<FRAMESET> element,
268–269, 768

<MULTICOL> element,
224, 225

<TABLE> element, 246, 261,
879

<TEXTAREA> element, 893
COLSPAN attribute

<TABLE> element, 246–249,
252

<TD> element (table data),
888

<TH> element (table
headers), 901

combining properties, borders,
367–369

comments
<!- -...- -> element, 681–682
<COMMENT> element,

734–735
DTD, 1049–1050
HTML rules, 57–59
style sheet reference, 933

Common Gateway Interface. See
CGI scripts

COMPACT attribute
<MENU> element, 820
 element (ordered

lists), 84, 836
 element (unordered

lists), 914

compression and file formats
audio support in browsers,

298, 299
lossy and lossless

compression, 179
video support in browsers,

309, 310
compression scheme comparison,

GIF images, 180, 181
conditional statements,

ColdFusion (parsed HTML),
485–488

CONFIG command, SSIs
(server-side includes), 478

content, Web publishing, 37
CONTENT attribute, <META>

element, 822
content exclusion, DTD, 1046–1047
content inclusion, DTD, 1046–1047
content models, elements and, 54
Content-encoding response

header, HTTP, 619
Content-language response

header, HTTP, 619
Content-length: bytes field,

HTTP, 609
Content-length response header,

HTTP, 619
Content-range response header,

HTTP, 619
Content-type:

MIME-type/MIME-subtype
field, HTTP, 609

Content-type response header,
HTTP, 619

CONTENTS value, proposed REL
values, 155

contextual selection, style sheets,
339, 929

CONTROLLER attribute,
QuickTime, 314

controls
ActiveX. See ActiveX

controls
form, 419–437
text, 419–433

CONTROLS attribute
 element, 786
LiveAudio, 301, 302
RealAudio, 307

converting XML to HTML for
display, 643–645

COORDS attribute
<A> element, 684
<AREA> element, 698

copyright, fair use concept, 190

COPYRIGHT value, proposed
REL values, 155

core attributes, elements and,
66–68, 670–671

core events
events reference, 673–675
scripting & HTML, 68–69

CORRECTION attribute,
QuickTime, 314

CREDITS attribute, <BODY>
element, 715

cross-browser background
sounds, 305

cross-platform support, ActiveX
controls, 588–589

crossed tags, nested elements,
12–13, 58

CSS (Cascading Style Sheets),
328, 341

displaying XML documents
with, 645–649

See also CSS2; style sheets
CSS2 (Cascading Style Sheets v.2),

386–397
aural improvements,

392–393
azimuth property, 396
color preferences, 389–391
cue property, 395
cue-after property, 395
cue-before property, 395
cursor property, 389
elevation property, 396
font preferences, 391–392
@import rule, 387–388
media types, 386, 387
media-dependent style

sheets, 388–389
@media rule, 387, 388–389
outline properties, 392
pause property, 395
pause-after property, 394
pause-before property, 394
pitch property, 393
pitch-range property, 393
play-during property, 396
richness property, 394
speak property, 394
speak-header property, 397
speak-numeral property,

397
speak-punctuation

property, 396–397
speech-rate property, 393
stress property, 394

1108 H T M L : T h e C o m p l e t e R e f e r e n c e

user interface changes,
389–397

voice-family property, 393
volume property, 394
See also CSS; style sheets

cue property, CSS2, 395
cue-after property, CSS2, 395
cue-before property, CSS2, 395
CURSOR attribute

<INPUT> element, 791
<TEXTAREA> element, 893

cursor properties
CSS2, 389
Microsoft style sheet

properties, 402–403

D
DATA attribute

images, 211
<OBJECT> element, 567,

832
data files, XML, 638–640
data selection, ColdFusion (parsed

HTML), 490–482
database access, ASP, 491–494
database overview, ColdFusion

(parsed HTML), 479–480
databinding tables, 259–263

accessing data files, 261
ADO (ActiveX Data

Objects), 262
creating, 259–260
DATAFLD attribute,

262–263
<OBJECT> element, 262
<TBODY> element, 263
TDC (Tabular Data Control)

objects, 261–262
<TFOOT> element, 263
<THEAD> element, 263

DATAFLD attribute
<A> element, 684
<APPLET> element, 695
<BUTTON> element, 721
databinding tables, 262–263
<DIV> element, 745
<FRAME> element, 764
<IFRAME> element, 780
 element, 786
<LABEL> element, 799
<MARQUEE> element, 817
<OBJECT> element, 832
<PARAM> element, 844

<SELECT> element, 860
 element (text

span), 866
<TEXTAREA> element, 893

DATAFORMATAS attribute
<BUTTON> element, 721
<DIV> element, 745
<LABEL> element, 799
<MARQUEE> element, 817
<PARAM> element, 844
 element (text

span), 866
DATAPAGESIZE attribute,

<TABLE> element, 879
DATASOURCE attribute

<CFQUERY> element, 482
ColdFusion (parsed HTML),

481
DATASRC attribute

<A> element, 684
<APPLET> element, 695
<BUTTON> element, 721
<DIV> element, 745
<FRAME> element, 764
<IFRAME> element, 780
 element, 786
<LABEL> element, 799
<MARQUEE> element, 817
<OBJECT> element, 262,

832
<PARAM> element, 844
<SELECT> element, 860
 element (text

span), 866
<TABLE> element, 880
<TEXTAREA> element, 893

Date: date-time field, HTTP, 609
DATETIME attribute

 element, 738
<INS> element, 793–794

<DD> element, definition lists,
89–91, 735–737

DEBUG attribute, <CFQUERY>
element, 482

declarations, DTD, 1044–1047
DECLARE attribute

installing ActiveX controls,
583

<OBJECT> element, 832
DEFER attribute, <SCRIPT>

element, 856
definition lists

<DD> element, 89–91,
735–737

<DL> element, 89–91,
746–748

DEFINITION value, proposed
REL values, 158

 element, deleted text,
737–739

design
layout requirements, 216
organization of information,

29–35
Web publishing and, 20–23,

38
developmental phases, Web

publishing, 45
<DFN> element, 739–741
DHTML (Dynamic HTML),

535–558
access and security, 542–547
DOM (Document Object

Model), 536–539
ID attribute, 542, 544–545
moving objects with,

551–556
NAME attribute, 542–546
object models, 539, 540, 541
programming layers, 286
ramifications of, 557–558
rollover buttons, 547–551
security and access, 542–547
style sheets and, 546–547
summary, 557–558

digital sound overview, 298
digital video overview, 309
DIR attribute

<FORM> element, 417
language attributes, 68
language reference, 672
<META> element, 822
<STYLE> element, 872

<DIR> element, 741–743
vestigial lists, 91

DIRECTION attribute,
<MARQUEE> element, 297, 817

directories, URLs and, 113
DISABLED attribute

forms, 443
<INPUT> element, 791
<LINK> element, 809
<OPTION> element, 840
<SELECT> element, 860
<STYLE> element, 872
<TEXTAREA> element, 893

DISCLAIMER value, proposed
REL values, 159

display property
classification properties,

375–376

I n d e x 1109

style sheet reference,
987–988

dithering, GIF images, 180
<DIV> element, 743–746

attributes, 744–745
style sheets, 336

<DL> element (definition lists),
89–91, 746–748

<DT> element, 89–91,
748–750

<!DOCTYPE> element, 7, 59, 60,
682

XML, 637–638
Document Type Definitions. See

DTDs
document-wide color attributes

for <BODY> element, 235–236
document-wide font settings,

229–230
DOM (Document Object Model),

536–539
ALIGN attribute, 538
example, 536–537
parse tree, 537
structure of, 537–538

domain names
HTTP and, 605
URLs and, 110–113

downloadable fonts, 230–231
Microsoft style sheet

properties, 403–404
OpenType, 230–231

downloading images, 187–189
bandwidth considerations,

187–188
reducing image size,

188–189
downloading and playing audio,

298–308
<BGSOUND> element,

304–305
buffering data, 306
cross-browser background

sounds, 305
LiveAudio, 300–304
proprietary audio formats,

305
real-time data problems,

305–306
RealAudio, 306–308
RSVP (Resource Reservation

Setup Protocol), 306
RTP (Real Time Transport

Protocol), 306
sound formats, 298, 299

streaming data, 305
summary, 308
TCP/IP and, 306–307

downloading and playing video,
309–321

ActiveMovie, 317–321
LiveVideo, 310–312
QuickTime, 312–317

<DT> element, definition lists,
89–91, 748–750

DTDs (Document Type
Definitions), 1043–1100

ATTLIST keyword, 1047
attribute list declarations,

1047
comments, 1049–1050
content exclusion, 1046–1047
content inclusion, 1046–1047
declarations, 1044–1047
defined, 7, 60
<!DOCTYPE> tag, 7, 59–61
element type declarations,

1044–1047
frameset, 1099–1100
general entities, 1049
HTML rules, 55
logical connectors,

1045–1046
marked section declarations,

1050
occurrence indicators, 1045
parameter entities,

1048–1049
SGML keywords, 1047–1048
strict, 1077–1099
transitional, 1051–1077
XML valid documents,

633–638
dynamic buttons. See rollover

buttons
dynamic fonts

Microsoft, 232–233
Netscape, 231–232

Dynamic HTML. See DHTML
DYNSRC attribute,

element, 319–321, 786

E
e-mail

mailto URLs, 125
MIME (Multipurpose

Internet Mail Extension),
621–622

ECHO command, SSIs
(server-side includes), 476–477

EDITOR value, proposed REL
values, 159

editors, HTML and WYSIWYG,
39–42

EFFECT attribute,
element, 759

element grouping, style sheets,
340–341

element reference, 667–916
<!- - ... - -> (comments),

681–682
<A>, 683–687
<ABBR>, 688–689
<ACRONYM>, 689–691
<ADDRESS>, 691–693
<APPLET>, 693–696
<AREA>, 696–700
<AUDIOSCOPE> element,

700–701
 (bold), 701–702
<BASE>, 703–704
<BASEFONT>, 704–706
<BDO>, 706–707
<BGSOUND>, 707–708
<BIG>, 708–710
<BLACKFACE>, 710
<BLINK>, 710–711
<BLOCKQUOTE>, 711–713
<BODY>, 713–717
<BQ> (block quote), 717–718

 (line break), 718–719
<BUTTON> (form buttons),

719–722
<CAPTION>, 722–724
<CENTER>, 725–726
<CITE>, 726–728
CLASS attribute, 670
<CODE> (code listing),

728–730
<COL>, 730–732
<COLGROUP>, 732–734
<COMMENT>, 734–735
core attributes and, 670–671
<DD>, 735–737
, 737–739
<DFN>, 739–741
<DIR>, 741–743
<DIV>, 743–746
<DL>, 746–748
<!DOCTYPE>, 682
<DT>, 748–750
 (emphasis), 750–751
<EMBED>, 752–754

1110 H T M L : T h e C o m p l e t e R e f e r e n c e

events reference and,
672–680

<FIELDSET>, 755–756
<FN>, 757
, 758–760
<FORM>, 760–763
<FRAME>, 763–766
<FRAMESET>, 766–770
<Hn> (headings), 770–772
<HEAD>, 772–774
<HR> (horizontal rules),

774–776
<HTML>, 776–777
<I>, 777–779
ID attribute, 670–671
<IFRAME>, 779–782
<ILAYER> (inflow layers),

782–784
 (images), 784–789
<INPUT>, 789–794
<INS>, 792–794
<ISINDEX>, 795–797
<KBD>, 797–798
<LABEL>, 798–801
language reference and, 672
<LAYER>, 801–803
<LEGEND>, 804–806
, 806–808
<LINK>, 808–811
<LISTING>, 812–813
<MAP>, 813–815
<MARQUEE>, 815–819
<MENU>, 819–821
<META>, 821–823
<MULTICOL>, 823–825
<NOBR>, 825–826
<NOEMBED>, 826–827
<NOFRAMES>, 827–828
<NOSCRIPT>, 828–830
<OBJECT>, 830–835
, 835–837
<OPTGROUP>, 837–839
<OPTION>, 839–841
<P> (paragraphs), 841–843
<PARAM>, 844–846
<PLAINTEXT>, 846–847
<PRE>, 848–850
<Q> (quote), 850–852
<S> (strikethrough), 852–853
<SAMP> (sample text),

853–855
<SCRIPT>, 855–848
<SELECT>, 858–862
<SMALL>, 862–864
<SPACER>, 864–865
, 865–867

<STRIKE> (strikeout text),
867–869

 (strong
emphasis), 869–871

<STYLE>, 871–873
STYLE attribute, 671
<SUB> (subscripts), 873–875
<SUP> (superscripts),

875–877
<TABLE>, 877–883
<TBODY>, 883–886
<TD> (table data), 886–891
<TEXTAREA>, 891–896
<TFOOT>, 896–898
<TH>, 898–903
<THEAD>, 803–805
<TITLE>, 906–907
TITLE attribute, 671
<TR> (table rows), 907–910
<TT> (teletype text),

910–912
<U> (underline), 912–913
 (unordered lists),

913–916
<VAR>, 916–917
<WBR> (word breaks),

717–719
<XML>, 919–920
<XMP> (examples), 920–922
See also attributes; elements

element type declarations, DTD,
1044–1047

elements, 5–6, 11, 54, 66–103
attributes, 11–12, 66–68,

670–671
block. See block elements
case insensitivity of, 12, 55
content models, 54
core attributes, 66–68,

670–671
empty, 6, 54–55
nesting, 12–13, 58
new in HTML 4, 256–259
spaces and names, 12, 57
text. See text elements
unknown ignored, 58
See also attributes; element

reference
elevation property, CSS2, 396
 element, emphasis, 750–751
em value, style sheet reference,

994
<EMBED> element, 561–565,

752–754
ActiveMovie, 319
ALIGN attribute, 563, 752

alternate binary formats, 323
attributes for installation of

plug-ins, 564–565
BORDER attribute, 563, 752
custom plug-in attributes,

564
Flash format (animation),

323
HEIGHT attribute, 563–564,

753
HSPACE attribute, 563, 753
LiveVideo, 311
PALETTE attribute, 564, 753
plug-ins and, 290–291,

561–565
SRC attribute, 563, 753
syntax, 563–565
TYPE attribute, 563, 753
UNITS attribute, 563–564,

753
VSPACE attribute, 563, 753
WIDTH attribute, 563–564,

753
embedding

style sheets, 333–334, 926
XML in HTML documents,

640–643
emphasis, element,

869–871
empty elements, 6, 54–55
encoding values, character and

URLs, 117–118
encrypting forms, 408
ENCTYPE attribute, <FORM>

element, 414–415, 417, 762
END value, proposed REL values,

157
ENDTIME attribute, LiveAudio,

301
environment variables

CGI scripts, 462–466
SSIs (server-side includes),

474–476
error handlers, script events,

526–527
EVENT attribute

Microsoft event handler
extensions, 527–528

<SCRIPT> element, 856
event bubbling, extended event

model, 525
event capturing, extended event

model, 525
event handlers

attributes and script events,
512–533

I n d e x 1111

<FORM> element, 418
Internet Explorer 5 event

preview, 525–526
Microsoft extensions,

527–529
events

forms and, 448–451
HTML, 513–514
scripting & HTML, 68–69,

512–529
events reference, 672–680

core events, 673–675
extended event model,

676–680
extended events, 672–675

ex value, style sheet reference,
994–995

EXCLUSIVE attribute, <SELECT>
element, 860

EXEC command, SSIs (server-side
includes), 477

Expires response header, HTTP,
619

extended event model, 518–525,
672–675, 676–680

event bubbling, 525
event capturing, 525
Internet Explorer 5 event

preview, 525–526
onabort attribute, 519, 676
onafterupdate attribute, 519,

676
onbeforeunload attribute,

519, 676
onbeforeupdate attribute,

519, 676
onbounce attribute, 520, 677
ondataavailable attribute,

520, 677
ondatasetchange attribute,

520
ondatasetchanged attribute,

520, 677
ondatasetcomplete

attribute, 520, 677
ondragdrop attribute, 521,

677
ondragstart attribute, 520,

677
onerror attribute, 521, 678
onerrorupdate attribute,

521, 678
onfilterchange attribute,

521, 678
onfinish attribute, 521, 678
onhelp attribute, 521, 678

onmove attribute, 521, 678
onreadystatechange

attribute, 522, 679
onresize attribute, 522, 679
onrowenter attribute, 522,

679
onrowexit attribute, 523, 680
onscroll attribute, 523, 680
onselectstart attribute, 523,

680
onstart attribute, 523, 680

external scripts, 509–510

F
FACE attribute

<BASEFONT> element, 705
 element, 228, 759

fair use concept, obtaining images,
190

<FIELDSET> element, forms,
439–440, 441, 447, 755–756

file form control, <INPUT>
element, 435–437

file formats
audio, 298, 299, 305
video, 309, 310, 322
XML and, 639

file URLs, 121–122
filenames, URLs and, 114
filtering software, <META>

element (meta-information),
164–168

filternames, Microsoft style sheet
properties, 398

filters, Microsoft style sheet
properties, 397–400

FIRST value, proposed REL
values, 157

first-letter property, style sheet
reference, 932–933

first-line property, style sheet
reference, 933

fixed-screen navigation, frames,
267

Flash format (animation), 323–325
<APPLET> element, 324
<EMBED> element, 323
<OBJECT> element, 323

FLASTMOD command, SSIs
(server-side includes), 477

float property
padding properties, 372–374
style sheet reference,

979–980

floating frames. See <IFRAME>
element

<FN> element, footnotes, 757
 element, 227–228,

758–760
COLOR attribute, 227, 759
colors in HTML, 233–235
FACE attribute, 228, 759
Microsoft dynamic fonts, 232
Netscape dynamic fonts, 231
SIZE attribute, 227–228, 759
WEIGHT attribute, 231, 760
See also fonts

font preferences, CSS2, 391–392
font properties, 344–350

font property, 346–347, 948
font-family property,

344–345, 934–936
font-size property, 345,

936–940
font-style property, 345,

940–941
font-variant property, 346,

943–944
font-weight property,

345–346, 942–943
text-decoration property,

347, 946–947
text-transform property,

347, 944–946
fonts, 227–233, 1029–1032

Apple Macintosh, 1032
<BASEFONT> element,

704–706
<BIG> element, 708–710
<BLACKFACE> element,

710
<BLINK> element, 710–711
document-wide settings,

229–230
downloadable, 230–231
 element, 227–228,

758–760
Microsoft, 228–229,

1030–1031
Microsoft dynamic, 232–233
Microsoft style sheet

properties, 403–404
Netscape dynamic, 231–232
overview, 227–229
style sheet reference,

934–948
Unix, 1032
See also element

footers, table. See <TFOOT>
element

1112 H T M L : T h e C o m p l e t e R e f e r e n c e

FOOTNOTE value, proposed REL
values, 158

footnotes, <FN> element, 757
FOR attribute

<LABEL> element, 800
Microsoft event handler

extensions, 528
<SCRIPT> element, 856

<FORM> element, 410–418,
760–763

ACCEPT-CHARSET
attribute, 417, 761

ACTION attribute, 410–411,
417, 762

attributes, 416–418, 761–763
CLASS attribute, 417
complete syntax, 416
DIR attribute, 417
ENCTYPE attribute,

414–415, 417, 762
event handlers, 418
ID attribute, 417
LANG attribute, 417
LANGUAGE attribute, 417,

762
METHOD attribute,

411–413, 418, 762
NAME attribute, 413–414,

418, 762
simple syntax, 415–416
STYLE attribute, 418
syntax, 761
TARGET attribute, 418, 762
TITLE attribute, 418
See also forms

form buttons, <BUTTON>
element, 719–722

form controls, 419–437
<INPUT> element, 419–437
text controls, 419–433
types, 433–437

form validation, JavaScript,
529–533

formats
file. See file formats
image, 179, 180
physical character-

formatting elements,
94, 95–97

forms, 407–449
accessibility enhancements,

441–443
ACCESSKEY attribute,

441–443
attributes, 443

<BUTTON> element,
438–439

CGI scripts and, 458,
468–470

controls, 419–437
DISABLED attribute, 443
encryption, 408
events and, 448–451
<FIELDSET> element,

439–440, 441, 447, 755–756
<FORM> element, 410–418,

760–763
<INPUT> element, 789–794
<LABEL> element, 439
new and emerging elements,

438–440
overview, 408–409
passing data to CGI scripts,

468–470
presentation considerations,

443–448
READONLY attribute, 443
summary, 451
TABINDEX attribute,

442–443
tables and, 443, 446
WebTV and, 448

FOV attribute, QuickTime, 314
fragment identifiers, URLs and,

116
<FRAME> element, 763–766

attributes, 764–766
<FRAMESET> element and,

269–270, 272
NAME attribute, 270, 765
syntax, 763–764
See also frames

FRAME attribute, <TABLE>
element, 258, 880

FRAMEBORDER attribute
<FRAME> element, 764
<FRAMESET> element, 768
<IFRAME> element, 780

frames, 266–288
benefits of, 276–277
components of, 267, 268
defined, 267
defining individual

documents, 270–271
example, 267–272
fixed-screen navigation, 267
floating. See <IFRAME>

element
<FRAMESET> element,

268–272, 766–770

<IFRAME> element
(floating frames), 275–276,
779–782

linked, 266
<NOFRAMES> element,

270, 274–275, 827–828
overview, 266–267
problems with, 277–278
TARGET attribute, 272–274

<FRAMESET> element, 268–272,
766–770

attributes, 767–768
COLS attribute, 268–269, 768
defining individual

documents, 270–271
examples, 769
<FRAME> element and,

269–270, 272
ROWS attribute, 268–269,

768
syntax, 766–767
See also <FRAME> element

frameset DTD, listing, 1099–1100
FRAMESPACING attribute

<FRAMESET> element, 768
<IFRAME> element, 780

From: e-mail address field, HTTP,
610

FSIZE command, SSIs (server-side
includes), 477

FTP URLs, 122–124
authentication, 122–123

future of HTML, 653–665
application-specific

presentations, 663–664
presentation issues, 654–655
programming issues,

655–657
structure, 658–660
summary, 664–665
Web-wide problems,

661–663
future of URLs, 173–174
future of XML, 651

G
GAIN attribute,

<AUDIOSCOPE> element, 700
general entities

DTD, 1049
XML, 636

general punctuation, character
entities, 1020

I n d e x 1113

generalized buttons, <INPUT>
element, 437

geometric shapes, character
entities, 1027

GET method
METHOD attribute, 411–413
passing form data to CGI

scripts, 468–469
GIF images, 179–185

animated, 183–184, 185
anti-aliasing, 181–182, 183
compression scheme

comparison, 180, 181
dithering, 180
GIF89a format, 183–184
interlacing, 182–183
transparency, 181, 182

GLOSSARY value, proposed REL
values, 155

goals, process of Web publishing,
27–28

Gopher URLs, 124–125
selector rings, 124

GRADANGLE attribute
<TABLE> element, 880
<TD> element (table data),

888–889
<TH> element (table

headers), 901
GRADCOLOR attribute

<TD> element (table data),
889

<TH> element (table
headers), 901

GRAMMAR entity, XML, 636–637
graphics. See images;

element
Greek, character entities,

1022–1024
grid-style structure, organization

of information, 33
GROUP attribute, <CFOUTPUT>

element, 483
grouping elements, style sheet

reference, 340–341, 931
GROWABLE attribute,

<TEXTAREA> element, 893
GUTTER attribute,

<MULTICOL> element, 224,
824

H
<Hn> elements (headings), 70–72,

73, 770–772

attributes, 70–71, 771
block elements, 70–72, 73
rendering font size, 70–71,

72
style sheets, 336–337
syntax, 770

<HEAD> element, 62–63, 772–774
attributes, 772–773
<BASE> element and, 62
indexing and, 62
<ISINDEX> element and, 62
<LINK> element and, 62
<META> element

(meta-information) and,
7–8, 62

<OBJECT> element and,
62–63

<SCRIPT> element and, 63,
505

<STYLE> element and, 63,
334

syntax, 772
headers

HTTP response, 618–621
table (<TH> element),

898–903
table (<THEAD> element),

803–805
HEADERS attribute

<TD> element (table data),
889

<TH> element (table
headers), 901

headings. See <Hn> elements
HEIGHT attribute

<APPLET> element, 695
<AUDIOSCOPE> element,

700
<EMBED> element,

563–564, 753
<IFRAME> element, 780
<IFRAME> element

(floating frames), 275
<ILAYER> element, 783
images, 205–206
 element, 786
<LAYER> element, 802
LiveAudio, 302
LiveVideo, 311
<MARQUEE> element, 817
<OBJECT> element, 833
<OBJECT> element and

ActiveX controls, 580
QuickTime, 314
RealAudio, 308
<SPACER> element, 864

<TABLE> element, 256, 880
<TD> element (table data),

889
<TH> element (table

headers), 901
height property

padding properties, 372
style sheet reference,

978–979, 60
"Hello World" sample, Java

applets, 570–571
HELP value, proposed REL

values, 156
hex values, color in HTML, 234,

1033–1041
HIDDEN attribute

LiveAudio, 302
QuickTime, 314

hidden text, <INPUT> element,
433–434

history of HTML, 46–50
Berners-Lee, Tim, 46
CERN, 46
Microsoft Internet Explorer,

49
Mosaic, 47
Netscape, 48–49
programmed sites, 49–50
SGML (Standard

Generalized Markup
Language), 46

horizontal rules. See <HR>
element

Host field, HTTP, 610
hot spots, <A> element and, 129
HOTSPOT attribute, QuickTime,

314
<HR> element (horizontal rules),

92–93, 774–776
ALIGN attribute, 92
attributes, 774–775
NOSHADE attribute, 92
SIZE attribute, 92
syntax, 774
WIDTH attribute, 92

HREF attribute
<A> element, 684
<AREA> element, 698
<BASE> element, 703
<FN> element, 757
<ISINDEX> element, 795
<LINK> element, 154, 810
linking and, 106–107
QuickTime, 314
<TABLE> element, 880

1114 H T M L : T h e C o m p l e t e R e f e r e n c e

HREFLANG attribute
<A> element, 685
<LINK> element, 810

HSPACE attribute
<APPLET> element, 695
<EMBED> element, 563, 753
<IFRAME> element, 780
 element, 200–202,

787
invisible images and layout,

221
LiveVideo, 311
<MARQUEE> element, 817
<OBJECT> element, 833
padding properties and, 373
QuickTime, 314
<TABLE> element, 261, 880

HTML (Hypertext Markup
Language)

attributes, 11–12
basic concepts, 4–11
block elements, 69–94
character entities, 100–103
client-side programming,

559–591
colors and hexadecimal

codes, 233–235, 1033–1041
core events, 68–69
databinding, 259–263
DTDs, 7, 60–61, 1043–1100
Dynamic . See DHTML
editors, 39–42
elements. See element

reference; elements
events, 513–514
extended event model,

518–525
fonts, 1029–1032
forms, 407–449
frames, 266–288
future of, 653–665
history of, 46–50
images, 175–212
introduction to, 3–17
issues facing, 50–51
layers, 278–287
layout, 215–241
linking, 106–174
lists, 83–91
media types and, 289–326
misconceptions about, 15–17
organization of information,

29–35
overview, 3–17, 54–55
parsed, 472–490

physical versus logical,
13–15

programming in, 405–591
publishing. See Web

publishing
rewriting as XML, 649–651
rules and guidelines, 55–59
scripting, 497–533
server-side programming,

453–496
SGML, XML and, 628–630
spaces and, 12, 57
special characters, 999–1027
structure of, 7–11, 59, 60
style sheet reference,

925–998
style sheets, 327–404
<TABLE> element, 243–263
tabs and, 12, 57
tags overview, 4–6, 11–13
Web publishing, 19–52
Web sites, 595–623
WYSIWYG editors, 40–42
XML, 627–652

HTML editors, Web publishing
and, 39–42

<HTML> element, 7, 59, 60, 61
attributes, 776–777

HTML elements, layout and,
217–226

HTTP (Hypertext Transfer
Protocol), 605–623

Accept: MIME-type/MIME-
subtype field, 607–608

Accept-Charset: charset
field, 608

Accept-Encoding:
encoding-type field, 609

Accept-Language: language
field, 609

Age response header, 619
Authorization:

authorization-scheme
authorization-data field,
609

client error codes, 615–617
client/server relationship,

605, 606
Content-encoding response

header, 619
Content-language response

header, 619
Content-length: bytes field,

609
Content-length response

header, 619

Content-range response
header, 619

Content-type:
MIME-type/MIME-
subtype field, 609

Content-type response
header, 619

Date: date-time field, 609
domain names and, 605
Expires response header,

619
From: e-mail address field,

610
Host field, 610
If-Match: selector-string

field, 610
If-Modified-Since:

date-time field, 610
If-None-Match:

selector-string field, 610
If-Range: selector field, 610
If-Unmodified-Since field,

611
informational codes, 613
Last-modified response

header, 620
Location response header,

620
Max-Forwards: integer

field, 611
MIME (Multipurpose

Internet Mail Extension),
621–622

MIME-version:
version-number field, 611

overview, 605–607
PEP (Protocol Extension

Protocol), 605
Pragma: server-directive

field, 611
Proxy-authenticate response

header, 620
Proxy-Authorization:

authorization
information field, 611

Public response header, 620
Range: byte-range field, 611
redirection codes, 614–615
Referrer: URL field, 612
request methods, 607, 608
response headers, 618–621
Retry-after response header,

620
server error codes, 617–618
Server response header, 620

I n d e x 1115

speed and state problems
with, 622–623

status codes, 613–618
success codes, 613–614
URLs and, 607
User-Agent: agent-code

field, 612
Warning response header,

621
WWW-authenticate

response header, 621
HTTP URLs, 119–121

CGI scripts and, 120–121
index files, 119
markers and, 120
named links and, 120
SSL (Secure Sockets Layer)

and, 121
HTTP-EQUIV attribute, <META>

element (meta-information),
163–164, 822

HTTP_USER_AGENT
environment variable, CGI
scripts and browser sensing, 467

hyperlinks. See linking

I
<I> element, italic, 777–779
ID attribute, 67, 670–671

<APPLET> element, 574
DHTML and security, 542,

544–545
<FN> element, 757
<FORM> element, 417
images, 211
<OBJECT> element and

ActiveX controls, 580
<OBJECT> element syntax

for plug-ins, 567
style sheets, 337–339
XML, 645

ID selectors, style sheet reference,
929–930

If-Match: selector-string field,
HTTP, 610

If-Modified-Since: date-time
field, HTTP, 610

If-None-Match: selector-string
field, HTTP, 610

If-Range: selector field, HTTP, 610
If-Unmodified-Since field,

HTTP, 611
<IFRAME> element (floating

frames), 275–276, 779–782

HEIGHT attribute, 275
NAME attribute, 276
SRC attribute, 275, 276
WIDTH attribute, 275
See also <FRAMES>

element; <NOFRAMES>
element

IIS (Internet Information Server),
603

ASP and, 490–495
<ILAYER> element (inflow

layers), 281–283, 782–784
BGCOLOR attribute, 283
See also <LAYER> element

image maps (element),
142–153, 209–211

attributes, 149–153
client-side, 144–149, 210–211
rollovers, 551
scripting and, 153
server-side, 143–144,

209–210
image types, <INPUT> element,

435
images, 175–212

<A> element and buttons,
207–209

ALIGN attribute, 196–200,
220–221

ALT attribute (alternative
text), 192–196

alternate formats, 187
background, 237–241
bitmapped, 178, 179

 element extensions,

202–204
as buttons, 207–209
CLASS attribute, 211
color resolutions and, 178
compression types, 179
DATA attribute, 211
downloading, 187–189
fair use concept, 190
formats, 179, 180
GIF, 179–185
HEIGHT attribute, 205–206
HSPACE attribute, 200–202
HTML basics, 191–206
ID attribute, 211
invisible and layout, 221–222
JPEG, 186–187
licensing, 190
lossy and lossless

compression, 179
LOWSRC attribute, 206
maps, 209–211

NAME attribute, 211
<OBJECT> element and, 211
obtaining, 189–190
overview, 177–187
pixels and, 177
PNG, 187
roles on the Web, 176–177
screen resolution and,

177–178
scripting and, 211
SRC attribute, 191
STYLE attribute, 211
summary, 212
swapping for rollover

buttons, 547–549
TITLE attribute, 211
types of, 178–179, 180
vector, 178, 179
VSPACE attribute, 200–202
WIDTH attribute, 205–206
See also graphics;

element
 element, 141–153, 191–192,

784–789
<A> element (anchors) and,

141–153
ActiveMovie, 319–321
BORDER attribute, 141, 142,

786
DYNSRC attribute, 319–321,

786
HSPACE attribute, 200–202,

787
image maps, 142–153
<INPUT> element and, 435
See also images

implementation of Web
publishing, 37–45

browser compatibility, 42–43
content, 37
HTML editors, 39–42
maintenance, 44–45
producing HTML, 39–42
technology design, 38–39
testing, 42–44
visual design, 38

@import rule, CSS2, 387–388
! Important property, style sheet

reference, 934
importing style sheets, 335,

927–928
in value, style sheet reference, 995
INCLUDE command, SSIs

(server-side includes), 474, 477
inclusions, XML, 636
index files, HTTP URLs, 119

1116 H T M L : T h e C o m p l e t e R e f e r e n c e

INDEX value, proposed REL
values, 155

indexing, <HEAD> element and, 62
inflow layers, <ILAYER> element,

281–283, 782–784
informational codes, HTTP, 613
inheritance, style sheets and, 341,

931
inline styles, style sheets, 336–337,

927
<INPUT> element, 789–794

attributes, 790–793
check boxes, 428–429
file form control, 435–437
form controls, 419–437
generalized buttons, 437
hidden text, 433–434
image types, 435
 element and, 435
radio buttons, 430–431
reset and submit buttons,

431–433
syntax, 789–790
text controls, 419–422,

428–437
text entry, 419–422
TYPE attribute, 433–437,

792–793
<INS> element, 792–794
INSTRUCTIONS attribute,

<BODY> element, 715
interlacing GIF images, 182–183
Internet Explorer

background attributes,
240–241

<BGSOUND> element,
304–305, 707–708

event preview in version 5,
525–526

history of HTML, 49
interpage transitions, Microsoft

style sheet properties, 402
INVERTBORDER attribute,

<HR> element, 775
invisible images and layout,

221–222
IP addresses, URLs and, 112–113
ISAPI/NSAPI, server-side

programming, 471–472
<ISINDEX> element, 795–797

<HEAD> element and, 62
ISMAP attribute

client-side image maps,
148–149

 element, 787
italic, <I> element, 777–779

J
Java applets, 293–295, 569–577

<APPLET> element,
293–294, 572–574, 693–696

binary objects, 293–295
"Hello World" sample,

570–571
Java sandbox, 570
JavaBeans, 577, 578
<OBJECT> element syntax

for, 576–577
overview, 569–571
passing data to, 573–574
scripting and, 574–576
security and, 569–570
setMessage method, 575
signed applets, 570

JavaBeans, 577, 578
JavaScript, 499–501

form validation, 529–533
JPEG images, photography,

186–187

K
<KBD> element, keyboard input,

797–798

L
LABEL attribute

<OPTGROUP> element,
838

<OPTION> element, 840
<LABEL> element, 798–801

forms, 439
LANG attribute

<BASEFONT> element, 705
<FORM> element, 417
language attributes, 68
language reference, 672
<META> element, 822
<STYLE> element, 872

LANGUAGE attribute
<A> element, 685
<ADDRESS> element, 692
<AREA> element, 698
 (bold) element, 702
<BIG> element, 709
<BLOCKQUOTE> element,

712–713
<BODY> element, 715–716

 element, 719

<BUTTON> element, 721
<CAPTION> element, 724
<CENTER> element,

725–726
<CITE> element, 727
<CODE> element, 729
<DD> element, 736
 element, 738–739
<DFN> element, 740
<DIR> element, 742
<DIV> element, 745
<DL> element, 747
<DT> element, 749
 element, 751
<FIELDSET> element, 756
 element, 759
<FORM> element, 417, 762
<FRAME> element, 765
<FRAMESET> element, 768
<Hn> elements, 771
<HR> element, 775
<I> element, 778
<IFRAME> element, 780
 element, 787
<INPUT> element, 791
<INS> element, 794
<ISINDEX> element, 795
<KBD> element, 798
<LABEL> element, 800
<LEGEND> element, 805
 element, 807
<LISTING> element,

812–813
<MARQUEE> element,

817–818
<OBJECT> element, 833
 element (ordered

lists), 836
<OPTION> element, 840
<P> element (paragraphs),

842
<PLAINTEXT> element, 847
<PRE> element

(preformatted text), 849
<Q> element (quotes), 851
<S> element (strikethrough),

853
<SAMP> element (sample

text), 854
<SCRIPT> element, 504, 856
<SELECT> element, 860
<SMALL> element, 863
 element (text

span), 867
specifying scripting, 508–509

I n d e x 1117

<STRIKE> element
(strikeout text), 868

 element
(strong emphasis), 870

<SUB> element
(subscripts), 874

<SUP> element
(superscripts), 876

<TABLE> element, 880
<TBODY> element, 884
<TD> element (table

data), 889
<TEXTAREA> element, 894
<TFOOT> element, 897
<TH> element (table

headers), 901
<THEAD> element (table

headers), 905
<TR> element (table

rows), 909
<TT> element (teletype

text), 911
<U> element (underline),

913
 element (unordered

lists), 915
<VAR> element, 917
<WBR> element (word

breaks), 718
<XMP> element (examples),

921
languages

CGI scripts and, 470, 471
reference, 672
specifying scripting, 508–509

LAST value, proposed REL
values, 157

Last-modified response header,
HTTP, 620

Latin extended-A, character
entities, 1020

Latin extended-B, character
entities, 1020

<LAYER> element, 278–281,
801–803

overview, 278–279
positioned layers, 279–281
See also <ILAYER> element

layers, 278–287
effects of, 283–285
inflow, 281–283
<LAYER> element, 278–281,

801–803
<NOLAYER> element,

280–281
positioned, 279–281

programming, 286–287
style sheet reference,

982–987
layout, 215–287

advanced, 265–287
alignment attributes, 219
background images, 237–241
<BODY> element color

attributes, 235–236
<CENTER> element and,

219
colors in HTML, 233–235
design requirements, 216
fonts, 227–233
frames, 266–288
HTML elements, 217–226
images alignment, 220–221
invisible images and,

221–222
layers, 278–287
<MULTICOL> element and,

224–225, 226
overview, 216
<PRE> element and, 218
<SPACER> element,

222–223
style sheet reference,

966–982
summary, 241, 287
<TABLE> element and,

243–263
text alignment, 217–219
word hinting, 219–220
See also style sheets

layout grid, <TABLE> element as,
249–256

LEFT attribute
<ILAYER> element, 783
<LAYER> element, 802

LEFT value, ALIGN attribute, 198
LEFTCOLOR attribute,

<AUDIOSCOPE> element, 700
LEFTMARGIN attribute,

<BODY> element, 241, 716
LEFTOFFSET attribute,

<AUDIOSCOPE> element, 701
<LEGEND> element, 804–806
letter-like symbols, character

entities, 1024
letter-spacing property

style sheet reference, 949
text properties, 357

LEVEL attribute, XML, 633, 634
 element, 806–808
line-height property

style sheet reference,
949–950

text properties, 359–361
linear structure

balancing with Web
structures, 34, 35

organization of information,
31, 32

LINK attribute, <BODY> element,
235–236, 716

<LINK> element, 154–161,
808–811

broken links, 168–170
<HEAD> element and, 62
HREF attribute, 154, 810
MEDIA attribute, 161, 333,

810
Netscape dynamic fonts, 231
REL attribute, 154, 810
REL values, 155–159
relationships overview, 450
REV attribute, 154, 810
semantic linking with,

154–161
style sheets and, 160–161,

332–333
TITLE attribute, 161–162
TYPE attribute, 162, 333, 810
WebTV and, 160
See also linking

linked styles, style sheet reference,
927

linking, 106–174
<A> element (anchors), 106,

129–131
broken links, 168–170
frames, 266
HREF attribute and, 106–107
<LINK> element, 154–161,

808–811
<META> element, 161–168,

821–823
redenderings, 132–133
relative URLs, 107–109
semantic. See <LINK>

element
style sheets, 331–333
summary, 174
underlining and, 107
See also <LINK> element;

URLs
list properties, 377–378, 989–993

list-style property, 378, 993
list-style-image property,

377–378, 992

1118 H T M L : T h e C o m p l e t e R e f e r e n c e

list-style-position property,
378, 993

list-style-type property, 377,
989–992

<LISTING> element, 812–813
lists, 83–91

definition, 89–91
ordered, 84–86
scrolled, 426–428
types of, 83–84
unordered, 86–88
vestigial, 91

LiveAudio (downloading and
playing audio), 300–304

ALIGN attribute, 302
AUTOSTART attribute, 301
CONTROLS attribute, 301,

302
ENDTIME attribute, 301
HEIGHT attribute, 302
HIDDEN attribute, 302
LOOP attribute, 301
MASTERSOUND attribute,

302–303
NAME attribute, 302–303,

304
SRC attribute, 301, 303
STARTTIME attribute, 301
syntax, 300
VOLUME attribute, 301
WIDTH attribute, 301, 302

LiveConnect technology, plug-ins
and scripting, 568–569, 576

LiveVideo (downloading and
playing video), 310–312

ALIGN attribute, 311
AUTOSTART attribute, 311
<EMBED> element, 311
HEIGHT attribute, 311
HSPACE attribute, 311
LOOP attribute, 311
SRC attribute, 311
VSPACE attribute, 311
WIDTH attribute, 311

Location response header, HTTP,
620

logical connectors, DTD,
1045–1046

logical text elements, 97–100
defined, 94
where to use, 100

logical versus physical HTML,
13–15

LOGO attribute, <BODY>
element, 716

LONGDESC attribute
<FRAME> element, 765
<IFRAME> element, 781
 element, 787

LOOP attribute
<BGSOUND> element, 304,

707
 element, 787
LiveAudio, 301
LiveVideo, 311
<MARQUEE> element, 297,

818
QuickTime, 315

lossy and lossless image
compression, 179

LOWSRC attribute
images, 206
 element, 787

M
Macintosh fonts, 1032
Macromedia, Flash format,

323–325
MADE value, proposed REL

values, 158
mailto URLs, 125
maintaining Web sites, 44–45, 623
<MAP> element, 813–815

client-side image maps,
144–145, 210

mapping files, CGI scripts, 460, 461
maps, image. See image maps
margin properties, style sheets,

362–365
MARGINHEIGHT attribute

<FRAME> element, 765
<IFRAME> element, 781

margins, style sheet reference,
966–967

MARGINWIDTH attribute
<FRAME> element, 765
<IFRAME> element, 781

marked section declarations, DTD,
1050

markers, HTTP URLs and, 120
markup languages. See CFML;

HTML; SGML; XML
<MARQUEE> element, 295–297,

815–819

BEHAVIOR attribute, 297,
817

<BLINK> element and, 295
DIRECTION attribute, 297,

817
LOOP attribute, 297, 818
SCROLLAMOUNT

attribute, 297, 818
SCROLLDELAY attribute,

297, 818
MASTERSOUND attribute,

LiveAudio, 302–303
mathematical operators, character

entities, 1025–1027
Max-Forwards: integer field,

HTTP, 611
MAXLENGTH attribute,

<INPUT> element, 792
MAXLEVEL attribute,

<AUDIOSCOPE> element, 701
MAXLINES attribute

<TD> element (table data),
889

<TH> element (table
headers), 901

MAXROWS attribute
<CFOUTPUT> element, 483
<CFQUERY> element, 482

MAYSCRIPT attribute,
<APPLET> element, 574, 695

measurement values, style sheet
reference, 993–996

MEDIA attribute
<LINK> element, 161,

333, 810
<STYLE> element, 872

@media rule, CSS2, 387, 388–389
media types and HTML, 289–326

audio support in browsers,
297–308

binary objects, 290–295,
322–326

CSS2, 386, 387
<MARQUEE> element,

295–297
video support in browsers,

308–322
media-dependent style sheets,

CSS2, 388–389
<MENU> element, 819–821

attributes, 820–821
vestigial lists, 91

menus, pull-down, 425–426

I n d e x 1119

<META> element
(meta-information), 161–168,
821–823

client-pull, 164
filtering software, 164–168
<HEAD> element and, 7–8,

62–63
HTTP-EQUIV attribute,

163–164, 822
interpage transitions, 402
NAME attribute, 162–163
overview, 161
PICS (Platform for Internet

Content Selection),
165–168

RSAC (Recreational
Software Advisory
Council), 165–168

site filtering, 164–168
META value, proposed REL

values, 159
meta-languages, SGML (Standard

Generalized Markup
Language), 629

METHOD attribute
<FORM> element, 411–413,

418, 762
GET method, 411–413
POST method, 413

METHODS attribute, <A>
element, 685

Microsoft
ActiveMovie, 317–321
ASP (Active Server Pages),

490–495
dynamic fonts, 232–233
event handling extensions,

527–529
fonts, 228–229, 1030–1031
history of HTML, 49
Internet Explorer. See

Internet Explorer
Microsoft-specific style sheet

properties, 397–404
cursor properties, 402–403
downloadable fonts, 403–404
filternames, 398
filters, 397–400
fonts, 403–404
interpage transitions, 402
<META> element, 402
page breaks, 403
revealtrans (reveal

transition filter), 400–402
transitions, 402

MIDDLE value, ALIGN attribute,
196, 199

middleware, server-side
programming, 457

MIME (Multipurpose Internet
Mail Extension), 621–622

MIME-version: version-number
field, HTTP, 611

mixed hierarchy structure,
organization of information, 33,
34

mm value, style sheet reference,
995

Mosaic, history of HTML, 47
MOV, standard Internet video

formats, 310
moving objects with DHTML,

551–556
MPEG, standard Internet video

formats, 310
MsgBox function, VBScript, 503
<MULTICOL> element, 823–825

COLS attribute, 224, 225
GUTTER attribute, 224, 824
layout and, 224–225, 226
WIDTH attribute, 224, 824

multiline text input
text controls, 422–425
<TEXTAREA> element,

891–896
MULTIPLE attribute, <SELECT>

element, 860

N
NAME attribute

<A> element, 134–136, 685
<APPLET> element, 574,

695
<AREA> element, 698
<BUTTON> element, 721
<CFQUERY> element, 482
client-side image maps, 210
DHTML and security,

542–546
<EMBED> element, 753
<FORM> element, 413–414,

418, 762
<FRAME> element, 270, 765
<IFRAME> element, 276,

781
<ILAYER> element, 783
images, 211
 element, 787
<INPUT> element, 792

<LAYER> element, 802
LiveAudio, 302–303, 304
<MAP> element, 814
<META> element, 162–163,

822
<OBJECT> element, 833
<PARAM> element, 574,

844
RealAudio, 308
scripting and plug-ins, 567
<SELECT> element, 860
<TABLE> element, 880
<TEXTAREA> element, 894
XML, 633

name groups, XML, 636
named color values, style sheet

reference, 996–997
named links, HTTP URLs and, 120
NAVIGATE value, proposed REL

values, 156
NCSA, Mosaic and history of

HTML, 47
nested elements, 12–13

HTML rules, 58
Netscape

dynamic fonts, 231–232
history of HTML, 48–49
LiveAudio, 300–304
LiveVideo, 310–312
object models, 539, 540, 541
QuickTime, 312–317
Web servers, 603–604

news URLs, 125–126
NEXT value, proposed REL

values, 155
NNTP URLs, 126
<NOBR> element, 825–826

word hinting, 219–220
NOCOLOR attribute, <A>

element, 685
NODE attribute, QuickTime, 315
<NOEMBED> element, 565–566,

826–827
binary objects, 291–292

<NOFRAMES> element, 270,
274–275, 827–828

See also <FRAME> element;
<IFRAME> element

NOHARDBREAKS attribute,
<TEXTAREA> element, 894

NOHREF attribute
<AREA> element, 698
 element (image

maps), 150–151
<NOLAYER> element, 280–281

1120 H T M L : T h e C o m p l e t e R e f e r e n c e

NORESIZE attribute
<FRAME> element, 765
<IFRAME> element, 781

<NOSCRIPT> element, 511–512,
828–830

NOSHADE attribute, <HR>
element, 92, 775

NOSOFTBREAKS attribute,
<TEXTAREA> element, 894

NOTAB attribute, <AREA>
element, 698

NOWRAP attribute
<TABLE> element, 880
<TD> element (table data),

889
<TH> element (table

headers), 901
NS attribute, <XML> element, 919
NSAPI/ISAPI, server-side

programming, 471–472
NUMBERS attribute,

<TEXTAREA> element, 894

O
<OBJECT> element, 830–835

ActiveMovie and, 318–319
ActiveX controls and,

292–293, 580–583
alternate binary formats, 323
attributes, 831–833
CLASSID attribute, 318, 832
databinding tables and, 262
Flash format (animation),

323
future of, 590
<HEAD> element and,

62–63
ID attribute and ActiveX

controls, 580–583
images and, 211
PARAM values, 318–319
syntax, 830–831
syntax for Java applets,

576–577
syntax for plug-ins, 566–567

OBJECT attribute, <APPLET>
element, 695

object models, DHTML (Dynamic
HTML), 539, 540, 541

objects
ActiveX Data. See ADO
ASP, 494–495
binary, 290–295, 322–326
<EMBED> element, 752–754

moving with DHTML,
551–556

scripting and programming
comparison, 560

occurrence indicators, DTD, 1045
ODBC (Open DataBase

Connectivity), ColdFusion
(parsed HTML), 482

 element (ordered lists),
84–86, 835–837

COMPACT attribute, 84,
836

LANGUAGE attribute, 836
START attribute, 84, 836
TYPE attribute, 84, 836

onabort attribute, extended event
model, 519, 676

onafterupdate attribute, extended
event model, 519, 676

onbeforeunload attribute,
extended event model, 519, 676

onbeforeupdate attribute,
extended event model, 519, 676

onblur attribute
core events, 673
HTML events, 513

onbounce attribute, extended
event model, 520, 677

onchange attribute
core events, 673
HTML events, 513

onclick attribute
core events, 673
HTML events, 513

onclick event attribute, scripting
and HTML, 418–419

ondataavailable attribute,
extended event model, 520, 677

ondatasetchanged attribute,
extended event model, 520, 677

ondatasetcomplete attribute,
extended event model, 520, 677

ondblclick attribute
core events, 673
HTML events, 513

ondragdrop attribute, extended
event model, 521, 677

ondragstart attribute, extended
event model, 520, 677

onerror attribute, extended event
model, 521, 678

onerror event handler, script
events in HTML, 526–527

onerrorupdate attribute, extended
event model, 521, 678

onfilterchange attribute, extended
event model, 521, 678

onfinish attribute, extended event
model, 521, 678

onfocus attribute
core events, 673
HTML events, 513

onhelp attribute, extended event
model, 521, 678

onkeydown attribute
core events, 673
HTML events, 513

onkeypress attribute
core events, 674
HTML events, 513

onkeyup attribute
core events, 674
HTML events, 513

onload attribute
core events, 674
HTML events, 513

onmousedown attribute
core events, 674
HTML events, 514

onmousemove attribute
core events, 674
HTML events, 514

onmouseout attribute
core events, 674
HTML events, 514

onmouseover attribute
core events, 674
HTML events, 514

onmouseup attribute
core events, 674
HTML events, 514

onmove attribute, extended event
model, 521, 678

onreadystatechange attribute,
extended event model, 522, 679

onreset attribute
core events, 675
HTML events, 514

onresize attribute, extended event
model, 522, 679

onrowenter attribute, extended
event model, 522, 679

onrowexit attribute, extended
event model, 523, 680

onscroll attribute, extended event
model, 523, 680

onselect attribute
core events, 675
HTML events, 514

I n d e x 1121

onselectstart attribute, extended
event model, 523, 680

onstart attribute, extended event
model, 523, 680

onsubmit attribute
core events, 675
HTML events, 514

onunload attribute
core events, 675
HTML events, 514

Open Software Description, XML
data files, 638

OpenType, downloadable fonts,
230–231

operating systems summary, Web
servers, 602

<OPTGROUP> element, 837–839
<OPTION> element, 839–841

pull-down menus, 425–426
scrolled lists, 427–428

ordered lists. See element
organization of information, 29–35

balancing linear and Web
structures, 34, 35

grid-style structure, 33
linear structure, 31, 32
mixed hierarchy structure,

33, 34
tree structure, 29–30
Web structure, 34, 35

outline properties, CSS2, 392
outsourcing Web hosting, 596–599

colocation, 596, 597
drawbacks, 598–599
security, 598
shared hosting, 596
virtual hosting, 596

overflow property, positioning
with style sheets, 382, 984–985

P
<P> element (paragraphs), 73–77,

841–843
ALIGN attribute, 73–74, 842

 element comparison,

77
padding properties, 369–374

float property, 372–374
height property, 372
HSPACE attribute and, 373
style sheet reference,

976–982
VSPACE attribute and, 373

width property, 372
page breaks, Microsoft style sheet

properties, 403
PAGEX attribute

<ILAYER> element, 783
<LAYER> element, 802

PAGEY attribute
<ILAYER> element, 783
<LAYER> element, 802

PALETTE attribute, <EMBED>
element, 564, 753

PAN attribute, QuickTime, 315
paragraphs. See <P> element
<PARAM> element, 844–846

ALT attribute, 574
<APPLET> element and,

573–574
NAME attribute, 574, 844
passing data to ActiveX

controls, 583–584
VALUE attribute, 574, 845
VALUETYPE attribute, 574,

845
PARAM values, <OBJECT>

element, 318–319
parameter entities, DTD,

1048–1049
PARENT value, proposed REL

values, 157
_parent value, TARGET attribute,

273
parse tree, DOM (Document

Object Model), 537
parsed HTML, 472–490

ColdFusion, 478–490
overview, 472–473
SSIs (server-side includes),

473–478
passing data to

ActiveX controls, 583–584
CGI scripts, 468–470
Java applets, 573–574

PASSWORD attribute,
<CFQUERY> element, 482

password fields, text controls,
421–422

passwords, URLs and, 116
pause property, CSS2, 395
pause-after property, CSS2, 394
pause-before property, CSS2, 394
pc value, style sheet reference, 995
PDF (Portable Document Format),

Adobe Acrobat, 325
PEP (Protocol Extension Protocol),

HTTP, 605

photography, JPEG images,
186–187

physical character-formatting
elements, 94, 95–97

<BIG> element, 97
<SMALL> element, 97
underlining caveat, 97

physical versus logical HTML,
13–15

PICS (Platform for Internet
Content Selection), <META>
element, 165–168

pitch property, CSS2, 393
pitch-range property, CSS2, 393
pixels, images and, 177
<PLAINTEXT> element,

846–847
planning, process of Web

publishing, 36–37
play-during property, CSS2, 396
PLAYEVERYFRAME attribute,

QuickTime, 315
plug-ins, 561–569

attributes for installation of,
564–565

benefit of, 561
custom attributes, 564
defined, 561
<EMBED> element and,

290–291, 561–565
LiveConnect technology,

568–569, 576
NAME attribute, 567
<NOEMBED> element,

565–566, 826–827
<OBJECT> element syntax

for, 566–567
plugins[] collection, 568
scripting and, 567–569

PLUGINSPAGE attribute
<EMBED> element, 753
plug-in installations,

564–565
QuickTime, 315

PLUGINURL attribute, plug-in
installations, 565

PNG images, 187
POINT-SIZE attribute,

element, 759
ports, URLs and, 116
position property, style sheet

reference, 982–983
positioned layers, <LAYER>

element, 279–281

positioning with style sheets,
378–386, 982–987

clip property, 381
overflow property, 382
position property, 379–380
visibility property, 383–386
z-index property, 382–383

POST method
METHOD attribute, 413
passing form data to CGI

scripts, 468–469
Pragma: server-directive field,

HTTP, 611
<PRE> element (preformatted

text), 81–83, 848–850
layout and, 218

PREFIX attribute, <XML>
element, 919

presentation issues
forms, 443–448
future of HTML, 654–655

PREV value, proposed REL
values, 156

process of Web publishing, 23–37
audience issues, 25
costs, 26–27
determining purpose, 24–25
goals, 27–28
organization of information,

29–35
planning, 36–37
scope, 28–29
subscriptions, 26

PROFILE attribute, <HEAD>
element, 773

programmed Web sites, history of
HTML, 49–50

programming in HTML, 405–591
client-side programming,

559–591
DHTML (Dynamic HTML),

535–558
forms, 407–449
future of, 655–657
scripting, 497–533
scripting and objects

comparison, 560
server-side programming,

453–496
programming layers, 286–287

DHTML (Dynamic HTML),
286

wipe effect, 286

progressive JPEG images,
photography, 187

PROMPT attribute, <ISINDEX>
element, 796

proprietary audio formats, 305
protocols, URL, 114–116
Proxy-authenticate response

header, HTTP, 620
Proxy-Authorization:

authorization information
field, HTTP, 611

pseudoclasses, style sheet
reference, 931–932

pseudoelements, style sheet
reference, 932–933

pt value, style sheet reference, 996
Public response header, HTTP,

620
PUBLISHER value, proposed REL

values, 159
publishing. See Web publishing
pull-down menus, <OPTION>

element, 425–426
punctuation, character entities,

1020
push functionality, XML data files,

638
px value, style sheet reference, 996

Q
QUERY attribute, <CFOUTPUT>

element, 483
QuickTime (downloading and

playing video), 312–317
ALIGN attribute, 313
AUTOPLAY attribute, 313
CACHE attribute, 313
CONTROLLER attribute,

314
CORRECTION attribute,

314
FOV attribute, 314
HEIGHT attribute, 314
HIDDEN attribute, 314
HOTSPOT attribute, 314
HREF attribute, 314
HSPACE attribute, 314
LOOP attribute, 315
NODE attribute, 315
PAN attribute, 315
PLAYEVERYFRAME

attribute, 315

PLUGINSPAGE attribute,
315

SCALE attribute, 315
SRC attribute, 313
TARGET attribute, 315
TILT attribute, 315
VOLUME attribute, 316
VSPACE attribute, 316
WIDTH attribute, 316

quoted attribute values, HTML
rules, 56–58

quotes
<BLOCKQUOTE> element,

80–81, 711–713
<BQ> element (block

quotes), 717–718
<Q> element, 850–852

R
radio buttons, text controls,

430–431
Range: byte-range field, HTTP,

611
READONLY attribute

forms, 443
<INPUT> element, 792
<TEXTAREA> element, 894

real-time data problems,
downloading and playing
audio, 305–306

RealAudio (downloading and
playing audio), 306–308

AUTOSTART attribute, 308
CONTROLS attribute, 307
HEIGHT attribute, 308
NAME attribute, 308
SRC attribute, 307
WIDTH attribute, 308

redirection codes, HTTP, 614–615
Referrer: URL field, HTTP, 612
REL attribute

<A> element, 140, 685
<LINK> element, 154, 810

REL values, <LINK> element,
155–159

relative URLs, 107–109, 127–129
<BASE> element and, 128

RELOAD attribute,
element, 787

request methods, HTTP, 607, 608
request object, ASP, 495
reserved characters, XML, 632

1122 H T M L : T h e C o m p l e t e R e f e r e n c e

I n d e x 1123

reset and submit buttons, text
controls, 431–433

resolution, images and, 177–178
response headers, HTTP,

618–621
response object, ASP, 495
Retry-after response header,

HTTP, 620
REV attribute

<A> element, 140, 685
<LINK> element, 154, 810

revealtrans (reveal transition
filter), Microsoft style sheet
properties, 400–402

RGB color values, style sheet
reference, 997–998

richness property, CSS2, 394
RIGHT value, ALIGN attribute,

198
RIGHTCOLOR attribute,

<AUDIOSCOPE> element, 701
RIGHTMARGIN attribute,

<BODY> element, 716
RIGHTOFFSET attribute,

<AUDIOSCOPE> element, 701
rollover buttons (DHTML),

547–551
<A> element and, 140
image maps, 551
style sheet-based, 549–551
swapping images, 547–549

ROWS attribute
<FRAMESET> element,

268–269, 768
<TEXTAREA> element, 894

ROWSPAN attribute
<TABLE> element, 246–249
<TD> element (table data),

889
<TH> element (table

headers), 901
RSAC (Recreational Software

Advisory Council), <META>
element, 165–168

RSVP (Resource Reservation Setup
Protocol), downloading and
playing audio, 306

RTP (Real Time Transport
Protocol), downloading and
playing audio, 306

rules
horizontal . See <HR>

element
style sheet, 330, 930

RULES attribute, <TABLE>
element, 258, 880–881

rules and guidelines of HTML,
55–59

case insensitivity of attribute
names, 56

case insensitivity of element
names, 55

case sensitivity of attribute
values, 56

comments, 57–59
DTDs, 55, 60–61
nested elements, 58
quoted attribute values,

56–57
spaces and element

names, 57
structure, 7–11, 55, 59, 60
unknown attributes

ignored, 58
unknown elements

ignored, 58
validator programs, 59

rules of, XML, 631–632
RUNAT attribute, ASP, 491

S
<S> element (strikethrough),

852–853
<SAMP> element (sample text),

853–855
sampling, audio support in

browsers, 298
SCALE attribute, QuickTime, 315
SCHEME attribute, <META>

element, 822
scope, process of Web publishing,

28–29
SCOPE attribute

<TD> element (table data),
889

<TH> element (table
headers), 901–902

screen resolution, images and,
177–178

<SCRIPT> element, 504–508,
855–848

ASP, 491
attributes, 504
<BODY> element and,

505–506
<HEAD> element and,

63, 505
LANGUAGE attribute, 504,

856

Microsoft event handler
extensions, 527

script handlers, 506
SRC attribute, 504, 856
TYPE attribute, 504, 857
See also script events in

HTML; scripting
script events in HTML, 68–69,

512–529
core events, 514–515
error handlers, 526–527
event handlers, 512–533
example, 515–518
extended event model,

518–525
Internet Explorer 5 event

preview, 525–526
Microsoft event handling

extensions, 527–529
onerror event handler,

526–527
See also <SCRIPT> element;

scripting
scripting, 497–533

<A> element (anchors) and,
140

ActiveX controls and,
585–588

ASP, 490–495
cached files, 510
Common Gateway Interface.

See CGI scripts
events in HTML, 68–69,

512–529
external scripts, 509–510
image maps and, 153
images and, 211
Java applets and, 574–576
JavaScript, 499–501, 501,

529–533
LANGUAGE attribute,

508–509
non-script-aware browsers,

510–511
<NOSCRIPT> element,

511–512, 828–830
overview, 498
plug-ins and, 567–569
programming and objects

comparison, 560
purpose of, 498–499
server-side. See parsed

HTML
specifying languages,

508–509
summary, 533

1124 H T M L : T h e C o m p l e t e R e f e r e n c e

TYPE attribute, 509
VBScript, 502–504
See also <SCRIPT> element;

script events in HTML
SCROLL attribute, <BODY>

element, 716
SCROLLAMOUNT attribute,

<MARQUEE> element, 297, 818
SCROLLDELAY attribute,

<MARQUEE> element, 297, 818
scrolled lists, text controls, 426–428
SCROLLING attribute

<FRAME> element, 765
<IFRAME> element, 781

SECTION value, proposed REL
values, 156

Secure Sockets Layer. See SSL
security

ActiveX controls and, 579
DHTML (Dynamic HTML),

542–547
Java applets and, 569–570
outsourcing Web hosting,

598
<SELECT> element, 858–862

attributes, 859–861
pull-down menus, 425–426
scrolled lists, 426–428
SELCOLOR attribute, 860
syntax, 858–859
text control, 425–426

SELECTED attribute
<A> element, 685
 element, 787
<OPTION> element, 840

selector rings, Gopher URLs, 124
selectors, style sheet, 330, 928–930
_self value, TARGET attribute,

273
semantic linking, <LINK>

element, 154–161, 808–811
server error codes, HTTP, 617–618
server object, ASP, 495
Server response header, HTTP, 620
server-side image maps,

element, 143–144, 209–210
server-side includes. See SSIs
server-side programming, 453–496

ASP, 490–495
CGI scripts, 458–471
client/server overview,

454–456
ColdFusion, 478–490
middleware, 457
NSAPI/ISAPI, 471–472

overview, 454, 457
parsed HTML, 472–490
summary, 496

servers. See Web servers
session object, ASP, 495
setMessage method, Java applets,

575
SGML (Standard Generalized

Markup Language)
DTD keywords, 1047–1048
history of HTML, 46
HTML, XML and, 628–630
as meta-language, 629
XML as subset of, 629–630

SHAPE attribute
<A> element, 685–686
<AREA> element, 698–699

shared hosting, outsourcing Web
hosting, 596

SHOWKEYBOARD attribute,
<TEXTAREA> element, 894

SIBLING value, proposed REL
values, 157

signed Java applets, 570
site filtering, <META> element,

164–168
sites. See Web sites
SIZE attribute

<BASEFONT> element,
229–230, 705

 element, 227–228,
759

<HR> element, 92, 775
<INPUT> element, 792
<SELECT> element, 861
<SPACER> element, 864

<SMALL> element, 97, 862–864
sound. See audio
<SPACER> element, 864–865

layout and, 222–223
spaces

element names and, 57
HTML and, 12

spacing modifier letters, character
entities, 1020

 element (text span),
865–867

style sheets, 336
SPAN attribute

<COL> element, 731
<COLGROUP> element,

733
speak property, CSS2, 394
speak-header property, CSS2, 397

speak-numeral property, CSS2,
397

speak-punctuation property,
CSS2, 396–397

special characters, 999–1027
character entities, 100–103,

1019–1027
“standard” character

entities, 1000–1019
<TITLE> element and, 64

speech-rate property, CSS2, 393
speed and state problems with

HTTP, 622–623
SQL (Structured Query

Language), ColdFusion,
490–482

SRC attribute
<APPLET> element, 695
<BGSOUND> element, 707
<EMBED> element, 563, 753
external scripts, 509–510
<FRAME> element, 765
<HR> element, 775
<IFRAME> element, 275,

276, 781
<ILAYER> element, 783
images, 191
 element, 787
<INPUT> element, 792
<LAYER> element, 802
LiveAudio, 301, 303
LiveVideo, 311
QuickTime, 313
RealAudio, 307
<SCRIPT> element, 504, 856
<XML> element, 919
XML, 642

SSIs (server-side includes),
473–478

CONFIG command, 478
ECHO command, 476–477
environment variables,

474–476
EXEC command, 477
FLASTMOD command, 477
FSIZE command, 477
INCLUDE command, 474,

477
SSL (Secure Sockets Layer), HTTP

URLs and, 121
STANDBY attribute, <OBJECT>

element, 833
START attribute, element,

84, 836

I n d e x 1125

START value, proposed REL
values, 156

STARTROW attribute,
<CFOUTPUT> element, 483

STARTTIME attribute,
LiveAudio, 301

state and speed problems with
HTTP, 622–623

status codes, HTTP, 613–618
streaming data, downloading and

playing audio, 305
stress property, CSS2, 394
strict DTD, listing, 1077–1099
<STRIKE> element (strikeout

text), 867–869
strikethrough text, <S> element,

852–853
 element (strong

emphasis), 869–871
structure of

DOM (Document Object
Model), 537–538

future HTML documents,
658–660

HTML documents, 7–11, 55,
59, 60

Web sites, 29–35
STYLE attribute, 67, 671

<APPLET> element, 695
<FORM> element, 418
<ILAYER> element, 783
images and, 211

<STYLE> element, 871–873
<HEAD> element and, 63,

334
style sheet reference, 925–998

A:active pseudoclass,
931–932

A:link pseudoclass, 932
A:visited pseudoclass, 932
background and color

properties, 954–966
background property,

961–966
background-attachment

property, 957–958
background-color property,

954–955
background-image

property, 955–956
background-position

property, 958–961
background-repeat

property, 1256–957
borders, 968–976
class selectors, 928–929

classification properties,
987–993

clear property, 980–982
clip property, 984
cm value, 994
color and background

properties, 954–966
color property, 954
color values, 996–998
comments, 933
contextual selectors, 929
display property, 987–988
em value, 994
embedded styles, 926
ex value, 994–995
first-letter property, 932–933
first-line property, 933
float property, 979
font property, 948
font-family property,

934–936
font-size property, 936–940
font-style property, 940–941
font-variant property,

943–944
font-weight property,

942–943
fonts, 934–948
grouping, 931
height property, 978–979,

984
ID selectors, 929–930
! Important property, 934
imported styles, 927–928
in value, 995
inheritance, 931
inline styles, 927
layers and positioning,

982–987
layout, 966–982
letter-spacing property, 949
line-height property,

949–950
linked styles, 927
list-style property, 993
list-style-image property,

992
list-style-position property,

993
list-style-type property,

989–992
margins, 966–968
measurement values,

993–996
miscellaneous terms,

933–934

mm value, 995
named color values, 996–997
overflow property, 984–985
padding properties, 976–982
pc value, 995
position property, 982–983
positioning and layers,

982–987
pseudoclasses, 931–932
pseudoelements, 932–933
pt value, 996
px value, 996
RGB color values, 997–998
rules, 930
selectors, 928–930
terminology, 926–931
text, 948–954
text-align property, 950–951
text-decoration property,

347, 946–947
text-indent property,

953–963
text-transform property,

347, 944–946
vertical-align property,

951–953
visibility property, 986–987
white-space property,

988–989
width property, 978, 984
word-spacing property,

948–949
z-index property, 985–986
See also CSS; CSS2; style

sheets
style sheets, 327–404

adding to documents, 330
border properties, 365–369
box properties, 361–362
cascading. See CSS; CSS2
CLASS attribute, 337–339
classification properties,

374–377
color and background

properties, 351–356
comparison of various, 331
contextual selection, 339
DHTML scripts and,

546–547
<DIV> element, 336
element grouping, 340–341
embedding, 333–334
examples, 342–343, 348–350
font properties, 344–350
grouping elements, 340–341
<Hn> elements, 336–337

1126 H T M L : T h e C o m p l e t e R e f e r e n c e

ID attribute, 337–339
importing, 335
inheritance, 341
inline styles, 336–337
<LINK> element and,

160–161, 332–333
list properties, 377–378
margin properties, 362–365
Microsoft-specific

properties, 397–404
overview, 328–341
padding properties, 369–374
positioning with, 378–386
properties, 344–378
reference, 925–998
rollover buttons based on,

549–551
rules, 330
selectors, 330
 element (text

span), 336
summary, 404
text properties, 356–361
XSL (eXtensible Stylesheet

Language), 645–649
See also CSS; CSS2; style

sheet reference
STYLESHEET value, proposed

REL values, 156, 159
<SUB> element (subscripts),

873–875
submit and reset buttons, text

controls, 431–433
subscriptions, process of Web

publishing, 26
SUBSECTION value, proposed

REL values, 156
success codes, HTTP, 613–614
SUMMARY attribute, <TABLE>

element, 881
<SUP> element (superscripts),

875–877
SUPPRESS attribute,

element, 787
swapping images, rollover buttons

(DHTML), 547–549
symbols. See character entities;

special characters

T
TABINDEX attribute

<A> element, 139, 686
<AREA> element, 699
<BUTTON> element, 721

form accessibility
enhancements, 442–443

 element (image
maps), 151–153

<INPUT> element, 792
<OBJECT> element, 833
<SELECT> element, 861
<TEXTAREA> element, 894

<TABLE> element, 243–263,
877–883

advanced layout, 252–256
ALIGN attribute, 261, 878
attributes, 877–881
BACKGROUND attribute,

261, 879
BGCOLOR attribute, 251,

879
BORDER attribute, 244–246,

250, 879
BORDERCOLOR attribute,

261, 879
BORDERCOLORDARK

attribute, 879
BORDERCOLORLIGHT

attribute, 879
<CAPTION> element and,

246, 256
CELLBORDER attribute,

879
CELLPADDING attribute,

252, 255
CELLSPACING attribute,

879
<COL> element and,

256–257
<COLGROUP> element

and, 256–257
COLS attribute, 246, 879
COLSPAN attribute,

246–249, 252
databinding, 259–263
DATAPAGESIZE attribute,

879
DATASRC attribute, 880
dynamic nature of, 244
FRAME attribute, 258, 880
GRADANGLE attribute,

880
HEIGHT attribute, 256, 261,

880
HREF attribute, 880
HSPACE attribute, 880
LANGUAGE attribute, 880
as layout grid, 249–256
NAME attribute, 880

new elements in HTML 4,
256–259

NOWRAP attribute, 880
overview, 244–246
ROWSPAN attribute,

246–249
RULES attribute, 258,

880–881
summary, 263
SUMMARY attribute, 881
use of in defining tables, 259,

877
<TBODY> element and,

256, 257, 258–259
<TD> element and, 244–246,

256, 257
<TFOOT> element and, 256,

257, 259
<TH> element and, 244–246,

256, 257
<THEAD> element and,

256, 257, 258–259
<TR> element and, 244–246,

256, 257
TRANSPARENCY

attribute, 881
VSPACE attribute, 261, 881
WIDTH attribute, 249–250,

256, 881
table bodies, <TBODY> element,

883–886
table data, <TD> element, 886–891
table footers, <TFOOT> element,

896–898
table headers

<TH> element, 898–903
<THEAD> element, 803–805

table rows, <TR> element,
907–910

tables, forms and presentation,
443, 446

tabs, HTML and, 12, 57
Tabular Data Control (TDC)

objects, databinding tables,
261–262

tags, 4–6, 11–13, 54–55
/ (slash), 6, 54
crossed, 12–13, 58
described, 4
start and end, 54–55

TARGET attribute
<A> element, 139, 272–274,

686
<AREA> element, 699
<BASE> element, 703–704
<FORM> element, 418, 762

I n d e x 1127

frames, 272–274
 element (image

maps), 149–150
<LINK> element, 810
QuickTime, 315

<TBODY> element, 883–886
databinding tables, 263
<TABLE> element and, 256,

257, 258–259
TCP/IP, downloading and

playing audio, 306–307
<TD> element (table data),

886–891
attributes, 887–890
syntax, 886
<TABLE> element and,

244–246, 256, 257
TDC (Tabular Data Control)

objects, databinding tables,
261–262

technical symbols, character
entities, 1027

technology design, Web
publishing, 38–39

teletype text, <TT> element,
910–912

telnet, CGI scripts and, 459
telnet URLs, 126–127
testing, Web publishing and,

42–44
text

alignment and layout,
217–219

alternative and images (ALT
attribute), 192–196

<BLOCKQUOTE> element,
80–81, 711–713

<PLAINTEXT> element,
846–847

<PRE> element
(preformatted text), 81–83,
848–850

<SAMP> element (sample
text), 853–855

<SMALL> element, 862–864
 element, 865–867
<STRIKE> element

(strikeout text), 867–869
 element

(strong emphasis),
869–871

style sheet reference,
948–954

<SUB> element (subscripts),
873–875

<SUP> element
(superscripts), 875–877

<TT> element (teletype
text), 910–912

TEXT attribute
<BODY> element, 235, 716
<SELECT> element, 861

text controls, 419–433
check boxes, 428–429
<INPUT> element, 419–422,

428–437
multiple-line text input,

422–425
<OPTION> element,

425–426
password fields, 421–422
pull-down menus, 425–426
radio buttons, 430–431
reset and submit buttons,

431–433
scrolled lists, 426–428
<SELECT> element, 425–426
simple text entry, 419–421
<TEXTAREA> element,

419–433
text elements, 94–100

logical, 94, 97–100
physical, 94, 95–97

text input, multiline, 422–425,
891–896

text properties, 356–361
letter-spacing property, 357
line-height property,

359–361
text-align property, 358,

950–951
text-indent property,

358–359, 953–954
vertical-align property,

357–358
word-spacing property, 357

text-decoration property
font properties, 347
style sheet reference,

946–947
text-transform property

font properties, 347
style sheet reference,

944–946
<TEXTAREA> element, 891–896

attributes, 892–895
syntax, 891
text controls, 419–433

TEXTTOP value, ALIGN
attribute, 199–200

<TFOOT> element, 896–898
databinding tables, 263
syntax, 896
<TABLE> element and, 256,

257, 259
<TH> element (table headers),

898–903
attributes, 899–902
syntax, 898–899
<TABLE> element and,

244–246, 256, 257, 258
<THEAD> element (table

headers), 803–805
attributes, 904–905
databinding tables, 263
syntax, 903–904
<TABLE> element and, 256,

257, 258–259
tiling background images, 238–240
TILT attribute, QuickTime, 315
TIMEOUT attribute,

<CFQUERY> element, 482
TITLE attribute, 67, 671

<A> element, 136–137
<FORM> element, 418
images, 211
 element (image

maps), 151
<LINK> element, 161–162
<STYLE> element, 872

<TITLE> element, 7, 54, 59, 60,
63–66, 906–907

browsers deduce titles, 63
length of titles, 65
multiple instances of, 66
special characters and, 64
syntax, 63–64, 906

TOP attribute
<ILAYER> element, 783
<LAYER> element, 802

TOP value, ALIGN attribute, 196
TOPMARGIN attribute, <BODY>

element, 241, 716
_top value, TARGET attribute, 273
<TR> element (table rows),

907–910
attributes, 908–909
syntax, 907–908
<TABLE> element and,

244–246, 257, 258
TRADEMARK value, proposed

REL values, 159
transitional DTD, code listing,

1051–1077
transitions, Microsoft style sheet

properties, 402

1128 H T M L : T h e C o m p l e t e R e f e r e n c e

TRANSLATION value, proposed
REL values, 159

transparency, GIF images, 181, 182
TRANSPARENCY attribute

 element, 759
 element, 788
<MARQUEE> element, 818
<TABLE> element, 881
<TD> element (table data),

889
<TH> element (table

headers), 902
<TR> element (table rows),

909
tree structure, organization of

information, 29–30
TRUESPEED attribute,

<MARQUEE> element, 818
<TT> element (teletype text),

910–912
TYPE attribute

<A> element, 686
<BUTTON> element, 721
<EMBED> element, 563, 753
<INPUT> element, 433–437,

792–793
 element, 807
<LINK> element, 162, 333,

810
<OBJECT> element, 833
 element (ordered

lists), 84, 836
<PARAM> element, 844
<SCRIPT> element, 504, 857
<SPACER> element, 864
specifying scripting, 509
<STYLE> element, 872
 element (unordered

lists), 87, 915

U
<U> element (underline), 912–913

linking and, 107
 element (unordered lists),

86–88, 913–916
COMPACT attribute, 914
LANGUAGE attribute, 915
TYPE attribute, 87, 915

underlining. See <U> element
UNITS attribute, <EMBED>

element, 563–564, 753
Unix fonts, 1032

unknown attributes and elements
ignored, HTML rules, 58

unordered lists. See element
URCs (uniform resource

characteristics), 172–174
URIs (uniform resource

identifiers), 173
URLs (uniform resource locators),

109–129, 170–174
<A> element, 129–142
alternatives to, 171–174
authenticated services and,

116
character encoding values,

117–118
directories and, 113
domain names and, 110–113
file protocol, 121–122
filenames and, 114
formula structures, 118–127
fragment identifiers and, 116
FTP (File Transfer Protocol),

122–124
future possibilities, 173–174
Gopher protocol, 124–125
HTTP and, 607
HTTP protocol, 119–121
IP addresses and, 112–113
mailto protocol, 125
miscellaneous protocols, 127
news protocol, 125–126
NNTP (Network News

Transport Protocol), 126
overview, 109–118
passwords and, 116
ports and, 116
problems with, 170–171
protocols, 114–116
relative, 107–109, 127–129
syntax, 118–127
telnet protocol, 126–127
URCs and, 172–174
URIs and, 173
URNs and, 172
user names and, 116
See also linking

URNs (uniform resource names),
172

USEMAP attribute
client-side image maps,

148–149, 210
 element, 788
<INPUT> element, 793
<OBJECT> element, 833

user names, URLs and, 116

User-Agent: agent-code field,
HTTP, 612

USERNAME attribute,
<CFQUERY> element, 482

USESTYLE attribute
<INPUT> element, 793
<SELECT> element, 861
<TEXTAREA> element, 894

V
valid documents (XML), 632–638

DTDs, 633–638
validating forms, JavaScript,

529–533
validator programs, HTML

rules, 59
VALIGN attribute

<COL> element, 731
<COLGROUP> element,

733
<LEGEND> element, 805
<TBODY> element, 885
<TD> element (table data),

889
<TFOOT> element, 897
<TH> element (table

headers), 902
<THEAD> element (table

headers), 905
<TR> element (table rows),

909
VALUE attribute

<BUTTON> element, 721
<INPUT> element, 793
 element, 807
<OPTION> element, 840
<PARAM> element, 574,

845
VALUETYPE attribute,

<PARAM> element, 574, 845
<VAR> element, 916–917
variables, CGI environment,

462–466
VBScript, 502–504

ASP and, 492
MsgBox function, 503

vector images, 178, 179
VERSION attribute, <HTML>

element, 777
vertical-align property

style sheet reference,
951–953

text properties, 357–358

I n d e x 1129

vestigial lists, 91
video support in browsers,

308–322
alternate file formats, 322
digital video overview, 309
downloading and playing

video, 309–321
file formats and

compression, 309, 310
overview, 308–309

virtual hosting of Web sites, 596,
599–600

VISIBILITY attribute
<ILAYER> element, 783
<LAYER> element, 803

visibility property, positioning
with style sheets, 383–386,
986–987

visual design, Web publishing, 38
VLINK attribute, <BODY>

element, 235–236, 716
voice-family property, CSS2, 393
VOLUME attribute, 301

<BGSOUND> element, 708
LiveAudio, 301
QuickTime, 316

volume property, CSS2, 394
Voyager, rewriting HTML as

XML, 649–651
VSPACE attribute

<APPLET> element, 695
<EMBED> element, 563, 753
<IFRAME> element, 781
 element, 200–202,

788
invisible images and

layout, 221
LiveVideo, 311
<MARQUEE> element, 818
<OBJECT> element, 833
padding properties and, 373
QuickTime, 316
<TABLE> element, 261, 881

W
Warning response header,

HTTP, 621
<WBR> element (word breaks),

717–719
word hinting, 219–220

Web browsers. See browsers
Web pages. See Web sites

Web publishing, 19–52, 596
design, 20–23
developmental phases, 45
history of HTML, 46–50
HTML issues, 50–51
implementation of, 37–45
process of, 23–37
summary, 51–52

Web servers, 600–623
Apache, 603
HTTP and, 605–623
IIS (Internet Information

Server), 603
Netscape, 603–604
operating systems summary,

602
overview, 604–605
selecting, 600–604
WebSite, 604
WebStar, 604

Web sites, 595–623
adding ActiveX controls to,

580–588
design requirements, 216
document-wide font

settings, 229–230
hosting options, 596–600
layout, 215–241
maintaining, 623
organization of information,

29–35
outsourcing Web hosting,

596–599
publishing. See Web

publishing
summary, 623
virtual hosting, 596, 599–600
Web servers, 600–623

WebSite Web server, 604
WebStar Web server, 604
WebTV

forms and, 448
<LINK> element and, 160

WEIGHT attribute,
element, 231, 760

WHERE modifier, ColdFusion
(parsed HTML), 481

white-space property
classification properties,

376–377
style sheet reference,

988–989
WIDTH attribute

<APPLET> element, 695

<AUDIOSCOPE> element,
701

<COL> element, 731
<COLGROUP> element,

733
<EMBED> element,

563–564, 753
<HR> element (horizontal

rules), 92, 775
<IFRAME> element

(floating frames), 275, 781
<ILAYER> element, 783
images, 205–206
 element, 788
<INPUT> element, 793
<LAYER> element, 803
LiveAudio, 301, 302
LiveVideo, 311
<MARQUEE> element, 818
<MULTICOL> element,

224, 824
<OBJECT> element, 833
<OBJECT> element and

ActiveX controls, 580
<PRE> element

(preformatted text), 849
QuickTime, 316
RealAudio, 308
<SPACER> element, 864
<TABLE> element, 249–250,

256, 881
<TD> element (table data),

890
<TH> element (table

headers), 902
width property

padding properties, 372
style sheet reference, 978,

984
window regions, <FRAME>

element, 763–766
wipe effect, programming layers,

286
word breaks, <WBR> element,

717–719
word hinting

<NOBR> element, 219–220
<WBR> element, 219–220

word-spacing property
style sheet reference,

948–949
text properties, 357

World Wide Web
future of HTML, 661–663
See also Web...

World Wide Web Consortium
(W3C), HTML overview, 7

WRAP attribute, <TEXTAREA>
element, 894–895

WWW-authenticate response
header, HTTP, 621

WYSIWYG editors, 40–42

X
x/y coordinates, client-side image

maps, 147
XML (eXtensible Markup

Language), 627–652
application profiles, 628
CDF (Channel Definition

Format), 638–640
converting to HTML for

display, 643–645
CSS and, 645–649
data files, 638–640

<!DOCTYPE> element,
637–638

DTDs and, 633–638
embedding in HTML

documents, 640–643
file extensions and, 639
future of, 651
general entities, 636
GRAMMAR entity, 636–637
HTML, SGML and, 628–630
ID attribute, 645
inclusions, 636
LEVEL attribute, 633, 634
NAME attribute, 633
name groups, 636
Open Software Description,

638
overview, 628–632
push functionality, 638
reserved characters, 632
rewriting HTML as, 649–651
rules of, 631–632
SRC attribute, 642

summary, 652
valid documents, 632–638
ways to use, 638–649
<XML> element, 640–643,

919–920
<XMP> element (examples),

920–922
XSL (eXtensible Stylesheet

Language), displaying XML
documents with, 645–649

Z
Z-INDEX attribute

<ILAYER> element, 783
<LAYER> element, 803

z-index property, positioning with
style sheets, 382–383, 985–986

zone identifiers, domain names,
111–112

1130 H T M L : T h e C o m p l e t e R e f e r e n c e

